From functional nanostructured surfaces to innovative optical biosensors

Giacomo Dacarro Dipartimento di Fisica "A.Volta" Dipartimento di Chimica Generale Università degli Studi di Pavia

ro 'A.Volta" Generale di Pavia

Dalla scienza dei materiali alla biomedicina molecolare

Outline

- •Self-assembled monolayer (SAM) formation and growth
- •Metal nanoparticles (NP) anchoring on SAM
- •Metal ions and NP SAM as antibacterial materials
- •Applications to photonic biosensors
- •Plasmonic-photonic biosensor SENSe (surface-enhanced nanosensor)

SAM formation and growth

- 1. SiO₂ surface cleaning/activation
- 2. Silanization
- 3. Further growth of the SAM

Dalla scienza dei materiali alla biomedicina molecolare

Contact Angle

surface hydrophilicity/lipophilicity

Spectroscopic Ellipsometry

Surface dielectric function changes SAM thickness

FTIR-Attenuated Total Reflectance (ATR)

Identification of chemical groups

Atomic Force Microscopy

Sample topography, morphology Roughness (rms roughness 0.31nm)

Synthesis and anchoring of Ag nanoparticles

Silver salt: AgNO₃ Stabilizing agent: sodium citrate Reducing agent: NaBH₄

Functionalized glass dipped in NP solution (rt, overnight)

Absorbance

Stability of Ag NP monolayer

[Ag] = 4.84 μ g/cm² (Neutron Activation Analysis)

Dalla scienza dei materiali alla biomedicina molecolare

Anchoring of metal ion complexes

NP bound through weak (non covalent) interactions

FTIR-ATR

UV-Visible spectroscopy

Dalla scienza dei materiali alla biomedicina molecolare

Antibacterial activity

Ag NP on –SH SAM

Cu complex SAM

Microbicidal Effect ME = $\log N_c - \log N_E$

Strands	ME	
	5 h	24 h
Staphylococcus	4.00	
aureus (Gram+)	1.22	
Escherichia Coli	0.04	
(Gram-)	3.24	4.12

	+	
Strands	ME	
	5 h	24 h
Staphylococcus	0.88	1.71
aureus (Gram+)		
Escherichia Coli	2.29	2.5
(Gram-)		

Strands	ME	
	5 h	24 h
Staphylococcus aureus (Gram+)	2.33	6.60
Escherichia Coli (Gram-)	5.29	7.06

Cu complex SAM with Ag NP overlayer

A "tertiary" monolayer

Photonic biosensors

Nanofabrication Techniques to develop Sensitive Materials photonic or plasmonic structures, porous substrates, nanoparticle deposits, light emitters + Spectroscopic Nano-optical Techniques determine the optical response of the devices in presence of biomolecules

PB possess sensing ability due to the high specificity of the optical response of the environment

trough the ambient dielectric function $\widetilde{\epsilon} = \widetilde{n}^{-2} = (n + ik)^2$, the absorption coefficient α or absorption cross section σ

Bloch Surface Waves (BSW)

 $\ensuremath{\text{BSW}}$ can be considered as the dielectric analogues of SP

- Both TE and TM polarizations
- The mode can be excited through a propagating wave
- Dispersion can be tailored by changing layer thicknesses
- In principle they can be free from losses

M. Liscidini and J. E.Sipe, JOSA b, 2009, 26, 279

Enhancement of emission by BSW

A rhodamine monolayer is covalently attached to the surface of the multilayer. A strong modification of Rhodamine emission spectrum is observed, due to the excitation of BSW

M. Liscidini et al., *APL*, **2009**, 94, 043117 M. Liscidini et al., *Optics Letters*, **2009**, 34(15), 2318

Towards the nanoscale chemical mapping

A single QD Raman spectrum - Few molecules sensitivity

F. De Angelis et al., Nano Letters, 2008, 8, 2321

SENSe overall device

Conclusions and perspectives

Starting point

Solution and surface chemistry Optics and photonics

Goals

 "Smart", customizable, functional selfassembled materials
High sensitivity optical biosensors
Probes for nanoscale analysis and singlemolecule detection

Perspective

Material science can provide powerful tools to bring medicine (diagnostics, drug delivery, targeting) to the molecular level

Thanks to

NanoLab – Dipartimento di Chimica Generale

P. Pallavicini

A.Taglietti

Y. Diaz Fernandez

- L. Pasotti
- G. Santucci
- E. Amato
- D. Barbieri
- L. Cucca (Atomic absorption)
- L. Bergamaschi (NAA)

Dipartimento di Farmacologia Sperimentale e Applicata

C. Dacarro

P. Grisoli

Laboratorio di spettroscopia ottica Dipartimento di Fisica "A.Volta"

G. Guizzetti M. Patrini M. Galli M. Liscidini

