approfondimento

moto circolare uniforme e moto armonico

conservazione dell'energia nei moti oscillatori

Il pendolo

Oscillazioni smorzate e forzate

Confronto tra Moto circolare uniforme e Moto armonico semplice

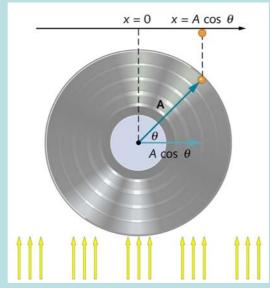
$$\theta = \omega t$$
$$s(t) = A\omega t$$

$$\omega = 2\pi/T = 2\pi f$$
 detta pulsazione

$$x(t) = A \cos[(\omega) t]$$

$$v = A\omega$$

$$a_{cp} = A\omega^2$$



$$v = -A\omega \sin\omega t$$

$$V_{max} = A\omega$$

$$a = -A\omega^2 \cos\omega t$$

$$a = -\omega^2 x$$

Sistema massa-molla

$$ma = -kx$$

L'accelerazione è proporzionale allo spostamento ...

$$a = -A\omega^2 \cos(\omega t)$$

$$x = A \cos(\omega t)$$

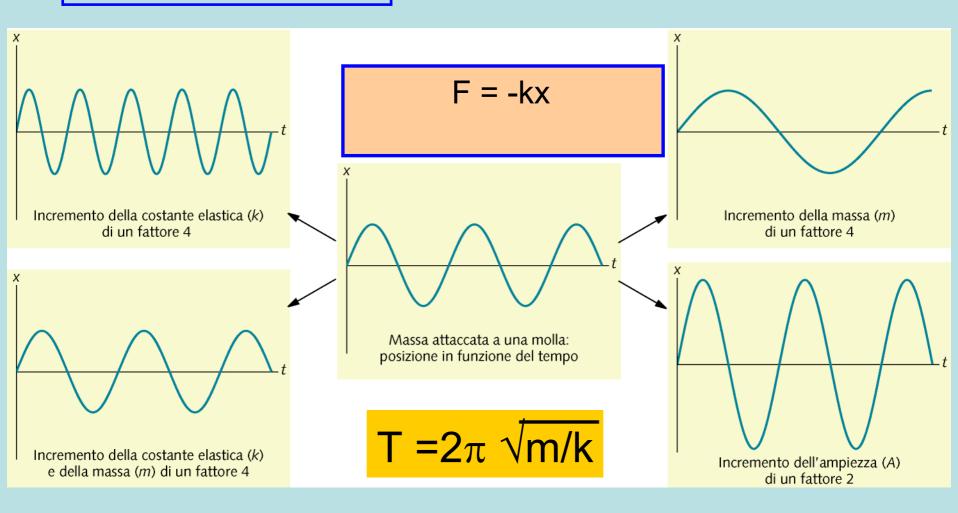
Legge di Hooke

m [-
$$A\omega^2 \cos(\omega t)$$
] = - k [A $\cos(\omega t)$]

$$\omega = \sqrt{k/m}$$

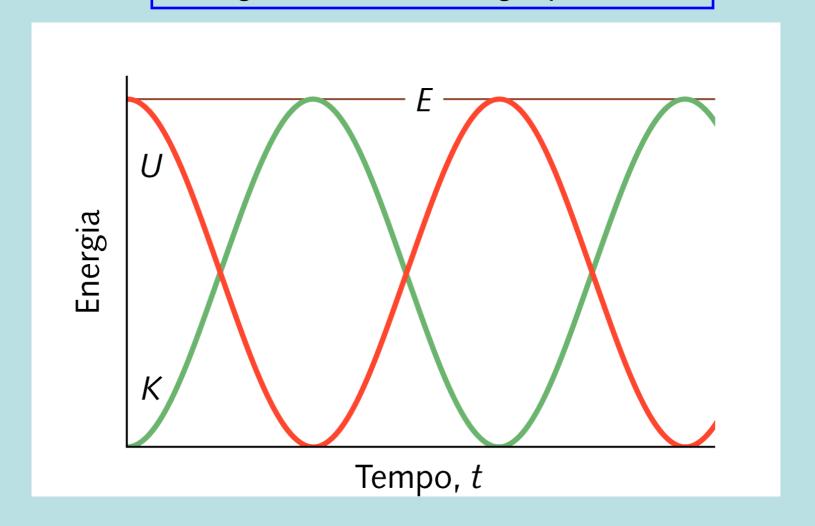
$$T = 2\pi \sqrt{m/k}$$

Sistema massa-molla



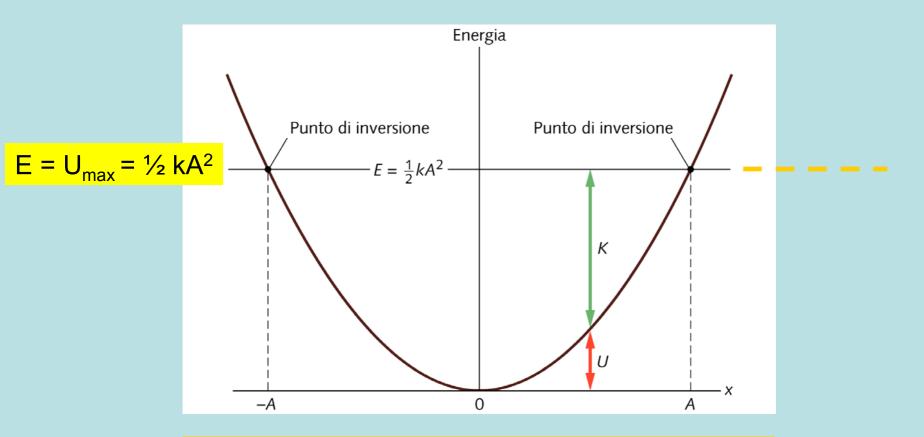
Tagliando a metà una molla la sua costante elastica raddoppia e il suo periodo di oscillazione diminuisce ($T' = T/\sqrt{2}$)

Sistema massa-molla: confronto tra energia cinetica e energia potenziale



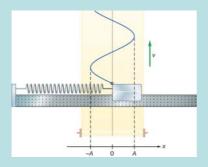
Conservazione della energia nel moto oscillatorio

In un sistema ideale ...
$$E = K + U = \frac{1}{2} mv^2 + \frac{1}{2} kx^2$$

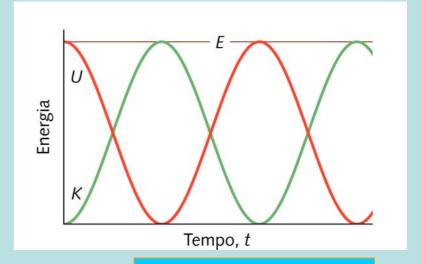


Nel moto armonico semplice l'energia è proporzionale al quadrato dell'ampiezza della oscillazione

Conservazione della energia nel moto oscillatorio



$$E = K + U = \frac{1}{2} \text{ mv}^2 + \frac{1}{2} \text{ kx}^2$$



$$x = A \cos[(\omega) t]$$

$$v = -A\omega \sin(\omega t)$$

$$\omega = \sqrt{k/m}$$

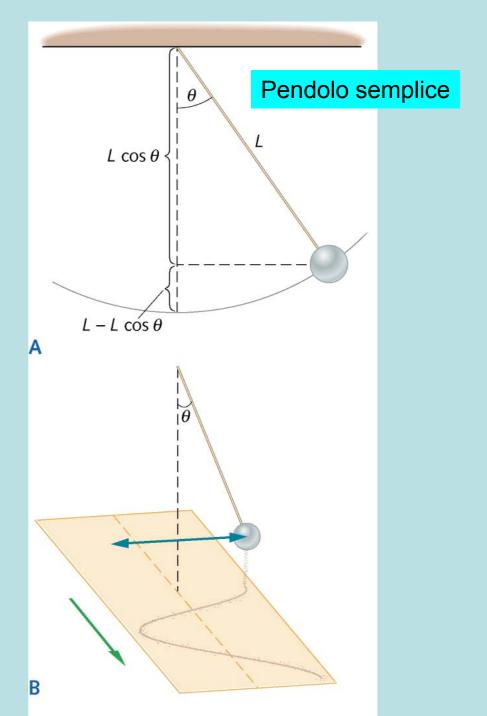
E = K + U =
$$\frac{1}{2}$$
 [- A ω sin(ω t)]² m + $\frac{1}{2}$ k [A cos(ω t)]²
= $\frac{1}{2}$ kA² sin² (ω t) + $\frac{1}{2}$ kA² cos² (ω t)
= $\frac{1}{2}$ kA²

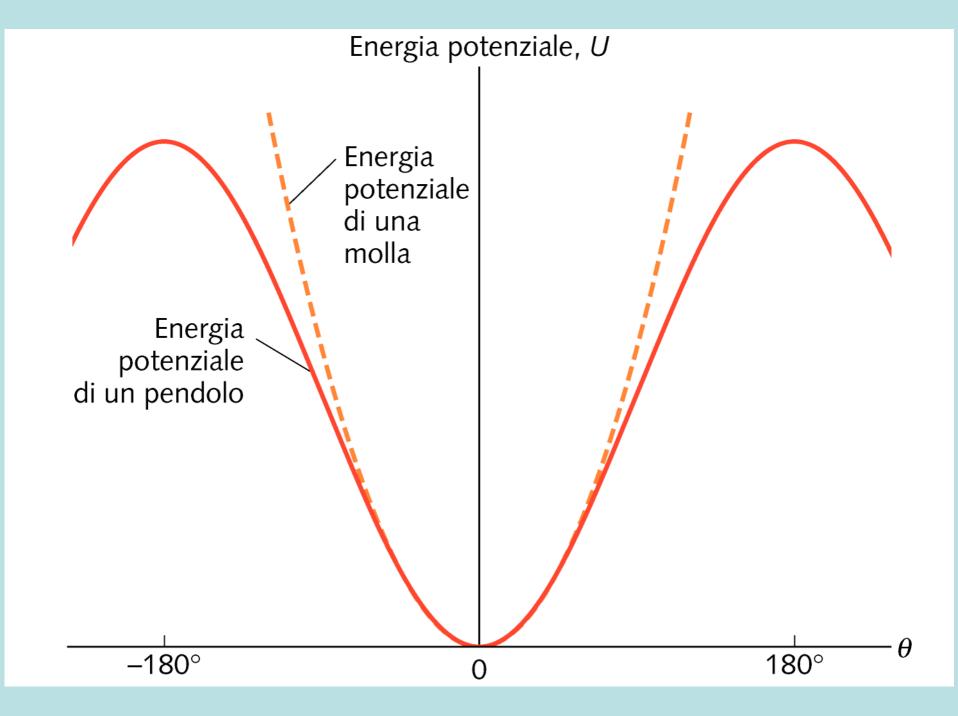
Il pendolo

Nel 1583 Galileo aveva intuito che le piccole oscillazioni del pendolo sono isocrone e indipendenti dalla ampiezza

Se poniamo U = 0 per θ = 0 L'energia potenziale si scrive:

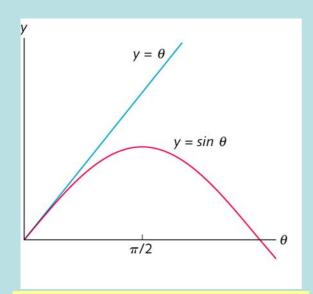
 $U = mgL (1-cos\theta)$





Pendolo semplice

$F = mg \sin\theta$

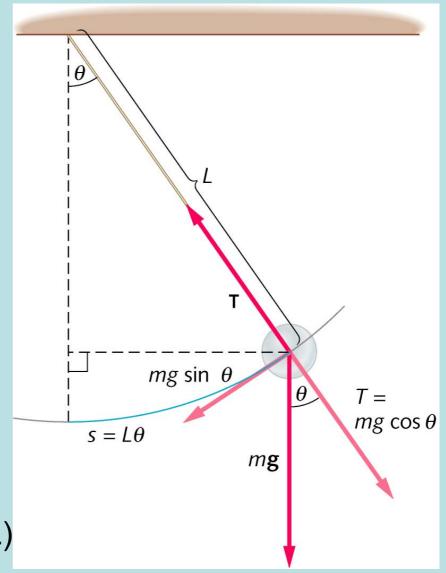


Per piccoli angoli $\sin\theta \approx \theta$

$$s = L \theta$$

La forza attiva in modulo si scrive:

$$F = mg \sin\theta \approx mg \theta = (mg)(s/L)$$



Confronto ...

Pendolo semplice

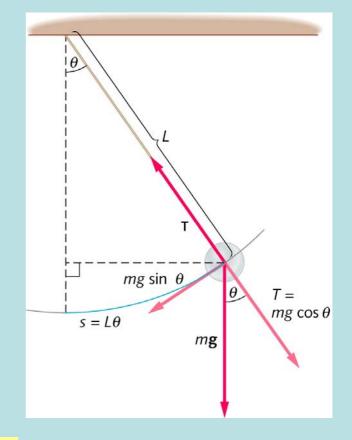
Sistema massa-molla

$$F = - (mg/L)s$$

$$F = -kx$$

 $s \Leftrightarrow x$

mg/L ⇔ k

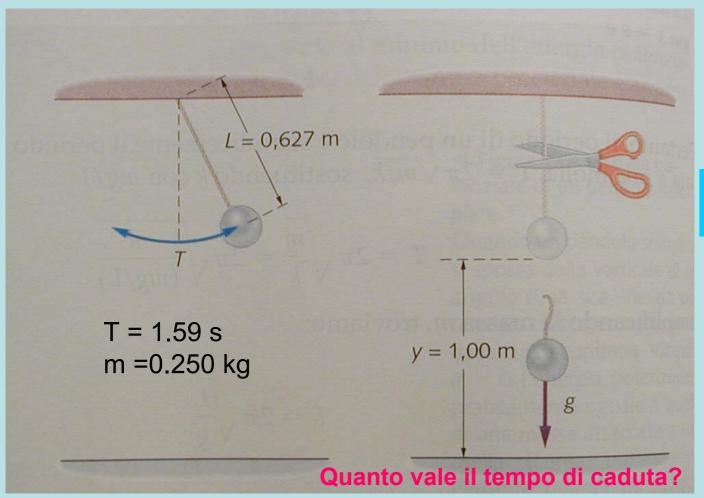


$$T = 2\pi \sqrt{L/g}$$
 $T = 2\pi \sqrt{m/k}$

$$T = 2\pi \sqrt{m/k}$$

Concludiamo che il periodo del pendolo **non** dipende dalla ampiezza A ne dalla massa m, come aveva osservato Galileo

dipende invece dalla accelerazione di gravità ...



Pendolo semplice

$$T=2\pi \sqrt{L/g}$$

$$g = 9.79 \text{ m/s}^2$$

$$y = \frac{1}{2} g t^2$$

$$t_{caduta} = \sqrt{2y/g}$$

La misura del periodo del pendolo permette di determinare la accelerazione di gravità

Oscillazioni smorzate

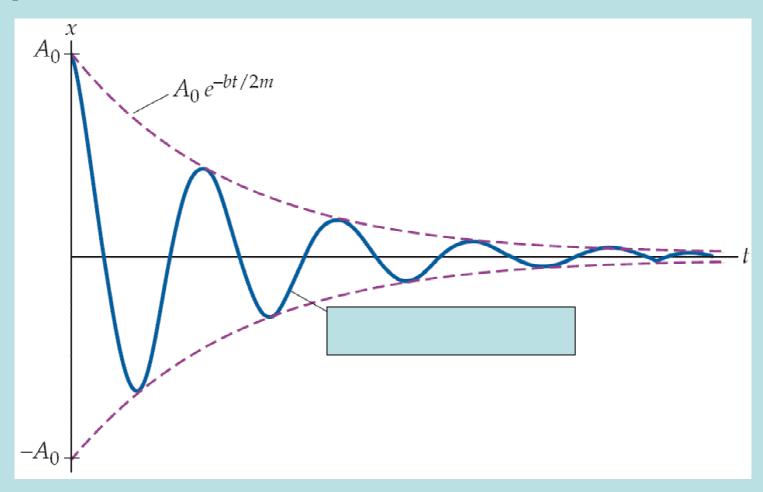
In molti sistemi fisici sono presenti forze non conservative che tendono a ridurre l'ampiezza dell'oscillazione e che, tipicamente, sono proporzionali alla velocità:

$$\vec{F} = -b\vec{v}$$

A causa loro l'ampiezza diminuisce in modo esponenziale al passare del tempo

$$A = A_0 e^{-bt/2m}$$

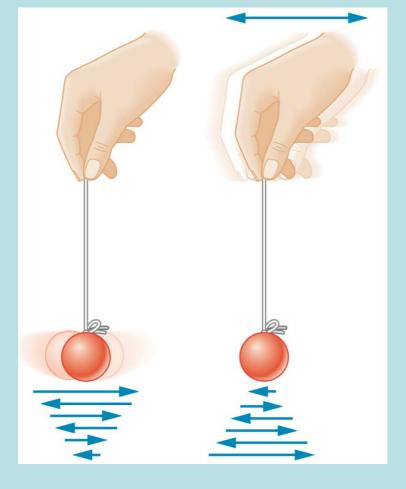
Nella figura è rappresentato lo smorzamento esponenziale :



Oscillazioni forzate

Un'oscillazione può essere amplificata da una forza oscillante esterna la cui frequenza può coincidere o meno con la frequenza naturale del

sistema.



risonanza

Se la frequenza con cui si forza il sistema si avvicina alla sua frequenza naturale l'ampiezza dell'oscillazione può aumentare notevolmente.

In tal caso si parla di risonanza.

