Intrinsic diffraction losses in photonic crystal waveguides with line defects

Lucio Claudio Andreani and Mario Agio

INFM and Dipartimento di Fisica “A. Volta,” Università di Pavia, Via Bassi 6, 27100 Pavia, Italy

(Received 7 June 2002; accepted 30 January 2003)

Intrinsic diffraction losses of linear defect modes in photonic crystal slabs are calculated for membrane-type waveguides with strong refractive index contrast. In the frequency region of high group velocity of the defect mode, the radiative losses increase with the air fraction of the lattice and decrease on increasing the channel width or the slab thickness. Close to a mini-gap in the mode dispersion, a complex frequency dependence of the losses is found. The calculated losses agree well with those measured in a Si slab [M. Lončar et al., Appl. Phys. Lett. 80, 1689 (2002)]. © 2003 American Institute of Physics. [DOI: 10.1063/1.1564295]

Planar photonic crystal (PC) waveguides, or PC slabs, are extensively investigated in view of the realization of integrated optical interconnects. In these systems, a few photonic modes lie below the light line of the cladding material and are truly guided, whereas those lying above the light line are subject to intrinsic radiation losses due to out-of-plane diffraction. In addition, extrinsic factors like insufficient etch depth, roughness or nonvertical shape of the holes, and disorder may contribute to radiative losses. While the extrinsic factors may be controlled by improving the fabrication procedures, the light line problem represents an intrinsic limit for the application of PC slabs to integrated photonics. It is therefore important to quantify the level of intrinsic losses and to know their dependence on the structure parameters.

In this work we present theoretical results for intrinsic diffraction losses in PC waveguides containing line defects. We focus on the most common structure, namely the triangular lattice of holes with radius \(r = 0.36 a \), patterned with a triangular lattice of holes with radius \(r = 0.36 a \), where \(a \) is the lattice constant. Only modes which are even with respect to reflection in the horizontal midplane (\(\sigma_{x} = +1 \)) and odd with respect to reflection in the vertical midplane of the channel (\(\sigma_{y} = -1 \)) are shown. The gap of the triangular lattice forms between 0.33 and 0.47 in terms of the dimensionless frequency \(\omega a/(2 \pi c) = a/\lambda \) and the modes in the gap associated with the linear defect can be recognized: they are marked as \(\alpha \) for the index-confined mode, and \(\beta \) for the

![FIG. 1. Dispersion of photonic modes for a W1 linear waveguide in an air bridge with dielectric constant \(\epsilon = 12 \) and core thickness \(d = 0.3a \), patterned with a triangular lattice of holes with radius \(r = 0.36a \), where \(a \) is the lattice constant. Only modes which are even with respect to reflection in the horizontal midplane (\(\sigma_{x} = +1 \)) and odd with respect to reflection in the vertical midplane of the channel (\(\sigma_{y} = -1 \)) are shown. The gap of the triangular lattice forms between 0.33 and 0.47 (in terms of the dimensionless frequency \(\omega a/(2 \pi c) = a/\lambda \) and the modes in the gap associated with the linear defect can be recognized: they are marked as \(\alpha \) for the index-confined mode, and \(\beta \) for the waveguide.](https://example.com/figure1.png)
In this work we are not concerned with this issue, nor with the problem of having a region of monomode waveguide propagation when modes of both vertical parities ($\sigma_{\pm 1}$) are considered.7,13

In Fig. 2 we show (a) the imaginary part of the frequency, (b) the modulus of the group velocity $|v_g|/c$ and (c) the attenuation length ℓ/a: the latter is defined as $\ell^{-1} = 2|\text{Im}(k)|$, where the imaginary part of the wave vector is given by $\text{Im}(k) = \text{Im}(\omega)/v_g$. These quantities are plotted as a function of the frequency in the photonic gap, for the same air bridge structure of Fig. 1, but for increasing values of the hole radius. For the sake of clarity, the results are shown only when the channel waveguide is monomode for the specified parity. As a first remark, the imaginary part of the frequency is between 10^{-3} and 10^{-4}, i.e., much smaller than in periodic 2D lattices:10 this is due to lateral field confinement in the dielectric channel, which reduces the overlap with the patterned regions where radiative losses occur. The losses increase with the air fraction in the lattice, as expected from previous theoretical models2 and experimental results.9,15

The losses go to zero at the lowest edge of the mode dispersion window, where the mode crosses the light line (see Fig. 1). For all investigated cases, there is a frequency region where the mode dispersion is linear with a group velocity v_g close to c/n, where n is an average refractive index of the mode. The attenuation length depends smoothly on frequency when v_g is close to c/n. The results of Fig. 2(c) show that the typical attenuation length of a W1 waveguide in the air bridge is of the order of 10^2 lattice constants (e.g., $\sim 50 \mu$m at $\lambda = 1.5 \mu$m). For $r/a = 0.36$ and 0.40 a mini-stop band can be recognized around $a/\lambda \sim 0.4 - 0.42$. At the edge of the mini-stop band $\text{Im}(\omega)$ always tends to a finite constant: in other words, even at $k = 0$ there are active diffraction channels for radiative losses. The opposite curvature of the lower and upper modes at the mini-gap edge for $r/a = 0.36$ and 0.40 can be related to the opposite parities of the two modes with respect to a vertical mirror plane perpendicular to the channel. Since v_g vanishes at the mini-gap edge, the attenuation length must also vanish there. However, Fig. 2(c) shows that the attenuation length first increases when the energy approaches the mini-gap edge from below, then it decreases towards zero in a frequency range which can be extremely narrow.

Since the diffraction losses depend on the extension of the electromagnetic mode in the patterned regions, it is worthwhile to study the behavior of the losses as a function of the channel width w as defined in the inset of Fig. 1 ($w = w_0 = \sqrt{3}a$ for the W1 waveguide) or as a function of the core thickness d. This is illustrated in Fig. 3, which shows $\text{Im}(\omega)$ as a function of the wave vector for $r/a = 0.32$, when the channel width increases from $0.8w_0$ to $1.3w_0$ at fixed $d = 0.3a$ [Fig. 3(a)] and when the core thickness increases from $0.2a$ to $0.5a$ at fixed channel width $w = w_0$ [Fig. 3(b)]. In both cases, far enough from the mini-gap clear trends can
be recognized: the intrinsic losses decrease on increasing either the channel width or the core thickness, due to an increased lateral confinement of the defect mode. The reduction of the losses is particularly pronounced (more than one order of magnitude) for the case of the channel width dependence. On approaching the mini-gap at \(k = 0 \), the wave vector-dependence of \(\text{Im}(\omega) \) becomes more complicated and is found to depend critically on the channel width \(w \): in some cases \(\text{Im}(\omega) \) decreases, while in other cases it increases when \(k \rightarrow 0 \). This may be explained by mixing of the dielectric defect mode \(\alpha \) with the higher-lying gap-confined mode \(\beta \) (see Fig. 1), this mixing being very sensitive to small changes in structure parameters.

Finally, in Fig. 4 we present the calculated mode dispersion and losses for the parameters of the Si slab measured in Ref. 13. Figure 4(a) displays the dispersion of both odd \((\sigma_{z^2} = -1) \) and even \((\sigma_{z^2} = +1) \) modes with respect to vertical parity. Figure 4(b) shows the propagation loss \(10 \log_{10}(\epsilon) \) of the \(\sigma_{z^2} = -1 \) modes. On approaching the mini-gap edge, the loss of the lowest mode decreases substantially, in agreement with the experimental results.\(^{13} \) The inset in Fig. 4(b) shows that the upturn of the losses close to the lower mini-gap edge [as in Fig. 2(c)] occurs in a frequency window that is too narrow to be relevant for the experiment. The loss for \(a/\lambda = 0.33 \) is close to that calculated in Ref. 13 with the finite-difference time-domain method. It would be interesting to perform loss measurements for the upper mode, which we predict to have increasing loss on approaching the mini-gap from above.

The present approach is a fast and accurate method for calculating intrinsic losses and as such it is particularly suited to study the trends as a function of the various parameters. When the group velocity is constant and close to \(c/n \), the losses depend smoothly on frequency and have clear trends as a function of structure parameters: the diffraction losses increase with the air fraction in the 2D lattice and decrease rapidly on increasing the width of the channel or the slab thickness. The same trends are expected to hold for losses due to other scattering processes, i.e., for extrinsic losses related to disorder and fabrication-induced defects. Both the imaginary part of the frequency and the propagation losses have a complex behavior as a function of frequency, particularly on approaching a mini-gap between modes. Good agreement with the frequency dependence of the losses measured by Lončar et al.\(^{13} \) is found.

Useful discussions with J.-P. Albert and M. Le Vassor d’Yerville are gratefully acknowledged. This work was supported by MIUR through the Cofin program and by INFIM through PRA “PHOTONIC.”

References

17. The calculation employs a supercell with a periodicity of 8\(w_0 + w \): 535 plane waves and four guided modes are used in the basis set. For the loss calculations, an average of the results with supercell widths from 3\(w_0 + w \) to 8\(w_0 + w \) is taken in order to smooth out finite supercell effects.
18. We do not obtain any “quantized” low-loss values for the channel thickness, as predicted by coupled-mode theory. Indeed, the present parameters are far from those assumed in Ref. 16, where the refractive index modulation is assumed to be small compared to the average value.