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Abstract A quantum theory of retarded surface plas-
mons on a metal–vacuum interface is formulated, by
analogy with the well-known and widely exploited the-
ory of exciton-polaritons. The Hamiltonian for mutually
interacting instantaneous surface plasmons and transverse
electromagnetic modes is diagonalized with recourse to a
Hopfield–Bogoljubov transformation, in order to obtain a
new family of modes, to be identified with retarded plas-
mons. The interaction with nearby dipolar emitters is treated
with a full quantum formalism based on a general defi-
nition of modal effective volumes. The illustrative cases
of a planar surface and of a spherical nanoparticle are
considered in detail. In the ideal situation of absence of
dissipation, as an effect of the conservation of in-plane
wavevector, retarded plasmons on a planar surface repre-
sent true stationary states (which are usually called surface
plasmon polaritons), whereas retarded plasmons in a spher-
ical nanoparticle, characterized by frequencies that overlap
with the transverse electromagnetic continuum, become res-
onances with a finite radiative broadening. The theory
presented constitutes a suitable full quantum framework
for the study of nonperturbative and nonlinear effects in
plasmonic nanosystems.
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Introduction

Plasmonic excitations on metal–dielectric interfaces are
subject of large investigation from both the theoretical and
the experimental points of view, because they could pro-
vide nanoscale confinement of light, and, consequently, they
constitute a framework in which radiation–matter interac-
tion phenomena are strongly enhanced [1]. In recent years,
quantum phenomena associated to surface plasmons consti-
tute a new focus within the name of quantum plasmonics.
Unbounded metal–dielectric interfaces, such as planar sur-
faces, are characterized by propagating plasmonic excita-
tions [2, 3], whereas confined nanostructures, like metallic
particles, possess a discrete spectrum of surface plasmons.
In the case of metallic spheres, the optical response can
be calculated analytically with the well-known Mie theory
[4–6]. In more complex geometries, the properties of plas-
monic excitations can be studied analytically in the qua-
sistatic approximation (i.e., neglecting retardation effects),
which is valid when the characteristic size of the system
is smaller than the wavelength of light, or with numeri-
cal methods, such as the boundary element method [7–9],
the discrete dipole approximation [10, 11], or the finite-
difference time-domain method [12].

The excitation of surface plasmons leads to a strong
enhancement of radiation–matter interaction, which should
be treated in the natural context of quantum electrodynamics
(QED). A general quantization procedure for inhomoge-
neous systems is to model the electromagnetic response of
the different media with a fictitious set of spatially dis-
tributed harmonic oscillators [13–16], whose amplitudes
are related to the electromagnetic field through the dyadic
Green function. The procedure is suitable to all kinds of
dispersive and dissipative systems, including plasmonic sys-
tems, since the electromagnetic properties of the media are
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taken into account through the macroscopic dielectric func-
tion. This approach can be employed to study nonperturba-
tive effects in the emission spectrum of quantum emitters
coupled to surface plasmons, such as vacuum Rabi splitting
[17, 18] or the onset of a Mollow triplet [19]. A different
procedure is to directly quantize the eigenmodes of the elec-
tromagnetic field by associating them to a proper family
of bosonic operators. This approach has been applied, for
instance, to the specific case of a planar interface [20–25]
and to the context of the surface plasmon amplification by
stimulated emission of radiation (SPASER) theory [26] in
the electrostatic approximation. Interestingly, light–matter
interaction can be described with the well-established for-
malism of cavity QED, with surface plasmons playing the
role of cavity modes.

A typical QED phenomenon taking place in confined
dielectric systems is the Purcell effect, i.e., the modifica-
tion of the decay rate of a quantum emitter due to the
excitation of localized electromagnetic modes. The strength
of the effect is proportional to the Q-factor of the excited
mode and inversely proportional to its effective volume. The
effective volume should be regarded as an important prop-
erty of surface plasmons. In typical cavity QED systems,
such as microcavities, modal effective volumes are subject
to the diffraction limit, and they are at least of the order
of λ3, where λ is the wavelength of light. As a conse-
quence, enhancement of light–matter interaction is achieved
by increasing the cavity Q-factor (for instance, by reducing
radiative losses). In plasmonic systems, on the other hand,
the situation is reversed. The width of plasmonic modes
(and, consequently, the Q-factor) is limited by dissipation
effects inside the metal, and it is generally of the order of
the Drude damping constant γD. However, radiation being
localized at a subwavelength scale, modal effective vol-
umes can be made much smaller than the diffraction limit,
leading to an enhancement of light–matter coupling often
comparable to dielectric systems.

While the modal effective volume has a generally agreed
definition for dielectric systems [27], a similar treatment for
metallic systems is more complex, since they are inherently
dispersive and dissipative. Recent solutions to the problem
involve a reformulation of the definition of effective vol-
umes [28] or a generalization of the Purcell equation [29].
In this work, we follow a different approach. We begin
from the quantization of instantaneous surface plasmons,
for which it is possible to introduce a rigorous definition of
effective volumes, as suggested by Refs. [30–32]. This def-
inition can be directly employed in a cavity QED formalism
for treating, e.g., spontaneous emission modification.

Then, we include the effect of radiation and retarda-
tion with a procedure inspired by the theory of exciton-
polaritons [33–36], based on a Hopfield–Bogoljubov trans-
formation [34, 37] of the instantaneous plasmon operators.

Many results that are known from the theory of exciton-
polaritons can be translated to surface plasmon polaritons,
in particular, those related to the new vacuum state of cou-
pled excitations, which does not coincide with the uncou-
pled vacuum [38]. Moreover, the present formalism clarifies
the distinction between stationary surface plasmon polari-
tons in extended geometry and radiative surface plasmons
in confined geometry. While we exemplify this distinction
for the cases of planar and spherical surface, the general
formalism can be applied to any specific situation.

The paper is organized as follows. In the “Quantization
of Instantaneous Surface Plasmons” section, we introduce
a general quantization procedure for instantaneous sur-
face plasmons of a confined electron gas. Then, in the
“Interaction with Matter: Effective Volumes” section, we
define the effective volume for instantaneous excitations
and treat the interaction with dipolar emitters by means
of a cavity QED-inspired formalism based on the Purcell
equation. The theory of the Hopfield–Bogoljubov trans-
formation to include retardation effects is introduced in
the “Retarded Surface Plasmons” section. As two illus-
trative cases, in the “Planar Geometry” and “Spherical
Geometry” sections, a planar metal–vacuum interface and
a spherical nanoparticle are considered, respectively, and
the Hopfield–Bogoljubov transformation is carried out
both analytically (“Planar Geometry” section) and numer-
ically (“Spherical Geometry” section). The properties of
retarded surface modes obtained in this way are ana-
lyzed, especially with reference to light–matter interac-
tion. Finally, some concluding remarks are reported in the
“Conclusions.” Appendix A and Appendix B contain
some intermediate results for the calculations presented in
the “Planar Geometry” and “Spherical Geometry” sections,
respectively.

General Quantum Formulation

Quantization of Instantaneous Surface Plasmons

In this work, we consider a (possibly unbounded) metallic
region of space M , in which a free electron gas is con-
fined. As a consequence of electronic motion, in region M ,
there is an average polarization density P(r) = −enx(r),
where x(r) is the displacement field of the electrons and n

the electronic density. Electronic motion, in turn, gives rise
to charge inhomogeneity and induces an electrostatic field
Eqs, which is related to the polarization field by the classical
equation of motion

P̈ = −neẍ = ne2

me

Eqs = ε0ω
2
PEqs, (1)



Plasmonics (2014) 9:965–978 967

where we have introduced the plasma frequency ωP.
Instantaneous or quasistatic surface plasmons constitute an
orthogonal basis φn for the electrostatic potential satisfy-
ing the Laplace equation ∇2φn = 0 in the different regions
of space. The dispersion relation, i.e., the relation between
the characteristic frequency of each mode ωn and the mode
index n, is obtained from the continuity conditions for the
electric and displacement fields on the surface [39].

The Hamiltonian for the system consists of two contribu-
tions: the kinetic energy of the electrons and the potential
energy due to the surface charge density:

Hqs =
∫

d3r

[
Ṗ 2(r)

2ε0ω
2
P

χ(r)+ ε0

2
E2

qs(r)

]
(2)

[χ(r) is the characteristic function of the region M ]. By
introducing the bosonic operators bn and b†

n, which satisfy
the commutation relations1

[bn, b†
n′ ] = δnn′ and [bn, bn′ ] = [b†

n, b†
n′ ] = 0,

the electric and polarization fields can be written as quan-
tum operators expanded onto the family of electrostatic
modes Eqs,n = −∇φn, in the following form:

Eqs(r) =
∑
n

1

En

√
�ωn

2ε0Vn

×
(

Eqs,n(r) bn + E∗
qs,n(r) b†

n

)
;

(3)

Ṗ(r) = iε0ω
2
Pχ(r)

∑
n

1

En

√
�

2ωnε0Vn

×
(

Eqs,n(r) bn − E∗
qs,n(r) b†

n

) (4)

(the En’s are normalization constants). Then, the
Hamiltonian is reduced to the harmonic form

Hqs =
∑
n

�ωn

(
b†
nbn + 1

2

)
, (5)

provided that the modal volume Vn is defined through the
expression

Vn δnn′ = 1

2E2
n

∫
d3r

(
1 + ω2

P

ω2
n

χ(r)

)
E∗

qs,n(r) · Eqs,n′(r).

(6)

This equation can be directly generalized by anal-
ogy with the formula for the electromagnetic energy of

1We notice that volume and surface plasmons are collective excitations
that are formed in the subspace of electron–hole pair excitations, which
have integer spin and, therefore, bosonic character. Bosonic commuta-
tion relation is obeyed in the limit of weak excitation, while corrections
are expected to be of the order of P/V , where P is the number of
excited plasmons and V, the crystal volume. The situation is analo-
gous to the case of exciton states, as discussed in Hopfield’s seminal
work (Ref. [34]).

a dispersive system [40] and recast into the following
form:

Vn δnn′ = 1

2E2
n

∫
d3r

∂ [ω� ε(ω)]
∂ω

E∗
qs,n(r) · Eqs,n′(r). (7)

Notice, in particular, that the general expression (7) reduces
to Eq. 6 when the Drude dielectric function for the free elec-
tron gas is used. In this work, we have supposed that the
macroscopic response of the electron gas can be modeled
with a local dielectric function; the effect of spatial con-
finement on the relaxation rate γD [41] and the electronic
eigenstates of the metal [42] is neglected. This is a good
approximation as long as the size of the nanostructure is
larger than the so-called nonlocality length (about 1 nm in
the optical region [1]).

Interaction with Matter: Effective Volumes

At this point, we suppose to add a single dipolar emitter
(atom, molecule, quantum dot, etc.) in the region of space
outside M . As an effect of the strong localization of the
electric field at the boundary of M , the spontaneous emis-
sion rate of the atom can be significantly modified with
respect to free-space (Purcell effect).

In the electrostatic approximation, the Hamiltonian of the
total system (electron gas + atom) can be written in the fol-
lowing form: H = Hqs+Ha +Hint, where Hqs is defined in
Eq. 2, Ha is the unperturbed atomic Hamiltonian, and Hint

is the electrostatic energy of the atomic charges in the exter-
nal potential generated by the free electron gas. The atom
can be treated as a two-level system with ground state |gr〉
and excited state |ex〉. In the dipole approximation, Hint can
be written as follows:

Hint = −μ(σ− + σ+) · Eqs(ra). (8)

(σ± are the Pauli operators and ra is the atomic center of
mass position).

According to perturbation theory, the decay rate of the
atom into plasmonic modes is calculated by means of the
Fermi golden rule:


qs = 2π

�2

∑
n

∣∣〈gr, 1n|μ · Eqs(ra)σ−|ex, 0〉∣∣2 δ(ωn − ωa).

(9)

In actual systems, resonances in the plasmonic density of
states are broadened due to dissipation-induced damping
of the electron motion in the gas (which we have so far
neglected); this effect can be phenomenologically included
in our treatment by replacing the delta functions in the
Fermi golden rule with normalized Lorentzian functions
γD/[2π((ω−ωa)

2+γ 2
D/4)], whose width γD can be directly

identified with the damping constant that enters the complex
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Drude dielectric function ε(ω) = 1 −ω2
P/[ω(ω+ iγD)]. As

a result, the decay rate becomes


qs = μ2

�

∑
n

ωn

∣∣μ̂ · Eqs,n(ra)
∣∣2

2ε0VnE2
n

γD

(ωn − ωa)2 + γ 2
D/4

,

(10)

where μ̂ is the unit vector directed as μ.
Equation 10 can be recast in a simpler form by taking the

arbitrary constant En equal to
∣∣μ̂ · Eqs,n(ra)

∣∣ in Eq. 7; as a
consequence, we are led to the definition of the spatially-
dependent effective volume

Vn(ra, μ̂)δnn′ = 1

2
∣∣μ̂ · Eqs,n(ra)

∣∣2×∫
d3r

∂[ω� ε(r, ω)]
∂ω

E∗
qs,n(r) · Eqs,n′(r).

(11)

As it can be seen, the effective volume is one half of
the volume of a hypothetical cavity containing the same
energy as the plasmonic mode, with the condition for
the field inside the cavity of being homogeneous and of
the same magnitude as the field at the atom position.
Equation 11 differs from the analogous definition of the
effective volume in cavity QED [27] by the presence of a
factor 1/2 in the right-hand term since, in the range of valid-
ity of the quasistatic approximation, the magnetic contri-
bution to the electromagnetic energy is absent. At variance
from typical cavity QED systems, such as optical cavities,
the relation E · D = H · B does not hold for plasmonic sys-
tems in the quasistatic approximation due to the presence of
evanescent electromagnetic waves. However, in the “Planar
Geometry” section, we show that, when retardation effects
become prevailing, the magnetic contribution becomes sig-
nificant even for plasmonic systems.

With the new definition of the effective volume in Eq. 11,
the decay rate (Eq. 10) assumes the form of the Purcell
equation


qs = 
0

∑
n

3λ3
a

4π2

Qn

Vn(ra, μ̂)

γ 2
D/4

(ωn − ωa)2 + γ 2
D/4

(12)

where λa = 2πc/ωa, the Q-value of the plasmonic reso-
nance is the ratio Qn = ωn/γD, and 
0 is the free-space
decay rate 
0 = ω3

aμ
2/(3πε0�c

3).
The interest of Eqs. 11 and 12 resides in the fact that

they allow to study radiation–matter interaction with a cav-
ity QED-inspired formalism. Notice that the analogy with
cavity QED is not limited to the perturbative decay rate.
The electric field operator defined in Eq. 3 can be employed
to generalize several cavity QED results in a straightfor-
ward manner. For instance, when light–matter interaction
is significantly enhanced by the electric field confinement,
the atom can enter the nonperturbative (strong-coupling)
regime, characterized by the onset of a doublet of peaks

around the transition frequency in the emission spectrum
(vacuum Rabi splitting) [17, 43–47]. The condition for
entering the nonperturbative regime via the coupling with a
single plasmonic mode can be expressed by analogy with
the cavity QED formalism in the form g > |γD−γa|/4 [48],
where γD and γa are the linewidths of the plasmonic mode
and the atom, respectively, and the coupling constant g is a
function of the effective volume in Eq. 11 and the atomic
oscillator strength f , according to the relation

g = 1

2

√
e2f

meε0Vn(ra, μ̂)
. (13)

Therefore, effective volumes calculated with Eq. 11 can be
employed to determine the threshold for entering the strong-
coupling regime in a straightforward way. For instance,
calculations for a metallic nanoshell based on Eq. 13 are
presented in Ref. [49].

The results derived above are valid as long as retardation
effects can be neglected, which is not the case for sev-
eral regimes of great interest. However, retardation can be
taken into account with a full quantum formalism based on
the theory of exciton-polaritons, as it will be shown in the
following.

Retarded Surface Plasmons

We turn the attention to the study of retardation effects,
which become relevant with the increase of the character-
istic size of the system. The quantum theory of retarded
surface plasmons can be constructed by analogy with that of
exciton-polaritons [33–36]: each instantaneous surface plas-
mon of the metallic surface (playing the role of the exciton)
interacts with the quantized modes of the transverse electro-
magnetic field in vacuum, which are described by the vector
potential A(r).

We choose to work in the Coulomb gauge, with ∇·A = 0
everywhere, including the boundary of M . With this choice,
instantaneous plasmons are fully described by the electro-
static potential φ, whereas the transverse electromagnetic
field is taken into account by means of the transverse vector
potential A. Notice that this is at variance with other works
on surface plasmons [20, 22, 25] or intersubband polaritons
[50], in which the dipole gauge2 is employed. The mini-
mal coupling Hamiltonian for the system (excluding for the

2In the dipole gauge, the electrostatic potential φ is not used; the
Coulomb interaction arouses from the longitudinal part of a P 2 term
in the Hamiltonian. Light–matter coupling is included by means of the
Power–Zienau transformation with a term of the form −μ · E. In this
work, however, we employ the Coulomb gauge in order to keep the
instantaneous and transverse characters of the field separated. On the
choice of the gauge, see also Refs. [22] and [50].
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moment the interaction with external atoms or molecules)
can be written as follows:

Hret = Hqs +Helm +HI +HII, (14)

Helm =
∫

d3r
[
ε0

2
Ȧ2 + 1

2μ0
(∇ × A)2

]
, (15)

HI = −
∫

d3r Ṗ(r) · A(r), (16)

HII = ε0ω
2
P

2

∫
d3rχ(r) A2(r), (17)

and Hqs is defined in Eq. 5. Notice the term HII, which cou-
ples together different modes of the transverse field due to
the spatial inhomogeneity induced by the presence of the
region M of free electron gas.

The transverse vector potential can be quantized upon
expansion onto a continuum of transverse electromagnetic
modes AT,ν(r) (e.g., plane waves), each labeled by a con-
tinuous index ν and with energy ων , by introducing a family
of bosonic operators aν and a†

ν :

A(r) =
∑
ν

[
AT,ν(r)aν + A∗

T,ν(r)a
†
ν

]
. (18)

With the aid of Eq. 4, the Hamiltonian can be expressed in
the following form :

Helm =
∑
ν

�ων

(
a†
νaν + 1

2

)
; (19)

HI = i
∑
n,ν

�Cn,ν(bn − b†
n)(aν + a†

ν); (20)

HII =
∑
ν,ν ′

�Dν,ν ′(aν + a†
ν)(aν ′ + a†

ν ′). (21)

C and D are coefficients depending on the particular geom-
etry, as shown in Appendices A and B. Interaction terms
in Eqs. 20–21 are analogous to those of exciton-polaritons
[34].

For each instantaneous plasmonic mode n, the Hamil-
tonian can be diagonalized with a Hopfield–Bogoljubov
transformation by introducing a new family of operators αn

as linear combinations of the unperturbed ones:

αn = Wnbn + Ynb†
n +

∑
ν

(
Xn,νaν + Zn,νa†

ν

)
. (22)

The harmonic condition

[αn, Hret] = �n αn (23)

assumes the form of an eigenvalue equation which provides
the solutions for the coefficients Wn, Yn, Xn,ν , Zn,ν , and the
modified eigenfrequencies n of the retarded modes.

Except for the additional term HII, the Hamiltonian in
Eq. 14 coincides with that of the Fano–Anderson model
of a discrete state in interaction with a continuum [51,
52], which gives rise to two distinct physical situations. If
the retarded mode frequency n does not overlap with the

spectrum of transverse modes ων , the corresponding oper-
ator αn represents a true stationary state of the system; an
example is provided by the surface plasmon polariton at a
planar metal–vacuum interface. On the other hand, when
the frequency n lies in the ων spectrum, the instantaneous
plasmon becomes a scattering resonance in the continuum
of electromagnetic modes. In this case, we can introduce the
density of states of the quasistatic mode (called admixture
density in Ref. [51]), defined as

ρ() =
∑
j

[∣∣∣W(j)
n

∣∣∣2 δ(−
(j)
n )

]
, (24)

where the index (j) identifies the different eigenvalues of
Eq. 23. As an effect of the interaction with the contin-
uum of electromagnetic modes, this quantity assumes a
finite linewidth. The phenomenon is commonly addressed
as radiative broadening of surface plasmons, and it is char-
acteristic of a fully confined metal nanostructure, such as
a metal nanosphere. We stress that radiative broadening
is not a dissipation effect, and it is present even in ideal
nondissipative systems, such as those considered in this
work.

In the following sections, we will work out the cal-
culations and analyze the properties of retarded plasmons
for both the planar interface and the spherical geometry,
discussing in particular light–matter coupling between the
plasmonic excitations and a nearby dipolar emitter.

Planar Geometry

Instantaneous Modes

In this section, we suppose the region M to be the half-
space defined by the condition z < 0. By solving the
Laplace equation with the proper boundary conditions at the
interface z = 0, we find a continuous set of instantaneous
modes for the electrostatic field, indexed by the in-plane
wavevector k‖

Eqs,k‖(r) = −(ik‖ ∓ k‖ẑ)eik‖·ρ−k‖|z| (25)

(the upper and lower signs refer to the regions z > 0 and z <
0, respectively, and ρ = xx̂ + yŷ). All instantaneous modes
are characterized by the same frequency ωs = ωP/

√
2. We

suppose that an atom is located at a distance za above the
surface, and the dipole moment is oriented perpendicular
to it (along ẑ). In the quasistatic approximation, it is possi-
ble to define the effective volume Vn according to Eq. 11.
For the planar geometry, being the index k‖ continuous, the
effective volume becomes the effective volume density

Vk‖,qs(za, ẑ) = 8π2e2k‖za/k‖. (26)
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The density has the dimensions of a volume per unit sur-
face, i.e., it can be equally interpreted as an effective length
[30], which provides an estimate of the confinement of the
field along the direction perpendicular to the surface. Such
effective length, in the za = 0 case, is of the order of
the free-space wavelength, in agreement with the analo-
gous behavior of the penetration depth of the field into the
dielectric [53], which is the dominant term for the spatial
localization of surface plasmons. Replacing Vk‖,qs into the
Purcell Eq. 12, we obtain the decay rate in the quasistatic
approximation (ka = ωa/c)


qs


0
= 3λ3

a

4π2

∫
d2k‖

1

Vk‖,qs

(
ωs

γD

)
γ 2

D/4

(ωs − ωa)2 + γ 2
D/4

= 3ωs

8γD(kaza)3

γ 2
D/4

(ωs − ωa)2 + γ 2
D/4

.

This coincides with the quasistatic contribution which in
Ref. [2] (Eq. 3.23) is attributed to lossy surface waves (i.e.,
instantaneous surface excitations), calculated for a complex
Drude dielectric function and in the limit ωa � ωs. It repre-
sents the dominant term when the surface–atom distance is
small compared to the wavelength of light.

Hopfield–Bogoljubov Transformation

In order to treat retardation effects with the Hopfield–
Bogoljubov transformation described in the “Retarded
Surface Plasmons” section, the free-space vector potential
has to be expanded onto a proper family of modes:

A =
∫

d2k‖dkz AT,k‖,kz
[
ak‖,kz + a†

−k‖,−kz

]
.

We choose free-space plane waves with wavevector k =
k‖ + ẑkz and frequency ωk = ck, in the form

AT,k‖,kz (r) =
√

�

16π3ckε0
Ek‖,kze

ik·r, (27)

with the polarization vector characteristic of transverse
magnetic (TM) modes

Ek‖,kz =
1

kk‖

(
kxkz, kykz, −k2‖

)T
. (28)

Transverse electric (TE) modes do not interact with the
instantaneous plasmon, since Ṗ(r) · A(r) = 0.

The expressions for the terms HI and HII in the total
Hamiltonian of Eq. 14 can be calculated analytically and
are reported in Appendix A. Following the approach in
the “Retarded Surface Plasmons” section, we diagonalize

the Hamiltonian by introducing the new family of bosonic
operators:

αk‖ = Wbk‖ + Yb†
−k‖+∫

dkz
[
X(kz)ak‖,kz + Z(kz)a

†
−k‖,−kz

]
. (29)

The condition (23) gives rise to an eigenproblem for the
coefficients W,X(kz), Y, Z(kz), which is solved in the com-
plex kz plane with the procedure sketched in Appendix A. In
particular, the solution is the well-known dispersion relation
for surface plasmon polaritons [3], shown in Fig. 1:

2
k‖/ω

2
s = 1 + 2

(
ck‖
ωP

)2

−
√

1 + 4

(
ck‖
ωP

)4

. (30)

In Fig. 1, in addition to k‖ , the coefficients W and Y

are plotted as a function of the in-plane wavevector. In the
limit k‖ → ∞, W tends to unity, whereas Y tends to zero,
indicating that the surface plasmon polariton reduces to the
instantaneous plasmon, with the associated operator bk‖ .
In the same limit, the retarded frequency k‖ tends to the
instantaneous value ωs.

The calculated dispersion relation corresponds to that
obtained from classical electrodynamics, providing a con-
firmation of the validity of the theory. However, we believe
that the results presented here have a broader range of
application than a simple reformulation of classical electro-
dynamics, since we have derived an analytical expression
for the quantum operators αk‖ associated to surface plas-
mon polaritons, based on the photon and instantaneous
plasmon operators. For instance, as it is characteristic of
the Hopfield–Bogoljubov transformation [38], the polari-
tonic vacuum state

∣∣0′〉, defined by the condition αk‖
∣∣0′〉 =

0, is different from the unperturbed vacuum state |0〉 of
photons and instantaneous plasmons. This is evident from

Fig. 1 The coefficients W and Y of the expansion in Eq. 29 and the
frequency k‖ of the surface plasmon polariton (normalized to ωP),
as a function of the in-plane wavevector k‖ (normalized to ωP/c). The
dotted line indicates the frequency ωs of the instantaneous surface
plasmon
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the calculation of the average number of polaritons in the
unperturbed vacuum

〈0| α†
k‖αk‖ |0〉 = |Y |2 +

∫
dkz |Z(kz)|2 �= 0, (31)

a quantity which can be shown from the inversion rela-
tions of the Hopfield–Bogoljubov transformation [34] to be
equivalent to the average number of instantaneous plasmons
in the polaritonic vacuum

〈
0′
∣∣ b†

k‖bk‖
∣∣0′〉. This quantity is

plotted in Fig. 2 as a function of the in-plane wavevector.
The deviation from the unperturbed vacuum state is maxi-
mum in the k‖ → 0 limit, i.e., for the maximum coupling
with radiation, where it tends to the value K 2 = ωs/4ωP

(K is the normalization constant defined in Eq. 51). Notice
that, being the curve a function of ck‖/ωP, for a fixed in-
plane wavelength, polaritonic effects can be enhanced by
increasing the electronic density. Vacuum state modification
as an effect of the interaction with light is a quantum phe-
nomenon of great interest, especially in the context of the
so-called ultrastrong coupling regime [54–56], which could
be extended also to the framework of quantum plasmonics.

Interaction with Matter

In the context of the Hopfield–Bogoljubov transformation
introduced above, it is easy to evaluate the effect of retarda-
tion onto the interaction between the plasmon and the atom
at z = za. The retarded electric field can be expanded onto
the αk‖ operators in the form

E =
∫

d2k‖ Ek‖
(

αk‖ + α†
−k‖

)
. (32)

The expression for the modes Ek‖(r) is calculated in
Appendix A, and it presents the same spatial dependence of
the field calculated from classical electrodynamics.

By replacing the interaction term in Eq. 8 into the Fermi
golden rule (9) and comparing it with Eq. 12, it is possible to

Fig. 2 The average number of surface plasmon polaritons in the
unperturbed vacuum, as a function of the in-plane wavevector (normal-
ized to ωP/c)

identify the effective volume density for retarded plasmon
polaritons

Vk‖ =
2π2(�+ +�−)(�2+ +�2−)
|(−ik̂‖ + k‖

�+ ẑ) · μ̂|2 k4‖
e2za�+ (33)

(the quantities �+ and �− are defined in Appendix A). The
reciprocal of the effective volume is represented in Fig. 3 as
a function of the in-plane wavenumber k‖, for several val-
ues of the atom-interface distance za. In the Purcell formula
(see Eq. 12), the reciprocal of Vk‖ could be interpreted as
the weight of each modal contribution to the decay rate, so it
basically represents a measure of the strength of radiation–
matter interaction for a specific mode. As it can be seen
in Fig. 3, the contribution from short-wavelength (high-
k‖) modes increases with the decrease of za, i.e., when we
approach the instantaneous limit with no significant retar-
dation effects. This is in agreement with the behavior of
the retarded frequency k‖ and the coefficients W and Y in
Fig. 1.

The retarded effective volumes in Eq. 33 can be inter-
preted in a interesting manner, by observing that the defini-
tion of the effective volume in Eq. 11 can be generalized in
the following form:

Vk‖δ(k‖ − k′‖) =
α(k‖)∣∣Ek‖(ra) · μ̂

∣∣2×∫
d3r

∂[ω� ε(r, ω)]
∂ω

Ek‖(r) · Ek′‖(r). (34)

The dependence of factor α(k‖) on k‖—calculated by com-
paring Eq. 33 with the expression for the electric field
Ek‖(r) reported in Appendix A—is plotted in Fig. 4. The
presence of factor α(k‖) must be taken into account in plas-
monic systems since the energy stored in evanescent electric
fields is not matched by a corresponding amount of mag-
netic energy. In purely dielectric systems, such as optical

Fig. 3 The reciprocal of the effective volume density Vk‖ in Eq. 33 as
a function of the in-plane wavenumber k‖ (both normalized to ωP/c).
Each curve is calculated for a different value of the (normalized) atom-
interface distance z̃a = ωPza/c, indicated by the label. The dipole at
za is oriented as ẑ



972 Plasmonics (2014) 9:965–978

Fig. 4 The factor α(k‖) (defined in Eq. 34) versus the normalized in-
plane wavevector. The two dotted lines indicate the instantaneous and
retarded limits at α = 1/2 and α = 1, respectively

cavities [27], we expect the factor α(k‖) to be unity, which is
the k‖ → 0 limit of the curve in Fig. 4. On the other hand, as
we have already noted commenting Eq. 11, in the quasistatic
regime, the value of α(k‖) is exactly one half, in agreement
with the large k‖ behavior of Fig. 4. Correspondingly, when
the atom is very near the metal-dielectric interface, the mag-
netic contribution is negligible. As the atom is separated
from the interface, however, there is a transition towards the
retarded regime, and the magnetic energy contribution pro-
gressively increases, until it reaches the same magnitude as
the electric one. At the same time, the effective volume is
affected by the diffraction limit and progressively decreases,
as proved by Fig. 3.

The effective volume reported in Eq. 33 allows to calcu-
late the modified decay rate of an atom into the retarded sur-
face plasmon polaritons of a planar metal–vacuum interface
with the Purcell equation


qs


0
=
∫

d2k‖
3λ3

a

4π2

Qk‖
Vk‖

γ 2
k‖/4

(ωk‖ − ωa)2 + γ 2
k‖/4

, (35)

with Qk‖ = k‖/γk‖ . In the quasistatic approximation in
the “Instantaneous Modes” section, all instantaneous modes
present the same width γD, corresponding to the Drude
relaxation rate. When retardation becomes significant, we
expect the modal widths of retarded plasmon polaritons to
be affected; for this reason, in Eq. 35, we have included a
mode-dependent width γk‖ . A straightforward way to take
dissipation effects into account is to solve the character-
istic equation with the complex Drude dielectric function
ε(ω) = 1 − ω2

P/[ω(ω − iγD)] and a complex frequency
k‖ = ′

k‖ + i′′
k‖ . To the first order, we find for the

imaginary part of k‖ the result

′′
k‖ =

γk‖
2

= γD/

√
4 +

(
ωP

ck‖

)4

. (36)

An example of the decay rate calculated with Eq. 35 using
the effective volumes in Eq. 33 and the modified modal
widths in Eq. 36 is represented in Fig. 5 for a dipole located

Fig. 5 The normalized decay rate of an atomic dipole directed as ẑ
and located 10 nm above a metal–dielectric interface, as a function of
the atomic frequency. The (red) dots are calculated with the Purcell
Eq. 35, whereas the solid curve is obtained from the electrodynamical
formula in Ref. [2]. The metal–dielectric function follows the Drude
model with parameters ωP = 7.9 eV and γD = 60 meV (Ref. [53])

10 nm above a silver surface. The agreement with the elec-
trodynamical solution (calculated as in Ref. [2]) is very
good, confirming the validity of our formulation. How-
ever, the theory presented is not limited to the perturbative
approximation, but we believe that it could constitute a use-
ful framework in which to study nonperturbative effects. In
particular, the concept of effective volume and its expres-
sion in Eq. 33 could be very useful to formulate quantitative
estimations in a straightforward way. The quantum for-
malism is suitable also to the treatment of more recent
developments, such as the ultrastrong coupling regime
[54–56] or the dynamical Casimir effect [57]. It could
also be the starting point for treating nonlinear interac-
tion, similarly to what has been done for dielectric cavities
[58, 59].

Spherical Geometry

Radiative Broadening of Plasmons

In this section, we suppose the region M to be a spherical
particle with radius R. The instantaneous plasmons form a
discrete spectrum of excitations indexed by the azimuthal
quantum number l, with frequencies ωl = ωP

√
l/(2l + 1).

The corresponding electrostatic modes (in spherical coordi-
nates) have the following form [31]:

Eqs,l(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− rl−1

Rl

[
lPl (cos θ)r̂ + ∂

∂θ
Pl (cos θ)θ̂

]
,

r < R;
Rl+1

rl+2

[
(l + 1)Pl (cos θ)r̂ − ∂

∂θ
Pl (cos θ)θ̂

]
,

r > R;
(37)
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(Pl indicates the Legendre polynomials). As an effect of
the rotational symmetry of the problem, we have consid-
ered only m = 0 modes and dropped the dependence on
the azimuth angle ϕ. The quasistatic effective volumes cal-
culated from Eq. 11 for a radially oriented atom located
outside the particle (at a distance ra from the center) take the
form

Vl(ra, r̂) = 4πr2l+4
a

(l + 1)2 R2l+1
, (38)

in agreement with Ref. [60].
The transverse vector potential of Eq. 18 is expanded

onto a discretized basis of N vector wavefunctions, as
shown in Appendix B. In order to study the effect of retar-
dation, we follow closely the approach in the “General
Quantum Formulation” section and look for a family of
Hopfield–Bogoljubov operators of the form in Eq. 22. The
commutation relation in Eq. 23 can be reduced to the linear
eigenproblem

M
(l) ξ (l) =

(
l

ωP

)2

ξ(l), (39)

for a (N + 1) × (N + 1) matrix M
(l) and a (N + 1)-

dimensional vector ξ(l), defined in Appendix B. When we
solve the problem numerically, we obtain a family of N +
1 eigenvalues and eigenvectors [61]. As we have already
anticipated, none of the eigenvectors represents of a true sta-
tionary state, but they can all be used to extract the density
of states according to Eq. 24.

For instance, the density of states of the l = 1 surface
plasmon mode of a R = 1.5c/ωP spherical particle is rep-
resented in Fig. 6. The instantaneous mode at ω = ωP/

√
3

(indicated as ω1) interacts with the continuum of transverse
modes. As a result, the peak acquires a finite linewidth, and
its central frequency is redshifted with respect to the instan-
taneous case. In order to get a quantitative description of
the phenomenon, we can extract the central frequency l of
the peak and its full width γrad,l from the density of states
(as shown in Fig. 6) and identify them with the characteris-
tic frequency and the radiative width of the corresponding
retarded surface plasmon.

The same procedure is repeated for different radii and
azimuthal numbers, leading to the results shown by the dots
in Fig. 7. Our data can be compared with the the electro-
dynamical solutions (solid curves in Fig. 7), calculated as
shown at the end of Appendix B. As it can be seen, there is
a very good agreement between our results from the density
of states and the electrodynamical solutions. In addition, in
Fig. 7b, we have indicated with a dashed curve the value
for the radiative width of the l = 1 mode calculated from

Fig. 6 Density of states (admixture density) of the l = 1 instanta-
neous surface plasmon of a R = 1.5c/ωP spherical particle into the
continuum of transverse electromagnetic modes. The quantity has been
calculated with Eq. 24 from the eigensolutions of Eq. 39. The fre-
quency of the instantaneous plasmon is indicated as ω1 = ωP/

√
3. As

an effect of retardation, the mode acquires a finite width γrad,1 and the
central frequency is redshifted to 1

a

b

Fig. 7 a Characteristic frequency and b radiative widths of retarded
surface plasmons in a metallic spherical particle, as a function of the
sphere radius (normalized to c/ωP) for the azimuthal quantum num-
bers l = 1, 2. The dots indicate the results obtained by numerically
solving the eigenproblem in Eq. 39 and fitting the central frequency
and the linewidth onto the admixture density. Solid curves represent
the electrodynamical result, calculated as explained in Appendix B.
In b, the dashed (green) curve labeled “D” indicates the dipole
approximation of the radiative width in Eq. 40
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the dipolar distribution of the surface charge density in the
quasistatic approximation [31]

γrad,1 = 2ω1

3

(
ω1R

c

)3

(40)

(with ω1 = ωP/
√

3). The agreement is good for small radii,
whereas the quasistatic value progressively overestimates
the correct result with the increasing of R. This is mainly
due to the increasing difference between the quasistatic
frequency ω1 in Eq. 40 and its retarded (and redshifted)
counterpart 1.

In summary, we believe that the analysis presented in
this section could be useful for several reasons. In the
first place, we have shown that retardation effects and,
in particular, radiative broadening of surface plasmons in
metallic nanospheres could be understood in the context
of the Fano–Anderson theory of a discrete quantum state
(the instantaneous plasmon) in resonance with the con-
tinuum of transverse electromagnetic modes. The results
obtained with this theory are in both qualitative and quan-
titative agreement with electrodynamical calculations. In
the second place, we believe that our results could con-
tribute to clarifying the limits of validity of the electrostatic
approach, which is often employed for the study of confined
surface plasmons, especially in the case of more complex
geometries.

Interaction with Matter

When we put a radially oriented atom at ra, as an effect
of retardation, the decay rate is modified with respect to
the quasistatic situation. The modification can be readily
evaluated with our formalism, since retarded surface plas-
mons, being resonances with a finite linewidth, provide a
continuous density of final states to which the Fermi golden
rule can be applied. Each eigenvector of Eq. 39 (identi-
fied by the index j ) defines the quantum operator α(j)

l (see
Eq. 56 in Appendix B) and, consequently, can be related to
an electromagnetic field mode through the relation E(j)

l =
[α(j)

l ,Eqs − Ȧ]. With a procedure similar to that leading to
Eq. 52, we obtain

E(j)

l (r) =
(
W(j) − Y (j)

)√
�ωl

8πε0R
Eqs,l(r) −

i
∑
ν

ckν

[
X(j)
ν + Z(j)

ν

]
AT,l,kν (r). (41)

The contribution of the lth retarded mode to the decay
rate can be calculated by applying directly the Fermi golden
rule


l =
∑
j

2π

�2

∣∣∣μ · E(j)
l (ra)

∣∣∣2 δ((j)
l − ωa), (42)

where 
(j)

l is the corresponding eigenvalue of Eq. 39. The
total decay is obtained by summing over all azimuthal num-
bers: 
 = ∑

l 
l . As an example, in Fig. 8, the dots
indicated the l = 1 contribution to the decay rate of
an atom located in proximity of a R = 1.5c/ωP spher-
ical particle, calculated with Eq. 42. Our data are shown
to be in very good agreement with the electrodynamical
result calculated with the Mie theory [4–6]. In particular,
we stress that the decay rate is characterized by an asym-
metric lineshape that resembles a Fano resonance, as it has
been already observed [62, 63]. When the particle radius is
reduced and the quasistatic limit is approached, the decay
rate lineshape progressively transforms into a symmetric
Lorentzian, since instantaneous plasmons are true localized
states.

In our treatment of spherical particles, we have neglected
the effect of light dissipation inside the metal. In apply-
ing our results to real systems, dissipation should be taken
into account, since it is responsible of an additional broad-
ening of the plasmonic resonances. A minimal approach
to include dissipation effects is to define a total plasmon
modal width γl = γrad,l + γD, including both radia-
tive and nonradiative broadening. The nonradiative width
can be approximated with the damping constant γD of
the Drude model. More elaborated models involve solving
Eq. 57 with a complex dielectric function and extract-
ing the modal width from the imaginary part of the
solution.

Fig. 8 The l = 1 contribution to the normalized decay rate of an
atomic dipole moment located in proximity to R = 1.5c/ωP metal-
lic spherical particle. The dipole is radially oriented and at a distance
ra = 1.2R from the center of the sphere (see inset). The (red) dots
are calculated with Fermi golden rule according to Eq. 42, whereas the
solid curve is obtained from classical electrodynamics (Mie theory)
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The agreement with the Mie theory confirms the validity
of the retarded formalism in the perturbative approxima-
tion. As for the case of the planar surface, however, we
believe that the quantum model presented in this work
could be used beyond the limits of the perturbation theory,
to study nonperturbative, nonlinear, or even nonclassical
effects. Moreover, we stress that the numerical procedure
reported here for metallic nanospheres could be gener-
alized to arbitrary geometries, including nanoparticles of
more complex shape, which are commonly investigated in
plasmonics [64].

Conclusions

In this work, we establish a link between the theory
of exciton-polaritons and that of retarded surface plas-
mons. Quantized instantaneous surface plasmons play
the role of the exciton and interact with the contin-
uum of electromagnetic transverse modes. A new family
of bosonic quantum operators, which are to be associ-
ated to retarded surface plasmons, is obtained with the
help of a Hopfield–Bogoljubov transformation. The inter-
action between plasmons and nearby dipolar emitters is
treated with a cavity QED-inspired formalism based on
the concept of effective volume. As examples of appli-
cation, the general theory is worked out for the cases of
a planar vacuum–metal interface and a spherical metallic
nanoparticle.

We have considered the ideal case of a free electron
gas without dissipation, because we are interested in high-
lighting the modification of the dispersive properties of
plasmonic modes as an effect of retardation, e.g., the phe-
nomenon of radiative broadening of retarded plasmons in
confined nanoparticles. Nevertheless, we believe that our
results can be applied even to less ideal materials. In partic-
ular, we have often indicated how to extend the formalism
in order to include the effect of a finite linewidth for
instantaneous modes and the relevant equations, such as
the definition of the effective volume (Eq. 11), are pre-
sented in a form suitable for an arbitrary metal–dielectric
function.

The formalism presented is not limited to the study of
plasmon–matter interaction in perturbation theory, but it
constitutes a full quantum framework analogous to those
widely available in the context of cavity QED. We believe
that it can represent an interesting basis for further the-
oretical developments, such as the study of nonperturba-
tive, nonlinear, nonclassical, or vacuum–related quantum
effects. Such effects, which are currently of great interest for
exciton-polaritons and for intersubband polaritons, could
find a viable experimental platform within the emerging
area of quantum plasmonics.

Appendix A: Planar Geometry

In this appendix, we sketch the derivation of the retarded
plasmon polariton modes with the help of a Hopfield–
Bogoljubov transformation of the instantaneous plasmons
coupled to the transverse electromagnetic field.

The interaction terms of the Hamiltonian in Eq. 14
assume the form

HI = i

∫
d2k‖dkz �C(kz; k‖)

(
b†

k‖ − b−k‖
) (

ak‖,kz + a†
−k‖,−kz

)
,

(43)

HII =
∫

d2k‖dkzdk′z �D(kz, k
′
z; k‖)

(
ak‖,kz + a†

−k‖,−kz

)

×
(

a†
k‖,k′z + a−k‖,−k′z

)
, (44)

with the coefficients

C(kz;k‖) = ω2
P

4k

√
k‖

πckωs
; D̃(kz, k

′
z;k‖) =

iω2
P(kzk

′
z + k2‖)

8cπ(kk′) 3
2

D(kz, k
′
z;k‖) = ω2

P

8ck
δ(kz − k′z)+P

D̃(kz, k
′
z;k‖)

k′z − kz
;

(P denotes the principal value).
The diagonalization of the Hamiltonian in Eq. 14

is obtained by replacing the expansion of Eq. 29 into
Eq. 23 and collecting the terms in front of the unper-
turbed operators bk‖, b†

−k‖, ak‖,kz , and a†
−k‖,−kz

, so that
we obtain a system of four equations for the coefficients
W,X(kz), Y, Z(kz). With some algebraic manipulation, the
equations can be condensed into the form

c

2k

(
k2
z + k2‖ −

2

c2 + ω2
P

2c2

)
ξ(kz)

+ P

∫
dk′z 2

D̃(kz, k
′
z)

k′z − kz
ξ(k′z) = −i(W + Y)C(k), (45)

where ξ(kz) = X(kz)− Z(kz).
Equation 45 can be solved with Kramers–Kronig rela-

tions, but attention must be paid to the fact that the integrand
(considered as a function of the complex variable k′z) has
additional poles in addition to that at k′z = kz. In particular,
if we introduce the quantities

�2− = k2‖ −
2

c2
+ ω2

P

c2
, �2+ = k2‖ −

2

c2
, (46)

and write ξ(kz) in the form (C is an arbitrary constant)

ξ(kz) = iC√
k (kz + i�+)(kz − i�−)

, (47)
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upon integrating the integrand on a closed circuit in the
upper complex plane like the one in Fig. 9 and taking the

limit |k′z| → ∞, the application of the Cauchy theorem
leads to the expression

c

2k
3
2

{[
i(�2+ + k2

z )(�
2− − k2‖)− (ikz�− + k2‖)(kz + i�+)(�− −�+)
(kz + i�+)(kz − i�−)(�2− − k2‖)

]

+ iω2
P

2c2 (k‖ +�+)(�− − k‖)

}
C = −i(W + Y)C(k).

The equation has a nonzero solution for the constant C if
and only if the (kz–dependent) term in the square brackets
cancels; this happens when �+�− = k2‖ , i.e.,

4
k‖ −2

k‖

[
2
(
ck‖
)2 + ω2

P

]
+ (ck‖ωP

)2 = 0, (48)

whence the plasmon polariton dispersion relation in Eq. 30
is recovered.

The constant C takes the value

C = −k‖

√
ck‖
πωs

(�− −�+)(W + Y).

Once C is known, from the original system of equations, it
is possible to work out the expression for the coefficients in
the expansion of αk‖ :

ξ(kz) = −ik‖

√
ck‖
πkωs

�− −�+
(kz + i�+)(kz − i�−)

; (49)

W = K

(
1 + k‖

ωs

)
; Y = K

(
1 − k‖

ωs

)
;

X = K

(
1 + k‖

ck

)
ξ; Z = K

(
k‖
ck

− 1

)
ξ.

(50)

The arbitrary constant K can be fixed from the normaliza-
tion conditions 〈�| αk‖α†

k‖ − α†
k‖αk‖ |�〉 = 1 on a generic

normalized quantum state |�〉. The result is

Fig. 9 The path of integration of Eq. 45 in the complex kz plane

K 2 = 1

4

(
ωs

k‖

)
(�− +�+)k‖
�2− +�2+

. (51)

The behavior of W and Y as a function of k‖ is reported in
Fig. 1.

The electric field operator is expanded onto a family
of modes Ek‖(r) according to Eq. 32. The expression for
the modes can be calculated from the commutation relation
[αk‖,Eqs − Ȧ] = E−k‖ , which leads to

Ek‖(r) = (W − Y)

√
�ωs

16π2ε0k‖
Eqs,k‖(r) −

i

∫
dkz ck

[
X(−kz)+ Z(−kz)

]
AT,k‖,kz (r) (52)

(
k =

√
k2‖ + k2

z

)
. With the help of Eq. 50 and some results

on Fourier transforms in the kz space, we find

Ek‖ =K
k‖k‖

π(�++�−)

√
�k‖
ε0ωs

(
− ik̂‖ ± k‖

�±
ẑ
)
eik‖·ρ∓�±z

(53)

(the upper and lower signs refer to the regions z > 0
and z < 0, respectively, k̂‖ is the unit vector directed as
k‖). Equation 53 is analogous to the expression of the field
obtained from classical electrodynamics [3, 21].

Appendix B: Spherical Geometry

In this appendix, we briefly present how the eigenvalue
Eq. 39 is derived. The transverse vector potential of Eq. 18
is expanded onto the electromagnetic vector wave functions
[65]

A(1)
T,l,k(r) = −N jlkr

∂

∂θ
Pl (cos θ)ϕ̂;

A(2)
T,l,k(r) = N

[
l(l + 1)

jl(kr)

kr
Pl (cos θ)r̂

+ 1

kr

∂

∂r
[rjl(kr)]

∂

∂θ
Pl (cos θ)θ̂

]



Plasmonics (2014) 9:965–978 977

(jl(x) denotes the spherical Bessel function of order l).
Polarizations with λ = 1 and 2 correspond to TE and TM
modes, respectively.3 Transverse modes are indexed by the
continuous wavenumber k, which is related to the modal fre-
quency ωk = ck. For each l, the frequencies ωk encompass
the whole spectrum, overlapping with the instantaneous
frequencies ωl .

The continuous index k is discretized into a finite num-
ber of retarded modes up to a cutoff value N (the modes
are labeled by the index ν = 1, 2, . . . , N ). This can be
accomplished by supposing to enclose the system in a large
sphere of radius L, with L >> R. According to the Sturm–
Liouville theory [66], the values kν implicitly provided by
the equation

jl(kνL) = 0, (54)

constitute an orthogonal basis of electromagnetic modes.
Consequently, the normalization factor N can be shown to
assume the form

N =
√

�(2l + 1)

4πl(l + 1)ε0ckν L3 j2
l+1(kνL)

. (55)

We look for Hopfield–Bogoljubov operators of the form

αl = Wlbl + Ylb
†
l +
∑
ν

(
Xl,νaν + Zl,νa†

ν

)
, (56)

which satisfy the commutation relation in Eq. 23. After
defining the adimensional quantities ω̃l = ωl/ωP, k̃ =
ck/ωP, R̃ = ωPR/c, and L̃ = ωPL/c, we can introduce the
(N + 1)-dimensional vector ξ(l), whose components are (K
is a normalization constant):

ξ(l)ν = −i
K√
k̃
(Xl,ν − Zl,ν), ν = 1, . . . , N;

ξ
(l)
N+1 = K√

ω̃l

(Wl + Yl).

By collecting the terms in front of the quantum opera-
tors bl, b†

l , al,ν , and a†
l,ν , Eq. 23 can be reduced to a linear

system of equations. With some further algebraic manip-
ulation, we are led to the eigenproblem in Eq. 39, with

3Notice that in Ref. [65] a different notation is used. Polarizations with
λ = 1 and 2 represent M and N vector wave functions, respectively.

the (N + 1) × (N + 1) symmetric matrix M
(l) defined as

follows:

M
(l)
ν,ν = R̃3

j2
l+1(kνL)L̃

3

[
j2
l+1(kνR)+ j2

l (kνR)

(
1 + 2(l + 1)

(kνR)2

)

− (2l + 3)
jl (kνR)jl+1(kνR)

kνR

]
+ k̃2

ν ;

M
(l)
ν,μ = 2R̃

|jl+1(kνL)jl+1(kμL)|L̃3

×
{

R̃

k̃2
ν−k̃2

μ

[
k̃μjl(kμR)jl+1(kνR)− k̃νjl (kνR)jl+1(kμR)

]

+ l + 1

k̃ν k̃μ
jl(kνR)jl(kμR)

}
;

M
(l)
ν,N+1 = M

(l)
N+1,ν = −

√
2l(l + 1)

(2l + 1)R̃L̃3

R̃ jl (kνR)

k̃ν |jl+1(kνL)|
;

M
(l)
N+1,N+1 = w̃2

l ; with ν,μ = 1, 2, . . . , N and ν �= μ.

The eigenproblem is solved with numerical methods.
The value of the coefficients Wl, Yl, Xl,ν , and Zl,ν can be
extracted from the definition of eigenvector ξ(l) with the
additional relations

ωl(Wl − Yl) = l(Wl + Yl);
ck(Xl,ν + Zl,ν) = l(Xl,ν − Zl,ν).

The normalization constant can be calculated from the con-
dition 〈�| αlα†

l −α†
l αl |�〉 = 1 with the operator in Eq. 56.

The result is |ξ(l)|2 = ωP/l , which, for an eigenvector
with unitary normalization, leads simply to K = √

ωP/l .
The solutions of the vector eigenproblem (39) are shown

by the dots in Fig. 7 and compared with the correspond-
ing electrodynamical solutions. The latter are obtained by
solving for a complex ω the equation

h
(1)
l (kR)

∂
∂r
[r h(1)l (kr)]r=R

= ε(ω)
il(nkR)

∂
∂r
[r il(nkr)]r=R

, (57)

with a Drude dielectric function ε = 1 − ω2
P/ω

2. In the

equation, k = ω/c, n = √
ε, h(1)l (x) is the spherical Hankel

function of the first kind, and il(x) is the modified spheri-
cal Bessel function of the first kind. The modal frequency
and radiative width are related to the real and imaginary
parts of the solution by l = �(ω) and γrad = −2�(ω),
respectively.
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