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Back-reaction effects of quantum vacuum in cavity quantum electrodynamics
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We theoretically study an optical system in which the back-reaction of quantum vacuum manifests itself as
a sizable suppression of the absorption by a three-level emitter embedded in an optical cavity. A theoretical
model including the anti-rotating-wave terms of the light-matter interaction Hamiltonian is developed to describe
the conversion of zero-point fluctuations into observable radiation, as well as the back-reaction of the quantum
vacuum onto the emitter.
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I. INTRODUCTION

One of the most intriguing predictions of quantum me-
chanics is the existence of significant field fluctuations in
the ground state of a quantum field theory; as a result, the
quantum vacuum is not just an empty void but has a nontrivial
structure. The zero-point quantum fluctuations of the elec-
tromagnetic field, in particular, are responsible for a number
of observable effects, from spontaneous emission and Lamb
shift in atomic physics to the Casimir force between neutral
objects [1].

A further fascinating prediction of quantum field theory
is the conversion of the zero-point fluctuations of a quantum
field into pairs of real particles when the boundary conditions
of the field are varied in time at a fast-enough rate, the
so-called dynamical Casimir effect (DCE) [2–4]. In the
simplest and most celebrated version, a DCE emission with
peculiar spectral properties has been predicted to occur when
a plane metallic mirror is moving through the electromagnetic
vacuum with a nonuniform acceleration. The energy of the
radiated photons comes at the expense of the mechanical
energy of the moving mirror, which then experiences a friction
force by the quantum vacuum via the so-called back-reaction
effect [5].

So far, experimental observation of the DCE and, a
fortiori, of the back-reaction force has been hindered by
the extremely weak intensity that is expected for realistic
experimental configurations. For this reason, researchers have
started investigating a broader class of DCE-like effects that
occur in the presence of generic time modulations of the optical
length of a cavity, not necessarily due to a mechanical motion
of the cavity mirrors. In particular, sizable DCE emission
intensities have been anticipated to appear when the refractive
properties of the cavity material are varied in time at a fast
enough rate. Following the first proposal [6], the properties
of such an analogous DCE emission have been investigated
for a number of different systems [7–13]. Very recently, a first
claim of experimental observation of such an analog DCE
emission has been reported using a circuit QED system in the
microwave range [14]. On the other hand, we are not aware of
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any experimental nor theoretical study of back-reaction effects
in analog DCE systems.

In the present work, we take advantage of the extreme
precision and flexibility of optical techniques to propose an
all-optical route to observe the quantum vacuum back-reaction
effect in a cavity-QED system. Inspired by recent experiments
[15], we consider a specific configuration consisting of an
optical cavity strongly coupled to a three-level emitter: Rabi
oscillations in the emitter illuminated by a strong resonant laser
drive result in a periodic modulation of the effective optical
length of the cavity and, in turn, in the conversion of quantum
fluctuations into observable DCE radiation. The optical analog
of the friction force exerted by the quantum vacuum onto the
moving mirrors manifests itself here as a sizable suppression
of the absorption experienced by the laser beam driving the
Rabi oscillations.

The structure of the article is the following. In Sec. II, we
introduce the physical system and the theoretical model used
for its description. Specific attention is paid to the theoretical
issues that arise when the anti-rotating-wave terms of the light-
matter interaction Hamiltonian are included in the model. This
model is then used in Sec. III to predict and characterize the
spectral properties of the quantum vacuum emission. The back-
reaction effect of the quantum vacuum is discussed in Sec. IV.
Conclusions are finally given in Sec. V.

II. THE MODEL

We start by introducing the theoretical model to describe
a generic three-level optical emitter in a ladder configuration
strongly coupled to an optical cavity. The level scheme we
are considering is sketched in Fig. 1(a): Very recently, a
configuration of this kind has been experimentally realized
using a combination of interband and intersubband transitions
in a semiconductor device [15]. In the near future, we expect
that it can be also implemented using atoms in microwave
cavities [16], Josephson qubits in superconducting circuits
[14,17], or quantum dots in photonic crystal cavities [18].
An interesting theoretical study of quantum dynamics in these
systems recently appeared in [19].

A. The isolated system Hamiltonian

In contrast to most existing literature on cavity QED
[16,19], a correct description of the zero-point fluctuations
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FIG. 1. (Color online) (a) Sketch of the ladder level configuration
in the emitter coupled to the cavity and the optical fields driving the
transitions. Right panels: total emission intensities Icav and If e as a
function of the Rabi frequency �eg of the drive laser (solid lines).
Red dashed line in panel (b): Same curve in the vanishing emitter-
cavity coupling case �cav = 0. Within the RWA, both Icav,ge would
be exactly zero. The chosen parameters ωe − ωg = ωL, ωf − ωe =
ωcav, �cav/ωcav = 0.1, �eg/ωcav = 0.01, and �cav = �f e = 10−3 ωcav

correspond to a strong (but not ultrastrong) coupling regime.

requires going beyond the standard rotating-wave approxima-
tion (RWA). For our specific configuration, this can be done
using a Hamiltonian of the form

H = h̄ωcavâ
†â + h̄ωg|g〉〈g| + h̄ωe|e〉〈e| + h̄ωf |f 〉〈f |

+ h̄�eg e−iωLt |e〉〈g| + h̄�eg eiωLt |g〉〈e|
+ h̄�cav[|f 〉〈e| + |e〉〈f |][â† + â]. (1)

Here, h̄ωg,e,f are the energies of the g,e,f atomic levels. The
g ↔ e transition is optically driven by a coherent laser of
frequency ωL and (real and positive) Rabi frequency �eg . The
anti-RWA terms of the light-emitter coupling on the g ↔ e

transition can be safely neglected under the assumption that
the transition frequency ωe − ωg is much larger than all other
frequency scales.

A single cavity mode of frequency ωcav and destruction
(creation) operator â (â†) is considered, which is strongly
coupled to the e → f transition with a (real and positive)
vacuum Rabi frequency �cav. In order to correctly describe
the quantum vacuum emission, one has to go beyond the
standard RWA description of cavity-QED systems [16,19] and
include all terms of the emitter-cavity coupling, in particular
the anti-RWA ones where a cavity photon is emitted while the
atom climbs from the e to the f state and vice versa. In the
following, we restrict our attention to the resonant case with
ωL = ωe − ωg and ωcav = ωf − ωe. As required by the strong
light-matter coupling regime, the light-matter coupling �cav is
assumed to be much larger than all decay rates.

Thanks to the RWA assumption on the g ↔ e transition,
we can apply the unitary rotation operator R(t) = e−iωLt |g〉〈g|
and move to a rotating frame where the Hamiltonian has a
time-independent form:

H = h̄ωcavâ
†â + h̄(ωg + ωL)|g〉〈g| + h̄ωe|e〉〈e|

+ h̄ωf |f 〉〈f | + h̄�eg[|e〉〈g| + |g〉〈e|]
+ h̄�cav[|f 〉〈e| + |e〉〈f |][â† + â]. (2)
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FIG. 2. (Color online) Left panels: Sketches of the dressed levels
of the optically driven emitter as predicted by the Hamiltonian (2).
The labels indicate the dominant contribution of each eigenstate in
the weak atom-cavity coupling �cav limit. Right panels: spectra of
the spontaneous emission on the f ↔ e transition [(b) and (e)] and
of the cavity emission [(c) and (f)]. Upper and lower group of panels
[(a) and (c)] and [(d) and (f)] refer to the �eg/ωcav = 0.7, 2 cases,
respectively. Same system parameters as in Fig. 1.

The structure of the resulting eigenstates of the cavity-emitter
system optically dressed by the drive laser is shown in
Figs. 2(a) and 2(d) for different values of �eg . The labels
of the eigenstates refer to the dominating component in the
weak �cav limit, in which the energy of the |gn〉 ± |en〉 and
|f n〉 eigenstates are nωcav ∓ �eg and (n + 1)ωcav respectively.
In the shorthand |jn〉, n and j = {g,e,f } respectively indicate
the number of cavity photons and the state of the emitter.

B. The nonwhite dissipation baths

In addition to the CW driving laser, the system is coupled
to the external world via spontaneous emission processes on
the e → g and f ↔ e transitions (the f → g transition is
assumed to be forbidden), as well as via direct light emission
from the cavity through the imperfectly reflecting mirrors.
Such dissipation processes are included in the model at the
level of the master equation for the density matrix ρ,

dρ

dt
= − i

h̄
[H,ρ] + Leg[ρ] + Lf e[ρ] + Lcav[ρ]. (3)

Thanks to the large value of ωe − ωg , the standard RWA
approximation can be performed on the e → g spontaneous
emission terms, which leads to a dissipation superoperator in
the usual Lindblad form [20],

Leg[ρ] = 1
2�eg[2σ−

egρσ+
eg − σ+

egσ
−
egρ − ρσ+

egσ
−
eg], (4)
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in both the stationary and rotating frames, with σ+
eg = |e〉〈g|

and σ−
eg = (σ+

eg)†. In spite of this formal similarity, it is worth
remembering that energy conservation shows peculiar features
when seen in the rotating frame of the dressed Hamiltonian (2):
As the emission spectrum on the e → g transition is shifted
downward by ωL, the sidebands on the red side of ωL = ωe −
ωg have a negative energy in the rotating frame; on the dressed-
level scheme of Figs. 2(a) and 2(d), these transitions then
appear to climb up the energy ladder.

The description of spontaneous emission processes on the
f ↔ e transition and of the cavity emission requires more care
to be consistent with the anti-RWA terms of the emitter-cavity
coupling in Hamiltonian (1). On one hand, one has to include
anti-RWA terms also in the coupling to the dissipation baths,
which allows for quite counterintuitive optical processes, for
instance, the emitter going up from the e to the f state while
emitting a photon by spontaneous emission. On the other
hand, unphysical perpetuum mobile behaviors are avoided by
carefully modeling the frequency-dependent density of states
v(ω) of the dissipation baths.

In the present work, all baths are assumed to be
zero-temperature ones, so that energy can only be dissipated
from the system into them. This imposes v(ω) = 0 for ω < 0.
For the numerical calculations shown in the figures, specific
model forms of vj (ω) have been considered, where vj (ω) = 0
for ω > ωmax, with a UV cutoff ωmax chosen to be much larger
than all other energy scales of the problem. In the intermediate
region, 0 < ω < ωmax, vj (ω) is taken to be flat and equal to 1
except for a smoothing of the edges. We have checked that all
physical conclusions do not critically depend on the specific
choice of the UV cutoff, ωmax, and on the details of the
smoothing [21].

For a sufficiently weak coupling to the baths [22], the
dissipation superoperators for j = {cav,f e} can be written
in the temporally local form

Lj [ρ] = �j {ÛjρŜj + Ŝj ρÛ
†
j − Ŝj Ûjρ − ρÛ

†
j Ŝj }, (5)

where the system-bath interaction operators have the
forms

Ŝf e = |e〉〈f | + |f 〉〈e|, (6)

Ŝcav = â† + â, (7)

and the Ûj operators take into account the non-Markovian
nature of the dissipation baths. The Ûj operators have a simple
definition,

Ûj =
∫ ∞

0
dτ vj (τ ) e−iĤ τ Ŝj eiĤ τ , (8)

in terms of the bath correlation function, that is, the Fourier
transform of the frequency-dependent density of states of the
baths,

vj (τ ) = 1

2π

∫ ∞

−∞
dω e−iωτ vj (ω). (9)

As a result, the decay from the |in〉 to the |fin〉 eigenstate
of the dressed system occurs at a frequency-dependent
rate of

�(in → fin) = �j |〈fin|Sj |in〉|2 v(ωin − ωfin), (10)

and unphysical processes where the system would increase
in energy (ωfin > ωin) upon a dissipative event are indeed
forbidden.

III. THE QUANTUM VACUUM RADIATION

Once the steady-state solution ρSS of the master equation (3)
has been numerically calculated [23], it is straightforward to
obtain the expectation value of all one-time operators of the
system in the stationary state, in particular the full photon
number distribution in the cavity. However, as was pointed out
in Ref. [8], this is not enough to determine the actual light
emission from the system.

To distinguish real radiation from the virtual photons that
are present even in the ground state of the cavity, one has in
fact to evaluate the full spectral distribution of the emitted
radiation [20], which is the Fourier transform of the two-time
correlation function [24]

Gj (ω) = �j vcav(ω)
∫ ∞

−∞
dτ eiωτ 〈Ŝj (t + τ ) Ŝj (t)〉 (11)

for j = {cav,f e}, from which the total emission intensities Ij

are obtained after integration over ω,

Ij =
∫

dω

2π
Gj (ω). (12)

Plots of Icav,f e as a function of �eg are shown in Figs. 1(b)
and 1(c).

Both emissions have a negligible value [25] for low Rabi
frequencies �eg < ωcav/2. The first threshold occurs at �eg =
ωcav/2. A second, more pronounced threshold is apparent at
�eg = ωcav and is followed by additional structure in Icav

for larger �eg’s, in particular, two peaks at �eg = ωcav and
2ωcav. When the emitter-cavity coupling �cav is reduced, the
emission in between the two thresholds ωcav/2 < �eg < ωcav

is suppressed, as well as the intensity of the two peaks at
�eg = ωcav and 2ωcav. These features completely disappear
when the emitter is no longer coupled to the cavity [�cav = 0,
red dashed line in Fig. 1(b)]. On the other hand, the upper
threshold at �eg = ωcav and the height of the plateau in the
�eg > ωcav region are almost unaffected by a variation of �cav.

A physical explanation of these numerical observations
is obtained by looking at the level schemes of the optically
dressed system that are shown in Figs. 2(a) and 2(d). For
�eg < ωcav/2, the dynamics of the system is limited to
the subspace spanned by the two lowest energy eigenstates
|g,0〉 ± |e,0〉 at energies ∓h̄�eg . For �eg > ωcav/2, the energy
of the |gn〉 − |en〉 dressed states starts exceeding the energy of
the |g(n + 1)〉 + |e(n + 1)〉 state, which activates a family of
decay processes indicated by the blue solid arrows in Fig. 2(a).
These decays occur via spontaneous emission on the e → f

transition, the matrix element being provided by the weak
admixture (proportional to �cav/�eg) of the neighboring
|f n〉 state via the emitter-cavity coupling �cav. As a result,
population is transferred to the upper manifolds, and signifi-
cant emission intensities Icav,f e appear as the dressed system
slides back toward the lower manifolds. The second, stronger
threshold that is visible in Figs. 1(b) and 1(c) at �eg = ωcav is
due to the direct e → f spontaneous decay channel that opens
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up as soon as the |gn〉 + |en〉 state exceeds in energy the |f n〉
state.

This interpretation of the thresholds is confirmed by the
plots of the frequency-resolved emission spectra Gcav(ω) and
Gf e(ω) shown in Figs. 2(b) and 2(c). Note that, in contrast to
the previous discussion of the e → g emission, the frequency
ω in Gcav,f e(ω) corresponds to the actual physical frequency
of the emitted light. The central peak at ω � ωcav corresponds
to transitions between dressed states that only differ by the
number n of cavity photons. The lateral peaks originate
from transitions between different dressed states, for example,
at ω � 2�eg − ωcav (|gn〉 − |en〉 → |g(n + 1)〉 + |e(n + 1)〉,
solid blue arrows) and ω � ωcav ± �eg (|f n〉 → |gn〉 ± |en〉,
dashed and dotted red arrows). Correspondingly to each arrow
in the diagram (a), the vertical lines in the spectra (b,c) indicate
the expected position of the peak: the agreement with the
numerical spectra is excellent.

Similar reasonings can be used to explain the peaks that
are apparent in Figs. 1(b) and 1(c) around �eg = ωcav, 2ωcav:
The stronger one at �eg � 2ωcav originates from the resonant
mixing of the |g0〉 − |e0〉 and |f 1〉 states by the anti-RWA
terms of the emitter-cavity coupling [see the horizontal arrow
in Fig. 2(d)]. The peaks at ωcav ± �cav/

√
2 in the frequency-

resolved spectra of Figs. 2(e) and 2(f) indeed correspond to
transitions to and from the new eigenstates in the form of
linear combinations of the |g0〉 − |e0〉 and |f 1〉 states. The
interpretation of the weaker and narrower peak at �eg � ωcav

in Figs. 1(b) and 1(c) is similar: When �eg � ωcav, the |g0〉 −
|e0〉 and |g2〉 + |e2〉 states are resonant and their (weaker)
mixing can occur via the intermediate, nonresonant |f 1〉 state.

The peak around �eg = 2ωcav has a simple physical
interpretation in terms of a quantum vacuum emission process
analogous to the DCE: Under the effect of the driving laser,
the atom performs Rabi oscillations on the g ↔ e transition,
so that the atom-cavity coupling is periodically switched on
and off at frequency 2�eg [19] and periodically modulates the
effective optical length of the cavity. In turn, this periodic
modulation is responsible for the conversion of the zero-
point fluctuations of the cavity field into observable radiation
[6–14], a process which, as usual, is most effective when
the modulation frequency is close to a multiple of the cavity
frequency [4].

While it is physically apparent that the energy that is
emitted by the system as quantum vacuum radiation comes
at the expense of the laser beam driving the g ↔ e Rabi
oscillations, understanding the physics on the dressed-level
scheme of Fig. 2(d) requires a bit more attention. The
dissipative processes responsible for the emission of quantum
vacuum radiation make the system slide down on the dressed-
level scheme. This downward drift is compensated by e → g

spontaneous emission processes where the system is brought
up again on the dressed-level scheme by emitting photons at a
frequency lower than the drive laser one ωL.

IV. THE BACK-REACTION EFFECT

After this lengthy preparatory discussion, we are finally in
a position to illustrate the main result of this work, namely
the back-reaction effect of the quantum vacuum onto the drive
beam. To this purpose, the simplest quantity to consider is the
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FIG. 3. (Color online) Solid line: Rate of photon absorption from
the drive laser as a function of its Rabi frequency �eg . Same system
parameters as in Fig. 1. Red dashed line: same curve in the vanishing
emitter-cavity coupling case �cav = 0. Blue dotted line: same curve
for a two-level emitter.

absorption of the drive laser light by the emitter when this is
excited on the g → e transition.

Using standard results of quantum optics [20], the average
rate of photon absorption is related to the imaginary part of
the expectation value of the emitter polarization by

Reg = 2�eg Im{Tr[ĉ†eg ρSS]}. (13)

A plot of this quantity as a function of �eg is shown in Fig. 3.
For low �eg , the dependence is the standard one of saturated
absorption by a two-level atom (blue dotted line). At larger
values of �eg , two sudden downward jumps are observed at
�eg = ωcav/2 and (more visibly) at �eg = ωcav: Both these
jumps are closely related to the thresholds previously observed
in Icav and If e.

Clear signatures of the back-reaction effect are visible
as dips in the absorption spectrum around �eg = ωcav and
�eg = 2ωcav. Both the position and the linewidth of the
absorption dips perfectly match the corresponding peaks in the
quantum vacuum emission spectrum shown in Fig. 1: When
the emission intensity is the largest, the emitter experiences
the strongest friction force opposing to the Rabi oscillations
between the g and the e state, which in turn results in a
significant suppression of the absorption rate experienced by
the drive laser [26].

The interpretation of the dips in terms of back-reaction
effect of the quantum vacuum is further validated by the ob-
servation that their strength decreases when the emitter-cavity
coupling �cav is reduced and finally completely disappears for
�cav = 0 (red dashed line in Fig. 3). Remarkably, the amplitude
of both peaks is a non-negligible fraction of the total absorption
rate by the emitter, which confirms the promise of our optical
detection proposal.

V. CONCLUSIONS

In conclusion, we have developed a theoretical model to
study the optical properties of a three-level emitter embedded
in an optical microcavity beyond the rotating-wave approxi-
mation: Rabi oscillations under the effect of a drive laser result
in a sizable emission of quantum vacuum radiation. Experi-
mentally accessible signatures of the back-reaction effect of
the quantum vacuum appear as marked dips in the absorption
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spectrum of the drive beam. Drawing an analogy with the
dynamical Casimir effect, these peaks can be interpreted as due
to the optical analog of the mechanical friction force exerted
by the quantum vacuum onto a nonuniformly accelerated
mirror.
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