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We perform a systematic study of spontaneous Raman scattering in resonant planar structures. We present a semi-
classical approach that allows the description of spontaneous Raman scattering in an arbitrary multilayer, provid-
ing analytical expressions of the Raman cross sections in terms of the Fresnel coefficients of the structure and
taking into account beam size effects. Large enhancements of the Raman cross section are predicted in fully di-
electric structures. In particular, given our results, truncated periodic multilayers supporting Bloch surface waves
might be of interest for the realization of integrated Raman sensor devices. © 2012 Optical Society of America
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1. INTRODUCTION
Raman scattering is a powerful spectroscopic tool for mole-
cular identification. It offers high selectivity, with the Raman
spectrum serving as a fingerprint of the detected molecule.
Although this scattering process is usually very weak, with ty-
pical cross sections of about 10−30 cm2 molecule−1 sr−1 [1], it
can be enhanced when molecules are located in the proximity
of roughened metallic surfaces [2–4], nanoparticles in a solu-
tion [2,3,5], or nanoparticles on a substrate [6–9]. This surface
enhanced Raman scattering (SERS) relies in large part on the
coupling of the incident and scattered fields through localized
surface plasmon (SP) resonances [2]. While typical average
SERS enhancement factors are about 106, enhancements of
about 1014 for dye molecules at “hot spots” on aggregated gold
and silver nanoparticles have been observed [10,11], enabling
single molecule spectroscopy. Other SERS structures include
periodic arrays of metallic nanoparticles [12,13] or holes in
metallic films [12,14] and metallic gratings [15]; photonic crys-
tal fibers with metal coatings and metal nanoparticles have
also been used [16].

A dielectric waveguide (WG) structure, supporting con-
fined modes, leads to field enhancement at the positions of
adsorbed molecules, and thus to SERS, as well. Slab WGs
can lead to enhancements of about 3 orders of magnitude
[17–20], and have been used to study Raman scattering from
thin polymer films [21], monolayers of proteins [22], and bac-
teriorhodopsin [23]. Coupled WGs have also been used to
study the Raman scattering from a thin liquid film between
them [24].

Sensing scenarios employing these structures typically
involve coupling into the WG mode by a prism in the Otto
configuration [25], and detecting light scattered out of the
WG structure. In this paper we theoretically study SERS
from molecules adsorbed on structures and probed in the
Kretschmann configuration [26]. While this configuration
has been widely employed in biosensing based on changes

in the refractive index [2,27], to the best of our knowledge,
no Raman scattering in dielectric planar structures based
on the Kretschmann configuration has been reported [28].
In the Kretschmann configuration, the scattered signal is de-
tected through a prism substrate, reducing the interaction of
the scattered field with the solution containing the analyte; as
well, microfluidic systems for the delivery of the analytes are
easily envisioned. Moreover, this configuration allows for cou-
pling of the scattered field into guided modes of the planar
structure, which we show further enhances radiation in
specific directions; this may be important for extensions to
multiplexing.

Besides studying slab WG structures in the Kretschmann
configuration, we also consider the use of Bloch surface
waves (BSWs) [29,30], which propagate at the surface of per-
iodic dielectric stacks [one-dimensional (1D) photonic crys-
tals]. These waves are confined to the surface of the
structure due to the photonic bandgap from the photonic crys-
tal and total internal reflection from the cladding. They can be
seen as dielectric analogues of planar SP structures, but do
not suffer from absorption losses, and are of interest for sen-
sing and biosensing applications [31–37]. BSW structures can
be designed to have very narrow resonance peaks, and their
dispersion relations can be widely tuned by changing the para-
meters of the multilayers. Thus they offer more flexibility for
sensing optimization than usual slab WGs.

The paper is organized as follows. As a benchmark, we be-
gin in Subsection 2.A by calculating the Raman cross section
for a molecule embedded in a uniform background medium,
adopting a simple isotropic model for the Raman polarizabil-
ity. Although in a design study for a particular sensing appli-
cation this would have to be replaced by a more realistic
model, the simple isotropic model allows us to focus on
the enhancement of the Raman scattering in the different pla-
nar geometries we consider. In Subsection 2.B, we describe
the Raman scattering from a molecule over a very general
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multilayer structure, identifying expressions for the Raman
scattering into the cladding and substrate. We cast the results
in terms involving the Fresnel coefficients of the structure.
This allows for an identification of any guided modes, and
the construction of approximate analytic expressions charac-
terizing their effects, as well as the implementation of numer-
ical calculations. In Section 3, we turn to example calculations
involving particular multilayer structures. Besides WG and
BSW structures, we also consider planar SP structures. While
these are not the best metallic structures for SERS, they pro-
vide an indication of what Raman signal enhancement could
be achieved with the kind of planar SP structures commonly
used in biosensing [2,27]. All these calculations employ a
plane wave analysis, which can be suspect with resonant
structures. In Section 4, we generalize our results to excitation
with finite beams, see how the limit of plane wave excitation
arises, and identify when corrections to it become important.
In Section 5, we present our conclusions.

2. RAMAN CROSS SECTION
We calculate spontaneous Raman scattering within a semi-
classical approximation: The incident field is taken as classi-
cal, but we treat the vibrations in the molecule quantum
mechanically. All optical fields are taken to be at frequencies
far below any electronic resonances, so we can describe the
response of the molecule to incident radiation by a polarizabil-
ity tensor α�t�, which is modulated by molecular vibration.
The dipole moment μ�t� � α�t� · E�t�, where E�t� is the field
at the position of the molecule resulting from the incident
beam. In our approach, μ�t� is an operator by virtue of its de-
pendence on the molecular vibration through α�t�. Thus the
radiated fields are operators, too, and we calculate the scat-
tered light by taking the expectation value of the resulting
Poynting vector operator. This allows us to capture the cor-
rect intensities of Stokes and anti-Stokes radiation.

We take the polarizability tensor to be of the form

α�t� � α0 �
X
ξ

α1ξqξ�t�; (1)

where α0 and α1ξ are, respectively, the Rayleigh polarizability
tensor and the Raman polarizability tensor associated with the
vibrational degree of freedom ξ; qξ�t� is the canonical coordi-
nate associated with this degree of freedom. Since our main
concern here is the enhancement of Raman scattering that can
result from the use of multilayer structures, and not the de-
tailed description of the Raman scattering from a particular
molecule, we consider only 1 degree of freedom, and model
the vibration as a harmonic oscillator at frequencyω0. We con-
sider only spontaneous processes and, ignoring the details of
the frequency width of the Raman lines due to coupling of the
molecule with environmental degrees of freedom, we take

q�t� �
�

ℏ
2mω0

�
1∕ 2
�ae−iω0t � a†eiω0t�; (2)

where a and a† are the lowering and raising operators of the
harmonic oscillator, respectively. We now denote the single
Raman polarizability tensor simply by α1; to simplify the
calculations, we treat the Raman polarizability as isotropic,
with α1 proportional to the unit tensor, and denote the

proportionality constant by α1. Generalization to treat more
realistic polarizability tensors is straightforward.

A. Molecule in a Uniform Medium
We begin with a molecule embedded in a uniform medium
with real refractive index n1�ω� and subject to a continuous
wave incident pump field at frequency ωP ; we make calcula-
tions by assuming an incident pump pulse with duration T :

Einc�t� �
�
Ee−iωPt � c:c −T ∕ 2 < t < T ∕ 2;
0 otherwise;

(3)

where Einc�t� is the electric field at the position of the mole-
cule, and finally take the limit T → ∞. For all fields f �t�, we
introduce positive and negative frequency parts

f��t� �
Z

∞

−∞

dω
2π

f��ω�e−iωt; (4)

where f��ω� � θ��ω�f �ω�, with θ�s� � 1; 0 as s > 0, s < 0,
and

f �ω� �
Z

∞

−∞

f �t�e−iωtdt: (5)

Then, for ωP ≫ ω0, to good approximation, the positive fre-
quency component μ��ω� of the dipole moment operator is
related to the positive frequency components of the incident
field:

μ��ω� �
�

ℏ
2mω0

�
1∕ 2
α1�aE�

inc�ω − ω0� � a†E�
inc�ω� ω0��; (6)

where we neglect Rayleigh scattering. The fields radiated
by this resulting dipole moment can be found from the usual
solutions [38] of the Maxwell equations:

E��r;ω� � ~ω2

4πϵ0

ei ~ωn1r

r
�r̂ × μ��ω�� × r̂;

H��r;ω� � ~ω2n1c
4π

ei ~ωn1r

r
�r̂ × μ��ω��; (7)

where c is the speed of light and ~ω � ω ∕ c is the (circular)
wavenumber. The quantities E��r;ω� and H��r;ω� are opera-
tors, by virtue of the fact that μ��ω� is an operator. The part of
the Poynting vector operator, S�r; t� � E�r; t� ×H�r; t�, that
will be important for the interaction of the radiation with de-
tectors is the normally ordered form [39]

: S�r; t� : ≡ E−�r; t� ×H��r; t� −H−�r; t� × E��r; t�; (8)

and integrating over time and using Eq. (4),

Z
∞

−∞

: S�r; t� : dt �
Z

∞

0
S�r;ω�dω; (9)

where

S�r;ω� � 1
2π

��E��r;ω��† ×H��r;ω� − �H��r;ω��† × E��r;ω��;
(10)
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is the operator for the radiated energy per area per unit
frequency interval at position r. From Eqs. (7) and 10,

S�r;ω� � ~ω4n1c
16π3ϵ0

r̂
r2

Γfree�r̂� : �μ��ω��†μ��ω�; (11)

where Γij
free�r̂� � δij − rirj ∕ r2, and the colon product of tensor

T and vectors A and B is defined as T : AB � TijAiBj . The
expectation value of S�r;ω� is

hS�r;ω�i � ~ω4n1c

16π3ϵ0

r̂

r2
Γfree�r̂� : h�μ��ω��†μ��ω�i: (12)

From Eqs. (6) and (3), in the limit (ωPT ≫ 1), we find

hμ��ω��†μ��ω�i
T

� π�α1ℓA�2
2

E�Eδ�ω − ωP − ω0�

� π�α1ℓS�2
2

E�Eδ�ω − ωP � ω0�; (13)

where

ℓS �
���������������������

ℏ
2mω0

�s
�n̄� 1�; ℓA �

������������������������
ℏ

2mω0

�
n̄

s
; (14)

are characteristic lengths associated with Stokes and anti-
Stokes radiation, respectively, (n̄ � �eℏω0 ∕ kBT − 1�−1 is the
average number of the vibrational excitations). When the tem-
perature approaches zero, ℓA vanishes, and ℓS characterizes
the length associated with the zero-point motion of the oscil-
lator; on the contrary, when kBT ≫ ℏω, ℓA and ℓS become
equal and characterize the length associated with the thermal
motion of the oscillator.

The radiated energy per unit area per time at position r is

1
T

Z
∞

0
hS�r;ω�idω � ~ω4

Sn1�ωS�c
32π2ϵ0

�α1ℓS�2
r̂
r2

Γfree�r̂;ωS� : �E�E�

� ~ω4
An1�ωA�c
32π2ϵ0

�α1ℓA�2
r̂
r2

Γfree�r̂;ωA�

: �E�E�; (15)

where ωS � ωP − ω0 and ωA � ωP � ω0 are the Stokes and
anti-Stokes frequencies, and the first and second terms corre-
spond to the Stokes hSS�r�i and anti-Stokes hSA�r�i radiation,
respectively. If we consider only the Stokes field, the total
power radiated at ωS is given by

PS �
Z
hSS�r�i · r̂r2dΩ � ~ω4

Sn1�ωS�c
12πϵ0

�α1ℓS�2E� · E; (16)

where we integrated hSS�r�i over the solid angle Ω. We can
define the Stokes Raman differential cross section in a uni-
form medium as

σoS�r̂� �
hSS�r�i · r̂r2

SP
; (17)

where

SP � 2n1�ωP�
cμ0

�E� · E�; (18)

is the magnitude of the Poynting vector of the pump field. We
obtain

σoS�r̂�≡
~ω4
Sn1�ωS�
4n1�ωP�

�
α1ℓS
4πϵ0

�
2
Γfree�r̂;ωS� : �ê�incêinc�; (19)

where we assume that the incident field is polarized along êinc.
Finally, the total Raman cross section is found by integrating
σoS�r̂� over the solid angle:

σoS �
Z

σoS�r̂�dΩ � 2π ~ω4
Sn1�ωS�

3n1�ωP�

�
α1ℓS
4πϵ0

�
2
: (20)

Similar results for the radiated power and the differential
cross section are obtained for the anti-Stokes radiation.

B. Molecule Above a Planar Structure
Now we turn to the problem of interest (see Fig. 1). A mole-
cule is embedded in a medium of real refractive index n1�ω� at
a distance d above a planar structure oriented with a normal
vector ẑ and extending from z � 0 to z � D, with a uniform
substrate medium with real refractive index nN �ω� for
z < 0; we take the position of the molecule to be r0 �
�d� D�ẑ� R0, where R0 � �x0; y0�. We consider a configura-
tion in which the pump beam is incident from the substrate,
such that the field at the position of the molecule, EL�t�, is

EL�t� �
�
ELe−iωPt � c:c −T ∕ 2 < t < T ∕ 2;
0 otherwise:

(21)

In analogy to Eq. (6), we can write down the expression for
the induced dipole moment of the molecule

μ��ω� �
�

ℏ
2mω0

�
1∕ 2
α1�aE�

L �ω − ω0� � a†E�
L �ω� ω0��: (22)

The fields radiated by the dipole are modified in the presence
of the structure [40]. In particular, in the cladding,

E��r;ω� �
Z

idκ
2πw1

e1�κ;ω�eiν1�:r; (23)

where ν1� is the wave vector and, in general,

d
z=D

z=0

n1

nN

x

z

y

P

Fig. 1. (Color online) Sketch of the pump and detection configura-
tion under consideration in the case of spontaneous Raman scatter-
ing, θP is the incident angle of the pump in the substrate.
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νi� ≡ κ�wiẑ; (24)

with

κ � κxx̂� κyŷ; (25)

where κx and κy are real, and

wi �
������������������������
�ni ~ω�2 − κ2

q
; (26)

with the square root convention that Im
���
z

p
≥ 0, and if

Im
���
z

p � 0, then Re
���
z

p
≥ 0. The subscript i refers to the med-

ium in which the quantities are calculated, where 1 and N
indicate cladding and substrate, respectively, and �∕ − corre-
sponds to upward/downward propagating fields. Finally,

e1�κ;ω� �
~ω2

4πϵ0
�ŝγs1�κ;ω� � p̂1�γp1�κ;ω�� · μ��ω�; (27)

with

γs1�κ;ω� � �e−iw1d � eiw1dRs
1N�ŝ;

γp1�κ;ω� � �e−iw1dp̂1� � eiw1dRp
1N p̂1−�; (28)

where the unit polarization vectors of the radiated field in
medium 1, ŝ and p̂1� are defined according to

ŝ � κ̂ × ẑ; p̂i� � κẑ∓wiκ̂
νi

; (29)

and Rs
1N and Rp

1N are the Fresnel reflection coefficients (from
the cladding to the substrate) for s and p polarizations, respec-
tively, with νi ≡

�������������
ν�i · νi

p
. As we are interested in the far-field

radiation, we consider the asymptotic limit r → ∞ for a fixed r̂.
We expect the far-field radiation to be dominated by the con-
tribution associated with the wave vector that is exactly in the
direction of r̂. This is indeed the case [40], and the field
[Eq. (23)] in the cladding, far from the dipole source, is given
by

E��r;ω�∼ ~ω2

4πϵ0
�¯̂sγs1�κ̄;ω� � ¯̂p1�γp1�κ̄;ω�� · μ��ω�

ei ~ωn1r

r
;

(30)

and

H��r;ω�∼ n1c ~ω2

4π
�¯̂sγp1�κ̄;ω� − ¯̂p1�γs1�κ̄;ω�� · μ��ω�

ei ~ωn1r

r
;

(31)

where κ̄ � ~ωn1�x̂ x̂�ŷ ŷ� · r̂, and the bars on each quantity in-
dicate its evaluation at κ̄. By inserting Eqs. (30) and (31) into
Eq. (10), we obtain the Stokes radiation per time per unit area
in the cladding at r:

hSS�r�i �
~ω4
Sn1�ωS�c
32π2ϵ0

�α1ℓS�2
r̂
r2

Γclad�r̂;ωS� : �E�
LEL�; (32)

with

Γclad�r̂;ωS� � γ�s1�κ̄;ωS�γs1�κ̄;ωS� � γ�p1�κ̄;ωS�γp1�κ̄;ωS�: (33)

We can now relate hSS�r�i to the field incident from the
substrate. We take that field to be

Einc�r; t� � Eeiκ
P ·Reiw

P
Nze−iωPt � c:c; (34)

within our time window T [Eq. (21)], where R � �x; y�; the
superscript P on a quantity indicates evaluation for the pump
beam. Here E � Eêinc � �FsŝP � Fpp̂PN��E, where Fs and Fp

indicate the s- and p-polarized components of the incident
beam, jFsj2 � jFpj2 � 1. Then the field at the position of
the molecule is specified by

EL � eL�κP;ωP�EeiκP ·R0 ; (35)

with

eL�κP;ωP� � �Ts
N1�κP;ωP�FsŝP � Tp

N1�κP;ωP�Fpp̂P1��eiw
P
1 d;

(36)

where Ts
N1 and Tp

N1 are the Fresnel transmission coefficients
for s and p polarizations, respectively. From Eqs. (35) and (32)
we obtain

hSS�r�i �
~ω4
Sn1�ωS�cjEj2
32π2ϵ0

�α1ℓS�2
r̂

r2
Γclad�r̂;ωS� : �e�LeL�: (37)

Analogous to Eq. (17), we can define the Stokes cross section
for the molecules on planar structures as

σS�r̂� �
hSS�r�i · r̂r2

SP
; (38)

where

SP � 2nN �ωP�
cμ0

�E� · E�: (39)

Thus, the differential Stokes cross section for the radiation
into the cladding becomes

σS�r̂� �
~ω4
Sn1�ωS�
4nN �ωP�

�
α1ℓS
4πϵ0

�
2
Γclad�r̂;ωS� : �e�LeL�: (40)

It is convenient to introduce a normalized differential cross
section, σ̄S�r̂�, by dividing σS�r̂� by the total cross section
calculated assuming the molecule is embedded in a uniform
medium of index n1�ω�:

σ̄S�r̂� �
σS�r̂�
σoS

� 3n1�ωP�
8πnN�ωP�

Γclad�r̂;ωS� : �e�LeL�: (41)

From Eqs. (33), (36), and (41) we have

σ̄S�r̂� �
3
8π

n1�ωP�
nN �ωP�

�jγs1�κ̄;ωS�:eLj2 � jγp1�κ̄;ωS�:eLj2�: (42)

For an arbitrary κ̄, we take ϕ to be the angle κ̄ makes with
κ̂P , such that
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¯̂s � ŝP cos ϕ� κ̂P sin ϕ; ¯̂κ � −ŝP sin ϕ� κ̂P cos ϕ:

(43)

Then the normalized differential cross section [Eq. (41)],
which contains several inner products, will be a function of
ϕ and θ, where θ is the angle between r̂ and ẑ (see Fig. 1).
In a typical experimental setup, a detector will average only
over a small range of θ and ϕ. In planar structures, the depen-
dence on ϕ arises largely from the nature of the Raman tensor.
We have taken a simple model of an isotropic Raman polariz-
ability; the resulting ϕ dependence of the Raman signal will
thus be weak and unrealistically small because of the choice
of our simple model, chosen to focus on the effect of the re-
sonances of a planar structure, which have their main depen-
dence on θ. To concentrate on this latter dependence in a
simple way, we focus on the integral of the differential cross
section over ϕ:

σ̄clad�θ� �
Z

2π

0
σ̄S�r̂�dϕ; (44)

which gives

σ̄clad�θ� �
3
8
nP
1

nP
N

����1� e2iw1dRs
1N �TsP

N1Fse
i�wP

1−w1�d
��2

�
�����1� e2iw1dRs

1N�
wP

1

~ωPnP
1

TpP
N1Fpei�w

P
1−w1�d

����2

� 2

���� κ

~ωn1
�1� e2iw1dRp

1N �
κP

~ωPnP
1

TpP
N1Fpei�w

P
1 −w1�d

����2

�
���� w1

~ωn1
�1 − e2iw1dRp

1N�
wP

1

~ωPnP
1

TpP
N1Fpei�w

P
1−w1�d

����2

�
���� w1

~ωn1
�1 − e2iw1dRp

1N�TsP
N1Fsei�w

P
1 −w1�d

����2
�
: (45)

Other than the quantities evaluated at κP and ωP , as indicated
by the superscript P, all quantities are evaluated at κ̄ and ωS .
Equation (45) describes the azimuthally integrated differential
Stokes cross section for radiation into the cladding in terms of
the Fresnel coefficients of the structure, which can be numeri-
cally calculated using the transfer matrix method [41]. The re-
sult is a sum of several terms, which depend on the fraction of
the incident intensity that is transmitted through the structure
multiplied by that fraction scattered into the cladding, which
includes the direct scattered amplitude as well as the reflected
scattered amplitude from the structure. The total normalized
Stokes cross section for the radiation into the cladding is
found by integrating σ̄clad�θ� over the angle θ:

σ̄totclad �
Z

π∕ 2

0
σ̄clad�θ� sin�θ�dθ: (46)

The Stokes cross section for the radiation into the substrate
can be found following the same approach. Analogous to
Eqs. (30) and (31), the radiated electromagnetic fields into
the substrate are [40]

E��r;ω�∼ ~ω2

4πϵ0
�¯̂sγsN �κ̄;ω� � ¯̂pN−γpN �κ̄;ω�� · μ��ω�

ei ~ωnNr

r
;

(47)

H��r;ω�∼ nNc ~ω2

4π
�¯̂sγpN �κ̄;ω� − ¯̂pN−γsN�κ̄;ω�� · μ��ω�

ei ~ωnNr

r
;

(48)

with

γsN �κ̄;ω� �
�
wNTs

1Ne
iw1d

w1

�
ŝ;

γpN�κ̄;ω� �
�
wNT

p
1Ne

iw1d

w1

�
p̂1−: (49)

Here κ̄ � ~ωnN�x̂ x̂�ŷ ŷ�:r̂, and the overbars again denote eva-
luation at κ̄. Similar to the calculations for the Stokes radiation
in the cladding, we find the Stokes radiation per unit time per
unit area in the substrate to be

hSS�r�i �
~ω4
SnN �ωS�c
32π2ϵ0

�α1ℓS�2
r̂

r2
Γsub�r̂;ωS� : �e�LeL�; (50)

with

Γsub�r̂;ωS� � γ�sN �κ̄;ωS�γsN�κ̄;ωS� � γ�pN�κ̄;ωS�γpN �κ̄;ωS�:
(51)

The normalized differential cross section in the substrate is
then found to be

σ̄S�r̂� �
3n1�ωP�nN �ωS�
8πn1�ωS�nN�ωP�

Γsub�r̂;ωS� : �e�LeL�: (52)

We can then find the azimuthally integrated differential cross
section for the radiation into the substrate:

σ̄sub�θ� �
3
8
nP
1nN

n1nP
N

�����wNTs
1N

w1
TsP
N1Fse

i�wP
1�w1�d

����2

�
����wNTs

1N

w1

wP
1

~ωPnP
1

TpP
N1Fpe

i�wP
1�w1�d

����2

� 2

����wNκT
p
1N

w1 ~ωn1

κP

~ωPnP
1

TpP
N1Fpe

i�wP
1�w1�d
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; (53)

where Ts
1N and Tp

1N are the Fresnel transmission coefficients
from the cladding to the substrate. As it is expected, Eq. (53)
shows that the cross section in the substrate depends on the
fraction of the incident intensity transmitted through the
structure from substrate to the cladding, multiplied by that
fraction scattered through the structure from cladding to
the substrate. The total Stokes cross section for radiation into
the substrate is then

σ̄totsub �
Z

π

π∕ 2
σ̄sub�θ� sin�θ�dθ; (54)

analogous to Eq. (46).
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We are interested in structures that have poles in their
Fresnel coefficients. For example, if the structure has a
resonance at the Stokes frequency for s polarization, the trans-
mission coefficient Ts

1N will have a pole at a complex wave-
number κSres:

Ts
1N ∼

τS1N
κ − κSres

; (55)

for κ close to κSR ≡ Re�κSres�, where κSres � κSR � iκSI , and τS1N is
also in general a complex number. Thus (53) simplifies to

σ̄sub�θ�∼
3
8
nP
1nN

n1nP
N

����wN

w1
TsP
N1e

i�wP
1�w1�d

����2 × jτS1N j2
�κ − κSR�2 � �κSI �2

;

(56)

near the resonance. To calculate the contribution of the pole
to σ̄totsub, we evaluate the slowly varying terms in Eq. (56) at
θR � sin−1� κSR

~ωnN
�, where the Lorentzian is centered, and inte-

grate over the Lorentzian. The resonance contribution to
the total Stokes cross section in the substrate becomes

σ̄polesub ≃
j tan θRj
2nN

λκSI σ̄
pole
max; (57)

where λ is the vacuum wavelength of the Stokes field and σ̄polemax

comes from evaluating Eq. (56) at θR. Equations (56) and (57)
show that the resonance contribution σ̄polesub scales with the in-
verse of κSI and, thus, is maximized by maximizing the propa-
gation length (�κSI �−1) of the excitation signaled by the
resonance [Eq. (55)]. We will see examples of this below.

3. SERS IN MULTILAYERED STRUCTURES
The approach presented in the previous section can be used to
describe Raman scattering in an arbitrary planar structure.
Here we are interested in the enhancement of the Raman scat-
tering due to the resonant coupling of both pump and Stokes
radiations into the guided modes of layered structures. In par-
ticular, we consider three types of guided modes: a BSW sup-
ported by a periodic multilayer, a WG mode supported by a
slab WG, and an SP supported by a metal/dielectric interface.
While our focus here is on dielectric structures, and it is well
known that the Raman scattering from molecules at a smooth
metal surface can be significantly enhanced by introducing
roughness, we include the planar SP structure because such
structures are of interest in sensing applications [2], and from
the fundamental optics point of view.

We present example calculations for pumps at 532 and
1064 nm, and consider a Raman shift of 3000 cm−1 [42].
For the metal we choose gold. For the dielectric materials,
we choose SiO2 and Ta2O5. Commonly used in Raman filters,
these dielectrics exhibit only a weak photoluminescence
when pumped in the energy ranges of interest. We first con-
sider semi-infinite versions of these structures, shown in Fig. 2,
taking the cladding in all structures to be air.

The multilayer structure shown in Fig. 2(a) is a truncated
1D photonic crystal, with a unit cell composed of two layers of
thicknesses dSiO2

� 153 nm and dTa2O5
� 87 nm, and two ad-

ditional top layers of thicknesses dtopTa2O5
� 10 nm and

dtopSiO2
� 10 nm. It supports an s-polarized BSW over a wide

range of wavelengths that includes λ � 532 nm; the BSW

dispersion relation and the band regions are shown in the fig-
ure, where the dependence of the refractive indices on the
photon energy is taken into account [43]. While the position
of the photonic bandgap is determined by the choice of the
unit cell, the dispersion relation of the BSW depends mainly
on the truncation of the photonic crystal, and it is very sensi-
tive to the thickness of the two layers closest to the cladding.
As expected, the BSW is found within the bandgap region and
below the cladding (air) light line. Indeed, the mode is con-
fined at the multilayer side by the photonic bandgap and at
the cladding side by total internal reflection. We also consider
a second structure, with a unit cell composed of two layers of
thicknesses dSiO2

� 401 nm and dTa2O5
� 223 nm, and two top

layers of dtopTa2O5
� 65 nm and dtopSiO2

� 10 nm; it supports an s-
polarized BSW over a wide range of wavelengths that in-
cludes λ � 1064 nm.

The slab WG structures consist of SiO2 covered with a sin-
gle layer of Ta2O5; we choose a thickness of 100 nm for Ta2O5

for a pump at λ � 532 nm, and 200 nm for a pump at
λ � 1064 nm. WGs are confined by total internal reflection
from the cladding as well as from the underlying SiO2; in
Fig. 2(b) we show the dispersion relation of the s-polarized
fundamental WG mode for the first of these two structures.
As expected, it lies below the light lines of air and SiO2.

The third system under investigation supports SPs that
exist at a metal/dielectric interface. In this case, the SP

Fig. 2. (Color online) (a) BSW dispersion curve and cladding light
line (LL) . (b) WG dispersion curve, cladding light line, and substrate
light line. (c) SP dispersion curve and cladding light line.
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dispersion relation is for the gold/air interface, and is shown in
Fig. 2(c), where we have used Johnson and Christy’s gold
dielectric function [44], and plotted the real part of the SP

wavenumber κ � ~ω
���������������������������
ϵm ∕ �ϵm � 1�

p
, where ϵm is the dielectric

constant of the metal [2]. Here the confinement is due to total
internal reflection from the cladding and the evanescent be-
havior in the metal resulting from the negative real part of
the dielectric function.

It is worth noticing that BSW and WG dispersion relations
can be adjusted on demand, by modifying the geometrical
parameters of the structures. In contrast, the SP dispersion
relation of the simple structure we have considered here is
essentially determined by the dielectric function of the chosen
materials.

A. Pump Intensity Enhancement
We now turn to the finite versions of these structures, which
can be employed in sensing devices based on the Kretsch-
mann geometry [26], as shown in Fig. 3. The prism material
is chosen so that its light line lies to the right of the dispersion
relation of the guided mode of interest. Thus the truly guided
modes of the corresponding infinite systems become leaky,
allowing coupling of pump radiation into and out of the modes
through the prism.

From Eqs. (35) and (36) we see that, for a molecule at a
distance d above a multilayer, the pump field amplitude de-
pends on the s- and/or p-polarized Fresnel coefficients TN1.
In particular, when the structure supports a guided mode,
such a transmission coefficient has a pole in the complex
plane and an enhancement jEL ∕ Ej2 occurs as light incident
from the prism is coupled into the mode through the prism.
In Fig. 4 we plot this pump enhancement factor associated
with the modes under investigation as a function of the detun-
ing of the pump incident angle, θP , from θ0, which is the cou-
pling angle that corresponds to the maximum enhancement,
and it is different in the three cases. Here we take d � 1 nm, a
BK7 prism with index nprism � 1.5 for the BSW and SP struc-
tures, and a gadolinium gallium garnet prism with n � 1.98 for
the WG structures; note that the BK7 prism could not be used
for the latter, since the effective indices of the guided modes
are greater than 1.5. As a reference, we also indicate the pump
enhancement factor in the cladding at d � 1 nm above a bare
prism [Fig. 3(d)], where there is no mode. In all but the SP
structure we consider s-polarized light.

The pump enhancement factor increases as the mode
losses decrease. For the dielectric structures [Figs. 3(a)

and 3(b)], where there is no absorption, and scattering losses
due to fabrication imperfections are neglected, it diverges as
the number of periods (thickness of the buffer layer) of the
BSW structure (WG structure) increases, and the angular
width of the peak tends to zero. In plotting Fig. 4 we have cho-
sen 5(3) periods for the multilayer designed for 532 nm
(1064 nm), and a buffer thickness of 340 nm (640 nm) for
theWG designed for 532 nm (1064 nm). These parameters give
Δκres ≃ 20�Δκ2 mm�, whereΔκres is the width of the resonance
at the pump frequency, and Δκ2 mm is the spread in κ corre-
sponding to an incident beam of width 2 mm; we confirm
in Section 4 that the plane wave analysis we are pursuing here
will be accurate for such a beam. For the SP structure we have
chosen a metal thickness of 50 nm to maximize the pump en-
hancement factor at θ0. The resonance is broader, and its
width is determined both by absorption losses and coupling
losses into the prism with the two contributions roughly equal.
The SP structure shows a particularly poor enhancement at
λ � 532 nm, due to large losses in the metal. These are re-
duced by working at longer wavelengths, but even at λ �
1064 nm the enhancement for the SP structure is smaller than
that shown by the dielectric structures.

B. Stokes Radiation
As discussed in Section 2, the Raman scattering process can
be treated as a two-step process: (i) the pump field at the po-
sition of the molecule induces a dipole moment proportional
to the amplitude of the local field, and (ii) the Stokes field is
radiated by the induced dipole. In the previous section, we
showed that the incident field at the position of the molecule
can be enhanced when a leaky mode is excited through the
prism, and the appropriate TN1 at the pump frequency be-
comes large. To optimize the Raman signal, for each structure
we choose a fixed incident angle at which the pump enhance-
ment factor jEL ∕ Ej2 is maximized; here the induced dipole os-
cillates at its largest amplitude, and the dipole radiates

(a) (b)

(c) (d)

Fig. 3. (Color online) Structures: (a) multilayer structure with BSWs;
(b) WG structure; (c) metallic structure with SPmodes; (d) bare prism
of the reference.
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everywhere into the cladding and substrate. From Eq. (53) we
see that the Stokes radiation in particular directions in the
substrate can be further enhanced if T1N is large at the Stokes
frequency, for example, in the presence of a leaky mode at
that frequency; in this case, the Stokes radiation can reso-
nantly couple through that mode before exiting through the
prism. This kind of double enhancement has been studied
in Brillouin scattering from metallic structures, where the
Stokes shift is small [45]. The structures we have designed,
and the choice of the proper prism, allow this “double reso-
nance” condition for Stokes shifts up to 3000 cm−1. In con-
trast, since there is no channel for the coupling of light
from the modes into the cladding, there is no additional en-
hancement in Stokes or anti-Stokes radiation in that direction.

Calculations for the azimuthally integrated differential
cross section for Stokes radiation into the substrate are shown
in Fig. 5; note the logarithmic scale. For each structure there is
a strong peak, corresponding to the coupling of the Stokes
field to leaky modes. In addition, for the WG and BSW struc-
tures, other small peaks appear. These correspond to Fabry–
Perot interferences, typical of a multilayered structure. The
strong suppression of the Stokes signal around the BSW peak
is due to the photonic bandgap, which attenuates the trans-
mission of the Stokes radiation through the multilayer. The
calculations show a maximum enhancement of about 6 and
5 orders of magnitude for the BSW and WG structures at
532 nm [Fig. 5(a)], and more than 4 orders of magnitude
for the SP structures at 1064 nm [Fig. 5(b)].

It is interesting to consider σ̄totsub [see Eq. (54)], the total nor-
malized cross section for Raman radiation in the substrate. In
a scenario where additional optical elements are used to col-
lect the scattered light over a wide range of angles in the sub-
strate, this would be the relevant parameter to characterize
the overall enhancement of the collected Raman scattered
light. In Fig. 6 we plot σ̄totsub as a function of the distance d
of the molecule from the surface of the structure; σ̄totsub

decreases as d increases, since at the significant κ all the fields
in the cladding are evanescent. Note that the curves of the SP
and bare prism structure are multiplied by 20. We can also find
the contribution of the resonance coupling of the Stokes field
to the total normalized Stokes cross section for scattering into
the substrate using Eq. (57). While σ̄polesub ∕ σ̄

tot
sub is only about 25%

for the WG structures and about 60% for the BSW structures, it
approaches 100% for the SP structures. Unlike the dielectric
structures, in the metallic structures, radiation can propagate
into the substrate only through the excitation of the SP, since
the metal/air interface reflectivity is very high.

The total normalized Raman cross section in the substrate
and cladding add up to a value that is within a factor of 2 of the
pump enhancement factor. Roughly speaking, this indicates
that, although resonance coupling of the Stokes field results
in large Stokes cross section in specific directions, the total
Stokes cross section benefits only from the pump field reso-
nance coupling, and light is redistributed only in space due to
the Stokes resonance coupling. In the dielectric structures,
only about 10% of the Stokes light is radiated into the cladding,
because the coupling into the substrate through the dielectric
structure is so effective. In the metallic structures, as dis-
cussed above, the Stokes radiation can reach the substrate
only via coupling through the SP, and the rest of the radiation
is necessarily reflected up into the cladding. Hence, in these
structures, the Stokes radiation into the cladding is typically of
the same order, or larger than, that reaching the substrate.

4. FINITE BEAM CORRECTIONS
In Subsection 2.B, we assumed the incident beam to be a plane
wave [Eq. (34)] within our time window T . Taking κP to lie in
the x direction and choosing a new set of directions identified
by �x0y0z0�, where z0 indicates the direction in which the plane
wave is propagating,
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Fig. 5. (Color online) Differential cross sections normalized to the
total cross section in free space (n1 � 1) for the scattered field in
the substrate: (a) λ � 532 nm; (b) λ � 1064 nm for multilayer, WG,
SP, and bare prism structures.
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8<
:
x0 � −z sin θP � x cos θP;
y0 � y;
z0 � z cos θP � x sin θP;

�58�

(see Fig. 7), the field [Eq. (34)] can be written as
Einc�x0; y0; z0� exp�−iωPt� � c:c:, where Einc�x0; y0; z0� �
ŝPEinc�x0; y0; z0� if the incident plane wave is s polarized and
Einc�x0; y0; z0� � p̂PN�Einc�x0; y0; z0� if it is p polarized, with

Einc�x0; y0; z0� � Eeiν
P
Nz

0
(59)

actually depending only on z0 and νPN � ~ωPnN . In a more rea-
listic treatment, we should consider a finite incident beam,
which is a superposition of many plane waves with slightly
different propagation directions and, therefore, slightly differ-
ent wave vectors; this is particularly important for our dielec-
tric structures, as they support very narrow resonant modes
and, thus, coupling is possible in a very small angular range.

For the finite incident beam we use θP to indicate only the
angle of incidence of the central wave vector in the superpo-
sition, which we now take to define the z0 direction. Indeed, in
moving from the field of an incident plane wave to the field of
an incident finite beam resulting from such a superposition,
Eq. (59) is replaced by an expression for the incident field that
will depend on x0 and y0, as well as z0. We neglect the small
differences between the polarization vectors of each compo-
nent in the superposition, which we take to yield a finite beam
that is approximately linearly polarized, and assume that the
polarization direction of the full field can be approximated by
either ŝP or p̂PN� for the central component. For simplicity, we
take the amplitude Einc�x0; y0; z0� of the incident finite beam to
be a Gaussian, given by

Einc�x0; y0; z0� � Eeiν
P
Nz

0
e−

�x02�y02�
2Δ2 ; (60)

where Δ determines the width of the beam; this replaces the
plane wave limit [Eq. (59)], and we have

Z
jEinc�x0; y0; z0�j2dx0dy0 � jEj2A; (61)

where A � πΔ2 is the effective area of the beam.
Using our original coordinate system, taking

Einc�x; y; z� � Einc�x0; y0; z0�, we can write Eq. (60) as

Einc�x; y; 0� � eiν
P
Nx sin θPEf inc�x; y� (62)

along the plane z � 0, where

f inc�x; y� � e−
x2 cos2 θP

2Δ2 e−
y2

2Δ2 : (63)

The pump field driving the molecules is the field that results at
z � D� d, but we first determine the field at z � D�, which
we denote by Eclad�x; y; D�; as for Einc�x; y; 0�, we approxi-
mately characterize its polarization by that of the central com-
ponent, which will be either ŝP or p̂P1�, depending on whether
the field is s- or p-polarized.

For the structures we study here, where a surface excita-
tion exists in the limit of a semi-infinite structure, the Fresnel
coefficient TP

N1 at the pump frequency has a pole at a complex
wavenumber κPres:

TP
N1 ∼

τPN1

κ − κPres
; (64)

when κ is close to κPR ≡ Re�κPres�, and where τPN1 is also in gen-
eral a complex number. We write κPres � κPR � iκPI , with κPI de-
scribing the mode propagation losses due to absorption, if
there are any, and the coupling to the substrate. This coupling
will also slightly shift κPR from the value for the real part of the
surface excitation wavenumber in the limit of a semi-infinite
structure. The values of κPres and τPN1 can be extracted numeri-
cally from the full expression for TP

N1; as well, semianalytic
expressions can be constructed for them. To maximize the
field enhancement in the cladding above the structure, we as-
sume that θP is chosen such that νPN sin θP � κPR. Then the
field in the cladding just above the structure will be of the
form

Eclad�x; y; D� � eiκ
P
RxĒclad�x; y; D�;

where, within the approximation of Eq. (64), Ēclad�x; y;D�
satisfies

∂

∂x
Ēclad�x; y; D� � κPI Ēclad�x; y; D� � iτPN1Ef inc�x; y� (65)

for the incident field Einc�x; y; 0� of the form of Eq. (62) [46];
the solution of this equation can be written as

Ēclad�x; y; D� � −
τPN1

iκPI
Ef �x; y�; (66)

where

f �x; y� � κPI

Z
x

−∞

e−κ
P
I �x−x0�f inc�x0; y�dx0: (67)

In the limit of a very broad beam (κPI Δ ≫ 1), f inc�x0; y� var-
ies little over the integration range, and we can write
f inc�x0; y� ≈ f inc�x; y� � �x0 − x��∂f inc�x;y�

∂x � �… in Eq. (67), giving

f �x; y� ≈ f inc�x; y� − �κPI �−1
∂f inc�x; y�

∂x
�… ≈ f inc�x − �κPI �−1; y�:

(68)

The result is clearly more general than the particular form of
Eq. (63), and holds whenever the propagation length �κPI �−1 is

x
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Fig. 7. (Color online) Finite beam of light incident on the multilayer
structure, and its reflected beam.
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negligible compared to the beam width. Except for this small
shift, we can obtain Eqs. (66) and (68) simply by assuming
that, locally, the incident field can be treated as a plane wave,
and putting Ēclad�x; y; D� � TP

N1Ef inc�x; y� with TP
N1 given by

Eq. (64) with κ � κPR.
On the other hand, if the propagation length �κPI �−1 is much

larger than the width Δ of the incident beam (κPI Δ ≪ 1), in
the integral in Eq. (67), we can expand the exponential about
x0 � 0, exp�−κPI �x − x0�� ≈ exp�−κPI x��1� κPI x

0 �…� and we
find that �κPI �−1 sets the size of f �x; y� in the x direction: we
have f �x; y� ≈ 0 for x ≪ Δ, and, for x ≫ Δ, we find

f �x; y� →
������
2π

p
κPI Δ

cos θP
e−

y2

2Δ2e−κ
P
I x: (69)

By using this in Eq. (66) we see that, in the x direction,
Ēclad�x; y; D� extends over a range that is much larger than
the distance characterizing the intersection of the beam with
the plane z � 0.

In Figs. 8(a) and 8(c), we show the normalized intensity dis-
tribution, jEinc�x; y; 0�∕ Ej2, of an incident Gaussian beam char-
acterized by FWHM of 2 mm and 50 μm, respectively. The light
is incident from the substrate at an angle θP � 50.57° such that
νPN sin θP � κPR for the BSW structure designed for use at
λ � 532 nm; in Figs. 8(b) and 8(d), we show the correspond-
ing normalized intensity distribution just above the structure
in the cladding, jEclad�x; y; D�∕ Ej2. For the 2 mm beam, the
shape of the beam is not much distorted, suffering mainly a
shift as discussed above. For this structure κPI ∼ 6 mm−1,
and the full range of wave vectors in the incident beam, char-
acterized by Δκ ≈ �1∕ 2 mm� � 0.5 mm−1, can couple into the
BSW resonance; the field at the interface of the multilayer
and the cladding is greatly enhanced. On the other hand, the
50 μm beam has a wider range of wavenumbers
Δκ ≈ �1∕ 50 μm� � 20 mm−1, and not all can couple into the
BSW resonance. The distance over x that jf �x; y�j2 is substan-
tial is now limited not by the width of the incident beam, but
by the propagation length �κPI �−1 ≫ Δ, as indicated by
Eq. (69), and the enhancement is smaller.

As the field at the interface of the cladding and multilayer is
modified compared to the limit of plane wave excitation, so
will the prediction of the Raman signal change. For a molecule

at position r0 � �d� D�ẑ� R0, we can immediately calculate
this, since the total Stokes Raman light scattered by a mole-
cule into the substrate depends on the pump field at the posi-
tion of the molecule. Considering a finite incident beam, the
Stokes radiation per unit time per unit area in the substrate is

hSS�r�i �
~ω4
SnN �ωS�c
32π2ϵ0

�α1ℓS�2
r̂
r2

Γsub�r̂;ωS�

: �e0�L�x0; y0�e0L�x0; y0��; (70)

[replacing Eq. (50)], where

e0L�x0; y0� � f �x0; y0�eL: (71)

We neglect the small differences in the wave vector compo-
nents of the incident beam and evaluate eL (36) at κP � κPR.
For an ensemble of N molecules, uniformly distributed with
an areal density ρ in a plane at z � d� D, the total Stokes
radiation, hSallS �r�i, is the sum of the radiation from all the in-
dividual molecules, since the spontaneous Raman scattering
is an incoherent process. For a large number of molecules, we
can convert the sum into an integral:

hSallS �r�i � ρ
~ω4
SnN �ωS�c
32π2ϵ0

�α1ℓS�2
r̂

r2
Γsub�r̂;ωS�

: �e�LeL� ×
Z

jf �x0; y0�j2dx0dy0: (72)

To characterize the signal, we consider the ratio of the total
power of the Stokes Raman light radiated into the substrate,

PS �
Z
hSallS �r�i · r̂r2dΩ; (73)

to the incident pump power Ppump � SpA, normalized to the
Raman cross section in free space. This ratio can be written as

1
σoS

PS

Ppump
� ρσ̄totsub

R jf �x; y�j2dxdy
A

; (74)

with σ̄totsub given by Eq. (54). In the limit of a very broad beam
(κPI Δ ≫ 1),

1
σoS

PS

Ppump
→

ρσ̄totsub

cos θP
;

and becomes constant and independent of the beam size. On
the other hand, for a very small spot size (κPI Δ ≪ 1),

1
σoS

PS

Ppump
→

���
π

p
ρσ̄totsub

cos2 θP
κIPΔ;

exhibiting a linear dependence on the beam size, with a slope
inversely proportional to the propagation length.

In Fig. 9, we have plotted the quantity in Eq. (74) (divided
by ρ) for the bare prism, SP, WG, and BSW structures at 532
and 1064 nm (multiplied by 40 for the prism and SP structure)
as the spot size varies. The bare prism does not have a reso-
nant mode, and we cannot use the above pole expansion cal-
culation. In this case, the beam undergoes a Goos–Hanchen
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shift, which is very small compared to the size of the beam.
The other three structures support resonant modes and, there-
fore, we can use the pole analysis. For small spot sizes, as
mentioned earlier, the coupling of the incident beam to the
resonance mode is poor and, therefore, molecules on the sur-
face feel a smaller field. In addition, a small spot size can il-
luminate only a small surface area of the structure and,
therefore, the field scatters off only a small number of mole-
cules, making the scattering signal small. On the contrary, as
the spot size increases, both the number of illuminated mole-
cules and the pump field coupling efficiency are larger, and
therefore the Raman signal increases.

At 532 nm, the WG structure seems to enhance the Raman
signal even more than the BSW structure. The reason is that,
while the values of σ̄totsub for the WG and BSW structures are
very close (see Fig. 6), the integral in Eq. (74) depends on
1∕ cos θP . The resonance angle of the WG structure is smaller
than the one of the BSW structure, such that 1∕ cos θP , when
multiplied by σ̄totsub, becomes larger for the WG structure. At
1064 nm, σ̄totsub of the WG structure is about half of the one
of the BSW structure and, thus, it cannot be compensated
by the slightly smaller resonance angle of the WG structure.

5. CONCLUSION
We have presented a systematic study of spontaneous Raman
scattering for molecules on an arbitrary planar structure. The
Raman cross sections for scattering into the cladding and sub-
strate are expressed in terms of the Fresnel coefficients of the
structure. This is particularly useful in studying Raman scat-
tering in structures supporting guided modes, where the
modes are signaled by poles in the Fresnel coefficients,
and analytic expressions for the radiation through the guided
modes to the substrate can be derived.

In comparing the Raman scattering of molecules on a pla-
nar structure supporting a guided mode to those in free space,
we find that, in general, there is a twofold enhancement, with
the Stokes cross section proportional to both pump and
Stokes intensity enhancements. As long as there is a guided
mode at the Stokes frequency, the differential cross section
for scattering into the substrate exhibits a Lorentzian peak
around a resonance polar angle, with an angular width de-
pending on the propagation losses in the structure. For sim-
plicity, we have assumed that the Raman polarizability tensor
is isotropic; therefore, the dependence on the azimuthal angle
is weak, and the Stokes intensity is peaked at the cross section
of a cone defined by the Stokes resonance angle.

We have numerically calculated the differential Raman–
Stokes cross sections for a set of multilayer structures, some
supporting SPs, some WG modes, and some BSWs, with
guided modes present in all cases at both pump and Stokes
frequencies. For the SP structures, essentially all of the light
radiated into the substrate is coupled through the SP reso-
nance, where a maximum enhancement of more than 104

was found for excitation at 1064 nm. For the dielectric struc-
tures there is nonnegligible radiation into the substrate out-
side the resonance cone of the guided modes, but even so
a maximum enhancement of about 106 was found for excita-
tion of a BSW structure at 532 nm. The Stokes cross section,
integrated over all angles, however, is enhanced by a smaller
factor, up to 10 for the SP structures and up to 103 for the BSW
structures. This is a result of the enhancement of the pump
field, with the excitation of the guided modes at the Stokes
frequency leading mainly to a redistribution in angle of the
radiated power.

We have also confirmed that these results, initially derived
from a plane wave analysis, survive the extension of the the-
ory to treat the more realistic scenario of excitation by a finite
pump beam, as long as that beam is of the order of millimeters
in diameter. For smaller beam sizes, the coupling of the inci-
dent field to the guided mode is decreased, as is the number of
molecules illuminated by the incident beam and, therefore,
the power of the Stokes radiation is decreased.

The enhancements that we predict for the dielectric struc-
tures are still less than those reported in traditional SERS sub-
strates of rough metal surfaces, or metal surfaces decorated
with metallic nanoparticles. However, the dielectric struc-
tures do not suffer from absorption losses, and they offer the
possibility of decoration with metallic nanoparticles to
achieve larger cross sections despite the induced losses. The
BSW structures also offer more freedom for design, and the
possibility of tailoring the dispersion relation. The latter would
be extremely important in an extension to treat coherent anti-
Stokes Raman scattering, which would benefit from phase
matching; we plan to turn to this in a future publication.
Further, the confinement of BSWs into 1D channels is possi-
ble, when additional guiding structures are fabricated on a
BSW structure [47,48]. This would lead to possibilities for
multiplexed sensors, above and beyond the multiplexing that
may be possible with the use of the Kretschmann configura-
tion considered here.
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