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We present equations for the power generated via spontaneous (quantum) and stimulated (classical) nonlinear
optical processes in integrated devices. Equations for the same structure and same order process are derived from
the same Hamiltonian, allowing for direct and easy comparison including the ability to estimate the efficiency of a
quantum process based solely on experimental data from a classical process in the same device. We show that, in
the CW limit and under the undepleted pump approximation, the average energy of a generated photon divided by
a characteristic time plays the role of the classical “seed” signal in a quantum process, and that extending the
length of a structure or taking advantage of a resonant cavity does not enhance spontaneous processes the same
way as stimulated processes. © 2012 Optical Society of America

OCIS codes: 190.4380, 190.4390, 190.4410, 270.0270.

1. INTRODUCTION
The field of nonlinear optics, first explored more than 50 years
ago [1], continues today to see improvements in conversion
efficiency and reductions in system size driven by a steady
progression from bulk-crystal optics to integrated wave-
guides. Although integrated devices can require more sophis-
ticated fabrication techniques, they allow for tighter modal
confinement and better modal overlap than bulk crystals,
leading to higher conversion and collection efficiencies, not
to mention better scalability and integration with existing in-
frastructure. While often designed with the enhancement of a
classical nonlinear optical process in mind, these integrated
devices will also enhance the corresponding quantum non-
linear optical process. Thus many structures exist today that
could potentially be used for the generation of quantum
correlated photon pairs (see, e.g., [2]).

But just how efficient will this photon pair generation be?
Do enhancements to the performance of devices in classical
experiments scale the same way as in photon pair generation
experiments? How does one estimate the efficiency of photon
pair generation in a specific device given the results of a clas-
sical experiment? Here we aim at answering these questions
utilizing a general Hamiltonian formalism that places quantum
wave mixing processes, such as spontaneous parametric
downconversion (SPDC) or spontaneous four-wave mixing
(SFWM), and classical wave mixing processes, such as differ-
ence frequency generation (DFG) or classical four-wave mix-
ing (FWM), on equal theoretical footing. This approach makes
it easy to compare how each process scales, and identify
terms common to quantum and classical processes. The form-
alism can be applied to integrated nonlinear structures, such
as channel waveguides or microring resonators side-coupled
to channel waveguides, when either a second- or third-order
nonlinearity is dominant, and takes into account both material
and modal dispersion. While losses, quantum fluctuations in

stimulated experiments, generated photons seeding stimu-
lated processes in spontaneous experiments, and nonlinear
effects such as self- and cross-phase modulation can be impor-
tant in integrated devices, we focus here on developing simple
and intuitive scaling relationships, and so defer their inclusion
to later publications. In what follows, we neglect all forms of
loss as well as all nonlinear effects other than the process at
hand, and present results only strictly valid in the undepleted
pump approximation.

Note that when we write corresponding processes, we do
not mean reverse processes. For example, SPDC is a quantum
χ2 process in which a pump photon at ωP is converted into a
photon at each ωS and ωI , with ωP � ωS � ωI (see Fig. 1). The
reverse process is second harmonic generation (SHG), in
which two pump photons at ωF are converted into a photon
at ωSH with 2ωF � ωSH or, more properly, sum frequency gen-
eration (SFG), in which pump photons at each ωS and ωI are
converted into a photon at ωP . And so it might seem natural to
seek a correspondence between the efficiencies of SPDC and
SFG. Yet, while it is true that knowledge of the efficiency of
either SHG or SFG in a given device—or indeed that of any
second-order nonlinear optical process—will allow one to in-
fer something about the efficiency of SPDC in the same de-
vice, we find it most convenient to compare quantum and
classical processes each pumped at the same frequency.
Therefore we refer to DFG, in which a pump photon at ωP as
well as a seed photon at ωS create a photon at ωI , as the clas-
sical χ2 process corresponding to SPDC (see Fig. 2). Similarly
the classical χ3 process corresponding to SFWM, where two
pump photons at ωP are converted into a photon at each ωS

and ωI , with 2ωP � ωS � ωI (see Fig. 1), is FWM, where two
pump photons at ωP as well as a seed photon at ωS lead to a
photon at ωI . The χ3 process that is the reverse of SFWM is
dual-pump SFWM, in which photons at each ωS and ωI are
converted into two photons at ωP . Classical processes
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corresponding to our spontaneous quantum processes of in-
terest are thus their stimulated counterparts.

The remainder of the paper is organized as follows. In
Section 2, we present and compare formulae derived for cor-
responding quantum and classical efficiencies for both χ2 and
χ3 processes in channel waveguides. In Section 3, we do the
same for a resonant structure, choosing a microring resonator
side-coupled to a single channel waveguide as an example.
Despite the fact that the physics of corresponding sponta-
neous and stimulated processes is most easily related, it is
also generally true that it is experimentally easier to determine
the efficiency of SHG than that of DFG. So as an aid in esti-
mating the effectiveness of optical devices as SPDC sources
based on the results of classical experiments, we also present
a short discussion of SHG efficiency within our general frame-
work. In Section IV, we conclude. The details of the quantum
and classical calculations for a χ3 process in a channel
waveguide are presented in Appendices A and B, respectively,
to serve as an example and model of the form of our
calculations.

2. NONRESONANT CASE
Here we consider spontaneous processes and their corre-
sponding stimulated processes in a device such as a channel
waveguide [3–5], nonlinear fiber [6,7], or Bragg reflection wa-
veguide [8], where propagation can be treated as effectively
one-dimensional. We first consider χ2 processes.

A. Second-Order Processes
SPDC in such a structure was considered in an earlier work,
and so in this section we only summarize results, directing
the reader to [9] for details. As in that work, we take our
Hamiltonian to be

H � HL �HNL; (1)

HL �
Z

dkℏωFka
†
FkaFk �

Z
dkℏωSHka

†
SHkaSHk; (2)

HNL � −

Z
dk1dk2dkS�k1; k2; k�a†Fk1a

†
Fk2

aSHk � H:c:; (3)

where the ωmk are eigenfrequencies of the photon modes (e.g.,
lowest-order TE-like mode) labeled bym � F�SH� for the fun-
damental (second harmonic) frequency region following the
terminology of SHG (see Fig. 1), and S�k1; k2; k� is a nonlinear
coupling coefficient defined previously [9]. Note that while
here, for simplicity, we have implicitly assumed that both fun-
damental fields have the same polarization (as in a Type-I
process), generalizations are straightforward [10].

Following the approach outlined in [9], the state of SPDC
generated photons in a channel waveguide due to an exciting
pump pulse is written as the two-mode squeezed vacuum

jψgeni � exp�βC†
II − H:c:�jvaci; (4)

where jβj2 is proportional to the average number of photons in
the pump pulseN P and, switching to a description in terms of
frequency rather than wavenumber [9],

C
†
II �

1���
2

p
Z

dω1dω2ϕ�ω1;ω2�a†Fω1
a
†
Fω2

; (5)

such that C†
IIjvaci is a normalized two-photon state character-

ized by the biphoton wave function

ϕ�ω1;ω2� � iL

������������������
dkF �ω1�
dω1

s ������������������
dkF �ω2�
dω2

s � ������������������
dkSH�ω�

dω

r �
ω�ω1�ω2

×

�����������������������������
ω1ω2�χ̄2�2N P

8πε0jβj2n̄6

s ��������������������������������������������������������������������
ℏ�ω1 �ω2�

A�kF �ω1�; kF �ω2�; kSH�ω1 �ω2��

s

×ϕP�ω1 �ω2�sincf�kF �ω1�� kF �ω2�
− kSH�ω1 �ω2��L ∕ 2g: (6)

Here L is the length of the nonlinear structure, ϕP�ω� is the
pump pulse waveform, n̄ and χ̄2 are, respectively, a typical
value of refractive index and a typical value of second-order
nonlinearity introduced solely for convenience, and the km�ω�
are frequency-dependent wavenumbers defined such that the
structure is phase matched when 2kF �ωF0

� − kSH�ωSH0
� � 0.

Furthermore

A�kF �ω1�;kF �ω2�;kSH�ω1�ω2��

�
����
Z
dxdy

n̄3χijk2 �x;y��diFω1
�x;y����djFω2

�x;y���dkSH�ω1�ω2��x;y�
χ̄2ε

3 ∕ 2
0 n2�x;y;ω1�n2�x;y;ω2�n2�x;y;ω1�ω2�

����
−2

(7)

is an effective area with χijk2 �x; y� the material second-order
optical nonlinearity neglecting dispersion and magneto-optic
effects, dimω�x; y� the ith component of the displacement

Fig. 1. (Color online) Schematic of frequency spacings of second-
and third-order nonlinear optical processes.

Fig. 2. (Color online) Schematic of frequencies generated by second-
and third-order nonlinear optical processes, organized according to
spontaneous, stimulated, and reverse processes, with corresponding
processes occupying the first two columns.
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field for mode m at frequency ω, and n�x; y;ω� the material
refractive index at frequency ω, all at waveguide cross-
sectional position �x; y�, and we have chosen the mode ampli-
tudes such that we can take the phase associated with the ef-
fective area to be zero [9]. That C†

IIjvaci is normalized requires

Z
dω1dω2jϕ�ω1;ω2�j2 � 1; (8)

which in turn determines jβj. In the limit jβj ≪ 1,

jψgeni ≈ jvaci � βC†
IIjvaci; (9)

and 2jβj2 ≡N D can be thought of as the average number of
generated photons per pump pulse. Indeed this line of think-
ing holds even in the limit of a long pulse, with an intensity
spectrum that can be approximated as a Dirac delta function,
jϕP�ω1 � ω2�j2 ≈ δ�ω1 � ω2 − ωP�, in comparison to the phase-
matching sinc function of the biphoton wave function of
Eq. (6); the result for N D is then

N D � 2ℏωPN PL
2

PAT
; (10)

provided jβj ≪ 1. Note that in deriving Eq. (10), we have in-
tegrated over ω2, and taken the effective area, A, and group
velocities, v−1m � �dkm ∕ dω�ω�ωm0

, as constant over the genera-
tion bandwidth time

T � 2πR ωP ∕ 2
0 dΩ�1 − �2Ω ∕ωP�2�sinc2f�kF �ωP ∕ 2� Ω� � kF �ωP ∕ 2 − Ω� − kSH�ωP��L ∕ 2g

; (11)

where Ω � ω1 − ωP ∕ 2 represents positive detuning from ωP ∕ 2,
and P � 8ε0n̄6v2FvSH ∕ �χ̄2ωP�2 is a characteristic power for a χ2
material [11].

Yet it is also true that if we consider a constant rate of pump
photons or average pump power, PP � ℏωPN P ∕T , where T is
the time that the pump is on, N D ∕T � 2PPL

2 ∕ �PAT � can be
thought of as the average rate of generated photons provided
that jβj �����

pλ
p

≪ 1, where pλ is the largest Schmidt coefficient in
a Schmidt decomposition [12] of the biphoton wave function.
For if one writes Eq. (5) in the basis of the Schmidt modes, and
calculates the expectation value of the number of photons in
Eq. (4), one sees that Eq. (10) remains true in the continuous
wave (CW) limit, provided PP ≪ PA ∕L2. Defining PI �
ℏωFN D ∕ �2T� as the average generated power associated with
one photon of each pair, we rewrite Eq. (10) as

PI �
ℏωF

T
PPL

2

PA
: (12)

To derive expressions for classical second-order nonlinear
processes, we begin with the same Hamiltonian as above
[Eq. (1)], Taylor expand the ωmk to first order in the linear
regime and zeroth order in the nonlinear regime, and intro-
duce effective fields that are Schrödinger operators with an

explicit time dependence built in so as to simplify the
Heisenberg equations of motion

Gm�z; t� � �ℏωmvm ∕ �2π��1 ∕ 2
Z

dkeikzamke
i�ωmt−kmz�; (13)

where the integral goes over the range of k space appropriate
for the mode of interest, such that G†

mGm � Pm has units of
power. For a DFG calculation, while the signal and idler may
or may not exist in two distinct propagation modes of the wa-
veguide, their center frequencies may be separated enough
that we may still define a Gm�z; t� for each. Indeed, because
of this separation, the points at which the k’s appearing in the
Gm�z; t� are most naturally expanded about may be well-sepa-
rated, and as such the ranges over which each ei�k−km�z is sig-
nificantly nonzero will also be well-separated, meaning we
can introduce twom labels (m � S for signal,m � I for idler)
corresponding to what was formerly just F , with
�GS�z; t�; G†

I �z; t�� � 0, and one m � P label for the pump cor-
responding to what was formerly SH. This is most certainly
the case for the CW process that we consider here. We thus
rewrite our initial Hamiltonian (1) as

HL �
X

m�P;S;I

Z
dzG†

mGm ∕ vm

� i

2ωm

Z
dz

�
∂G

†
m

∂z
Gm − G

†
m

∂Gm

∂z

�
; (14)

HNL
2 � −

χ̄2

n̄3
������������������������
2ε0vSHv2FA

q Z
dzG†

PGSGIe
i�kS�kI−kP�z � H:c:;

(15)

where, so that we may compare a quantum (spontaneous) and
a classical (stimulated) process each pumped at the same fre-
quency, we have taken ωP � ωSH, vP � vSH, and diP�x; y� �
diSH�x; y�, and assumed that the signal and generated idler fre-
quencies are close enough to half the pump frequency that,
outside the integral over z, ωS ≈ ωI ≈ ωP ∕ 2 as well as vS ≈ vI ≈

vF and diS�x; y� ≈ diI�x; y� ≈ diF �x; y�. Coupled mode equations
then follow from the Heisenberg equations of motion

1
vSH

∂GP

∂t
� ∂GP

∂z
� 2i��������

PA
p GSGIe

i�kS�kI−kP�z; (16)

1
vF

∂GS

∂t
� ∂GS

∂z
� i��������

PA
p G†

IGPe
−i�kS�kI−kP�z; (17)

1
vF

∂GI

∂t
� ∂GI

∂z
� i��������

PA
p G

†
SGPe

−i�kS�kI−kP�z; (18)
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and, assuming a nonlinear region of length L, a CW DFG cal-
culation in the undepleted pump (and signal) approximation
for a channel waveguide yields

PI � PS

PPL
2

PA
sinc2

�
�kS�ωS�� kI�ωP −ωS�− kP�ωP��

L

2

�
: (19)

If we had instead followed the same steps and assumptions for
a CW SHG calculation, we would have found

PSH � P2
FL

2

PA
sinc2

�
�kSH�2ωF � − 2kF �ωF ��

L

2

�
; (20)

which agrees with the well-known result [13]: exact agree-
ment is achieved if we set our A equal to the effective area
presented there, and then, for we are free to do so, set n̄ �
n and χ̄2 � 2d0ijk ∕ ε0, as well as approximate vm ≈ c ∕n.

Comparing our quantum [Eq. (12)] and classical [Eqs. (19)
and (20)] expressions, we first note that SPDC, DFG, and SHG
all scale the same way with the characteristic power, P, and
effective area, A, of the device. But an important difference is
the way in which energy conservation enters in these expres-
sions. For CW pumps in classical (stimulated) experiments,
the generated light appears at a single frequency that is tun-
able by varying the pump (and signal, in DFG) frequency, as
determined by energy conservation. The efficiency of the pro-
cess is determined by how well phase matching is achieved, in
DFG for the so-determined idler frequency ωI � ωP − ωS , as
expressed in the sinc2 function appearing in Eq. (19). On
the contrary, in quantum (spontaneous) experiments, since
only the energy sum of the signal and idler photons is fixed
in the approximately CW experiments described by Eq. (12),
there is a probability of photons being generated over a wide
frequency range, centered about ωP ∕ 2. This “spectral line-
width of emission” [14] is determined by T −1. Comparing
Eq. (12) with Eq. (19) in the limit of perfect phase matching,
we see that in the quantum case, the role of the classical
“seed” power PS is played by ℏωF ∕ T , the average energy
of one downconverted photon in a time T , and that the wider
the bandwidth of possible emission, the larger the fluctuating
power available to drive the process.

Turning now to an evaluation of T , if the phase-matching
condition is satisfied over a range that is small compared to
the range of integration, i.e., when 1 − �2Ω ∕ωP�2 remains es-
sentially constant over the frequency range within which
the squared sinc function is significantly nonzero, we have

T ≈
2πR ωP ∕ 2

0 dΩsinc2f�kF �ωP ∕ 2−Ω��kF �ωP ∕ 2�Ω�−kSH�ωP��L ∕ 2g
:

(21)

Taylor expanding dispersion relations to quadratic order
about the phase-matched case, i.e.,

km�ω� � km�ωm0
� � 1

vm
�ω − ωm0

� � β2�ωm0
�

2
�ω − ωm0

�2; (22)

we find

T ≈
3
2

�������������������������������
2πjβ2�ωP ∕ 2�jL

p
; (23)

from Eq. (21) for a pump centered at the second harmonic,
ωP � ωSH0

, and thus, inserting Eq. (23) into Eq. (12), we obtain

PI �
ℏωF

3
2

�������������������������������
2πjβ2�ωP ∕ 2�jL

p PPL
2

PA
: (24)

Since the time T is determined by material dispersion, it is
proportional to L1 ∕ 2. Therefore the generated power scales
as L3 ∕ 2 in an SPDC experiment, and not with the square of
the device length as it does in DFG. We note that the sponta-
neous expression (12), with T given by Eq. (21), agrees with a
previously published result [14]: exact agreement is achieved
if we set ourA equal to the effective area presented there, and
then, for we are free to do so, set n̄ � �nSnInP�1 ∕ 3 and
χ̄2 � 2deff ∕ ε0, and approximate vm ≈ c ∕nm, as well as ωI ≈

ωS � ωF , similar to above.
So far we have assumed that the SPDC is unfiltered. If a

bandpass filter with bandwidthΔω � 2πB is used, narrow en-
ough that the sinc function varies negligibly over that range,
the time T of Eq. (21) becomes

T �Ω� ≈ �Bsinc2f�kF �ωP ∕ 2−Ω��kF �ωP ∕ 2�Ω�−kSH�ωP��L ∕ 2g�−1;
(25)

where Ω� ωP ∕ 2 identifies the center frequency of the band-
pass filter, and the generated power

PI�Ω� �
ℏωF

B−1

PPL
2

PA
sinc2

�
�kF �ωP ∕ 2 − Ω�

� kF �ωP ∕ 2� Ω� − kSH�ωP��
L

2

�
(26)

scales with L2 as in the classical expression. Note that when
comparing DFG [Eq. (19)] to this expression [Eq. (26)], it is
not just the efficiency of the process that has changed—re-
duced by a factor of ℏωF ∕ �B−1PS�—but also the frequency
of generated light has gone from being determined by ωI �
ωP − ωS to being a spectral density. And so here it is by tuning
Ω that the idler frequency is selected, rather than by tuning ωS

as in the stimulated (DFG) scenario.
Finally, it is interesting to consider the artificial scenario in

which there is no dispersion and the interacting fields are per-
fectly phase matched. In practice, this assumption may not be
so unrealistic, for if the system length L is much shorter than
the coherence length LC � π ∕ �kF �ωP ∕ 2 − Ω� � kF �ωP ∕ 2� Ω�−
kSH�ωP�� over the integration range of Eq. (11), where the
modes exist, then the sinc function is essentially unity every-
where there. Of course, an actual calculation would have to
take into account mode cut-offs in limiting the range of inte-
gration [9]. But if we further neglect those cut-offs and assume
that the modes exist over the entire integration range of
Eq. (11), then if there is no filtering we find that the generation
bandwidth time is on the order of the period of a generated
photon T � 3π ∕ �ωP ∕ 2�, so that

PI �
ℏωF

3
2 τF

PPL
2

PA
; (27)

where we have identified τm � 2π ∕ωm as a typical photon per-
iod. Unlike in Eq. (24), here the output also scales as L2, for
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there is no length dependent bandwidth over which the output
is generated.

With these considerations, determination of the material
parameters L2 ∕ �PA� in a classical experiment (here, DFG
or SHG) allows for an accurate prediction of the average
power of photons generated via SPDC.

B. Third-Order Processes
The method and results of this section closely parallel that of
the second-order case. Because they have not yet been re-
ported, we include the mathematical details in Appendices
A and B. We begin with the Hamiltonian

H3 � HL �HNL; �28�

HL �
Z

dkℏωka
†
kak; (29)

HNL � −

Z
dk1dk2dk3dk4 S�k1; k2; k3; k4�a†k1a

†
k2
ak3ak4 � H:c:;

(30)

where S�k1; k2; k3; k4� is a nonlinear coupling term depending
on an effective area as well as a phase-matching function [9],
as in Eq. (3) above [see Eqs. (A1) and (A2) in Appendix A].

Following the backward Heisenberg picture approach [9],
and the same arguments as above about the low-power limit in
which the result is valid, we calculate the average power as-
sociated with one photon of each pair generated due to a CW
SFWM process in a channel waveguide pumped at ωP to be

PI �
ℏωP

T
�γPPL�2; (31)

where L is the length of the nonlinear structure, and γ is the
usual nonlinear parameter [15], written in our notation in
Appendix A, PP � ℏωPN P ∕T and PI � ℏωPN D ∕ �2T�, analo-
gous to the expressions preceding Eq. (12), with the genera-
tion bandwidth time

T � 2πR ωP

0 dΩ�1−�Ω∕ωP�2�sinc2f�2k�ωP�−k�ωP�Ω�−k�ωP−Ω��L∕ 2g
;

(32)

and Ω � ω1 − ωP representing positive detuning from ωP . This
result is in a form that anticipates the classical FWM result,
namely

PI � PS�γPPL�2 sinc2f�2kP�ωP� − kS�ωS� − kI�2ωP − ωS��L ∕ 2g:
(33)

The classical equation is derived from the same Hamiltonian
as the quantum equation (28), and for the mathematical details
we refer the reader to Appendix B.

Comparing the corresponding results here, we see that
there is a clear analogy with the comparison of second-order
processes in that the classical (stimulated) process leads to
the generation of a fixed idler frequency, for set pump and
signal frequencies, with an efficiency determined by the

familiar phase-matching function. Similarly, in the quantum
(spontaneous) process, the signal and idler photons can be
generated over a range of frequencies determined by a band-
width T −1. Comparing Eq. (33) in the limit of perfect phase
matching with Eq. (31), we see that the role of the seed power
PS in the classical (stimulated) process is played by ℏωP ∕ T in
the quantum (spontaneous) process, the average energy of
one generated photon in a time T , and that the wider the band-
width of possible emission, the larger the fluctuating power
available to drive the process.

We now turn to an evaluation of T [Eq. (32)]. If the phase-
matching condition is satisfied over a range that is small com-
pared to the range of integration, we note that 1 − �Ω ∕ωP�2
stays very close to 1 over the range of frequencies in which
the squared sinc function is significantly nonzero, and Taylor
expansion of the dispersion relation about ωP ,

k�ω� � k�ωP� �
1
v
�ω − ωP� �

β2�ωP�
2

�ω − ωP�2; (34)

in Eq. (32) leads to

T ≈
3
2

��������������������������
2πjβ2�ωP�jL

p
: (35)

This is essentially the same expression found above for the
SPDC generation bandwidth time (23) when generated
photons are collected over the entire available bandwidth.
Substituting Eq. (35) in Eq. (31), we obtain

PI �
ℏωP

3
2

��������������������������
2πjβ2�ωP�jL

p �γPPL�2: (36)

Since the time T is determined by material dispersion, it is
proportional to L1 ∕ 2, and therefore the generated power scales
as L3 ∕ 2 in an SFWM experiment, and not with the square of the
device length as it does in FWM. We note that Eqs. (31), (35),
and (33) agree with well-known results [15,16].

If instead of looking at the entire SFWM spectrum, we
choose to focus on a narrow spectral region of bandwidth
2πB; we find

T �Ω� ≈ �B sinc2f�2k�ωP� − k�ωP � Ω� − k�ωP − Ω��L ∕ 2g�−1:
(37)

Under this assumption, for a particular detuning 0 ≤ Ω ≤ ωP ,
from ωP , the generated power can be written

PI�Ω��
ℏωP

B−1 �γPPL�2 sinc2
�
�2k�ωP�−k�ωP �Ω�−k�ωP −Ω��

L

2

�
;

(38)

and scales with L2 as in the classical expression.
In the somewhat artificial scenario in which the system

length is much smaller than the coherence length LC �
π ∕ �2k�ωP� − k�ωP � Ω� − k�ωP − Ω�� over the relevant range
of integration (32), where again we neglect the fact that in
a real calculation some of this integration range will not con-
tribute due to mode cut-offs, we find T � 3π ∕ωP if there is no
filtering, and the generated power becomes
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PI �
ℏωP

3
2 τP

�γPPL�2; (39)

where τP � 2π ∕ωP is a typical photon period. Unlike in
Eq. (36), here the output also scales as L2, for there is no
length dependent bandwidth over which the output is
generated.

We conclude this section by summarizing all of the results
for spontaneous and stimulated processes in a channel wave-
guide. If one wishes to make a quick estimate of the average
generated photon power at a certain input power, in either an
SPDC or SFWM experiment, one can simply perform the cor-
responding classical experiment, extract the relevant material
and structure parameters, and lastly replace PS with the en-
ergy of a typical generated photon (ℏωP ∕ 2 or ℏωP , for SPDC
or SFWM, respectively) divided by the generation bandwidth
time T and adjusting accordingly for any filtering before de-
tection. If the power can be collected over the entire genera-
tion bandwidth, then Eqs. (24) or (35) should be used. It is
interesting to note that for the spontaneous processes in
the short system length limit L ≪ LC , if mode cut-offs are ne-
glected, a power of 2ℏω ∕ �3τ� (about 26 μW for a 1 eV photon)
plays the role of the classical “seed” power of the correspond-
ing classical calculation for both SPDC [Eq. (27)] and SFWM
[Eq. (39)].

The expressions required for such estimates (the “idler”
powers generated in corresponding second- and third-order
nonlinear processes) are shown in Table 1. In this table, we
have chosen to rewrite the expressions to highlight the depen-
dence on quantities that might be of interest in guiding the de-
sign of a device or in helping the interpretation of experimental
results. Interestingly, for a channel waveguide, the scaling be-
havior of either stimulated or spontaneous processes with the
length L of the channel is independent of the order of the non-
linearity. In particular, the efficiency of phase-matched stimu-
lated generation scales with L2 whether we are considering
DFG or FWM. The same scaling is obtained for the generation
rate of spontaneous processes within a sufficiently narrow
spectral region around the phase-matching condition. Simi-
larly, the generated idler power, integrated over the entire
spectrum, scales with L3 ∕ 2 for both SPDC and SFWM, as in
the absence of filtering the generation bandwidth time scales
asL1 ∕ 2. Of the quantum expressions, we note that the bandpass
filtered expression is most often investigated experimentally,
especially for third-order nonlinear deviceswhere strongpump
suppression is required and Raman noise should be avoided

[17], and so L2 scaling is typically observed. Finally, consider-
ing the field enhancement due to the light confinement in the
channel, which is inversely proportional to the effective area,
we observe that the generated power is independent of the nat-
ure of the process, stimulated or spontaneous,while it depends
upon the order of the nonlinearity. Indeed, for DFG and SPDC,
the generation rate is proportional to 1 ∕A, while for FWM and
SFWM it scales with γ2 ∝ 1 ∕A2.

3. RESONANT CASE
In this section, we consider corresponding processes in a re-
sonant structure, in particular a microring resonator side-
coupled to a channel waveguide [18–20]. Nonlinear processes
can be largely amplified near particular frequencies when
large field enhancements are achieved due to constructive in-
terference of the electromagnetic field inside the ring. Thus,
compared to processes in channel waveguides, we expect to
be able to generate the same idler power with reduced pump
(and signal) power(s) at particular frequencies. Furthermore,
in a high-Q ring resonator, we expect the generation band-
width time to reflect the fact that this enhancement occurs
over a series of narrow frequency ranges associated with
the ring resonances, separated by the free spectral range
(FSR) of the ring. As above, we first consider SPDC, DFG,
and SHG before moving on to χ3 processes.

Table 1. Expressions for the Power Generated in Corresponding

Nonlinear Optical Processes in Channel Waveguides

Process Idler Power

DFG PI � PS
PPL

2

PA sinc2f�kS�ωS� � kI�ωP − ωS� − kP�ωP�� L2g (Eq. (19))
SPDC �PI � ℏωF

T
PPL

2

PA � PI�Ω� � ℏωFB
PPL

2

PA sinc2f�kF �ωP ∕ 2 − Ω� � kF �ωP ∕ 2� Ω� − kSH�ωP�� L2g (filtered; Eq. (26))

PI � ℏωF

3
2

��������������������
2πjβ2�ωP ∕ 2�j

p PP

PAL3 ∕ 2 (unfiltered; Eq. (24))

FWM PI � PS�γPPL�2 sinc2f�2kP�ωP� − kS�ωS� − kI�2ωP − ωS�� L2g (Eq. (33))
SFWM �PI � ℏωP

T �γPPL�2� PI�Ω� � ℏωPB�γPPL�2 sinc2f�2k�ωP� − k�ωP � Ω� − k�ωP − Ω�� L2g (filtered; Eq. (38))

PI � ℏωP

3
2

�����������������
2πjβ2�ωP �j

p �γPP�2L3 ∕ 2 (unfiltered; Eq. (35))

Table 2. Expressions for the Power Generated

in Corresponding Nonlinear Optical

Processes in Microring Resonators

Process Idler Power

DFG PI � PS
PP

P
32vμSvμI vμP
πωμSωμIωμPA

�QμSQμIQμP

R
�

(Eq. (51))
SPDC �PI � ℏωμF

T
PP

P
8πvμP
ωμPA

RQμP� PI�Ω� � ℏBPP

P

32vμPv2μF
πωμPωμFA

�QμPQ
2
μF

R
�

(filtered; Eq. (56))

PI � ℏ PP

P

4vμPv2μF
πωμPA

�QμFQμP

R
�

(unfiltered; Eq. (55))
FWM

PI � PS�γPP�2
64v2μPvμSvμI
π2ω2

μPωμSωμI
�Q

2
μPQμSQμI

R2 �
(Eq. (60))

SFWM �PI �ℏωμP
T �γPP�2

16v2μP
ω2
μP

Q2
μP�

PI�Ω� � ℏB�γPP�2
64v4μP
π2ω3

μP

�Q
4
μP

R2 �
(filtered; Eq. (63))

PI � ℏ�γPP�2
8v4μP
π2ω2

μP
�Q

3
μP

R2 �
(unfiltered; Eq. (62))
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A. Second-Order Processes
We treat optical dynamics in a microring resonator side-
coupled to a channel waveguide when only the second-order
optical nonlinearity is relevant with the Hamiltonian [21]

H � HL �HNL; (40)

HL � Hch �Hr �Hcp; (41)

HL � −
X
μ1.μ2

�Sμ1μ2μSHb
†
μSHbμ1b2 � H:c.�; (42)

Hch �
X
μ

�
ℏωμ

Z
dzψ†

μ�z�ψμ�z�

� i

2
ℏvμ

Z
dz

�
∂ψ†

μ�z�
∂z

ψμ�z� − H:c:
��

; (43)

Hcp �
������
2π

p
ℏ
X
μ

�cμbμψ†
μ�0� � H:c:�; (44)

HR �
X
μ

ℏωμb
†
μbμ; (45)

where, similar to above, all of the nonlinearity has been
lumped into Sμ1μ2SH; cμ is a coupling constant defined later,
the bμ are ring-mode operators, and the ψμ are effective field
operators for the channel, though without any explicit time
dependence or scaling to create units of power as for the
Gm above. In the channel we have split the k spectrum into
discrete regions, each in the neighborhood of a ring reso-
nance. Provided that the range of k covered by the pump (and
seed) launched into the channel is much narrower than the
range of k used to define a single resonance region (i.e., that
the ring has a large FSR compared to the pump bandwidth),
we may treat the coupling between the channel and the ring as
connecting a single μ from the channel to the corresponding μ
within the ring. Thus, we use μ to label the modes instead of
the bare m above to indicate ring resonance order N , i.e.,
μ � �m;N�, with a resonance defined according to

kμ · R � N; �46�

where R is the ring radius.
While our formalism can treat nonlinear susceptibility

tensors of general symmetry, for instance, rings made of
III–V semiconductors in which there are unusual quasi-
phase-matching conditions [11], for the sake of simplicity,
we here assume that the nonlinearity experienced by the field
of a ring mode remains constant as that field circles the ring.
We also assume that the fields involved are at frequencies near
resonances, leading to strong field enhancement due to con-
structive interference in the ring resonator and allowing us to
safely neglect any nonlinear effects outside the ring in the

waveguide, where such enhancement does not take place.
To quantify how close the fields are to ring resonances, con-
sider first the example of SHG where we identify the kμ
[Eq. (46)] associated with the fundamental field as kμF , and
that with the second harmonic field as kμSH ; we assume these
are chosen such that �2kμF − kμSH�R � 2NF − NSH � 0, where
NF and NSH are the integers associated [Eq. (46)] with kμF and
kμSH , respectively. For the frequencies, ωμF and ωμSH associated
with these modes [Eq. (45)], in general we will have ωμSH ≠

2ωμF because of dispersion, but we will assume that the fun-
damental and second harmonic frequencies ωF and ωSH, re-
spectively, with ωSH � 2ωF , are characterized by detunings
δμF�SH� � jωF�SH� − ωμF�SH� j so small that 2πRδμF�SH� ∕ vμF�SH� ≪ 1.

To make a CW SPDC calculation, we follow the approach
outlined in [21] in the limit of a long pump pulse. As discussed
above, this is easily generalized to a CW pump provided that
the pump power is kept low enough. We consider a pump at
ωP , chosen to be the center frequency ωμSH of the ring mode
identified by the waveunumber kμSH defined above, and write
ωP as ωP ≡ ωμSH . For photons generated within a pair of reso-
nances near enough to NF � NP ∕ 2, one less and one greater
than NP ∕ 2, where NP ≡ NSH, that we may take vμ1 ≈ vμ2 ≈ vμF
and diμ1�x; y� ≈ diμ2�x; y� ≈ diμF �x; y�, as well as ωμ1 ≈ ωμ2 ≈ ωμF ,
we find that the average generated power associated with one
photon of each pair is

PI �
ℏωμF

T
PPL

2

PA
jFμP �ωμP �j2: (47)

Here L � 2πR, P, and A are as above [Eq. (12)], though now
defined in terms of a specific set of center frequencies, and the

Fμ�ω� �
i�2�1 − σμ��1 ∕ 2

�1 − σμ� − i�ω − ωμ�L ∕ vμ
; (48)

are field enhancement factors with σμ the usual transmission
or “self-coupling” constant related to the coupling constant in
the Hamiltonian above via σμ � 1 − πjcμj2L ∕ v2μ [21]. In particu-
lar, when the frequency is at a ring resonance frequency,
ω � ωμ, we can write the enhancement factors in terms of
the quality factor(s) of the ring

Fμ�ωμ� � 2i

�����������
Qμvμ

ωμL

s
: (49)

In the limit of no loss, small detuning, and weak coupling
(σμ ≈ 1), these field enhancement factors are equivalent to
those defined in [22]. Recalling that we take the generated
photon resonances close to NP ∕ 2, we can take
Fμ1 �ω� ≈ Fμ2�ω� ≈ FμF �ω�, and find that the generation band-
width time across a single resonance is

T � 2πR
dωjFμF �ωμP ∕ 2 − ω�j2jFμF �ωμP ∕ 2� ω�j2 : (50)

Following a similar approach to the channel calculation
above, a CW DFG calculation yields

PI � PS

PPL
2

PA
jFμS �ωS�j2jFμI �ωP − ωS�j2jFμP �ωP�j2; (51)

whereas the SHG result is
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PSH � P2
FL

2

PA
jFμF �ωF �j4jFμSH�2ωF �j2: (52)

We note that [Eq. (52)] was presented earlier [11], with con-
sideration for arbitrary detuning from resonance, for a GaAs
ring resonator in which quasi-phase matching must be taken
into account. We further note that our strategy for labeling the
modes and assumption that all fields are nearly on resonance
has eliminated from these results a squared sinc function that
might have been expected. Were we to make this calculation
without a Hamiltonian formalism that uses ring resonances as
a set of modes and eliminates the sinc function as in, for in-
stance, [11], this assumption would mean that the squared sinc
function would essentially evaluate to 1.

We now turn to a comparison of the classical (stimulated)
processes described by Eqs. (51) and (52), and the quantum
(spontaneous) process described by Eq. (47). Note first that,
setting aside intensity enhancement factors, there is a quan-
tum power ℏωμF ∕ T that plays the role of the seed power
PS in Eq. (51), analogous to what was seen in comparing
SPDC [Eq. (12)] with DFG [Eq. (19)] in a channel waveguide.
For the structures considered here, there is an intensity en-
hancement factor for the pump jFμP �ωP�j2 [two, resulting in
jFμF �ωF �j4 in Eq. (52)] appearing in all three expressions
(47), (51), and (52). In the stimulated processes, we also have
intensity enhancement factors associated with the signal input
and idler output in Eq. (51), and with the second harmonic
output in Eq. (52). In Eq. (47), which describes an unseeded
process, the frequency enhancement factors associated with
the generated fields reside in the generation bandwidth time
T , and reflect the fact that there is a range of frequencies over
which the generated photons can appear. Unlike in the chan-
nel calculation, that time can be calculated here exactly, un-
der the mild assumption that the integration range over the
Lorentzians can be extended to infinity without serious error.
The result is

T � jFμF �ωμF �j4L3�2ωμF − ωμP �2 � 16v2μF L

8v3μF jFμF �ωμF �j2
; (53)

where recall ωμP is the center frequency of the ring resonance
at which the pump frequency ωP is also centered, and ωμF is
the center frequency of the ring resonance in which ωP ∕ 2 re-
sides. We see that generation efficiency is worse the farther
ωμF is from ωμP ∕ 2. For ωμF sufficiently close to ωμP ∕ 2, we have

T � 2L

vμF jFμF �ωμF �j2
� ωμF L

2

2v2μFQμF

; (54)

where we have used Eq. (49). We note that a similar result,
albeit in a slightly different form and calculated for a GaAs
add/drop ring resonator instead of a ring resonator side-
coupled to a single channel waveguide, was previously pre-
sented [21]. Substituting Eq. (54) in Eq. (47), we find

PI �
ℏωμF vμF

2LjFμF �ωμF �j2
PPL

2

PA
jFμP �ωμP �j2jFμF �ωμF �j4

� ℏωμF
QμF
16π τμF

PPL
2

PA
QμP vμP
ωμPL

�
QμF vμF
ωμF L

�
2
; (55)

where we have introduced τμF � 2π ∕ωμF . On the basis of
Eqs. (51) and (52), and the fact the intensity enhancement fac-
tors jFμ�ωμ�j2 are proportional to the Qμ (49), one might have
expected to see three quality factors in Eq. (55). However, be-
cause of the resonance, the generation bandwidth time is also
increased by a factor of QμF and so there are, in the end, only
two that result.

Recall that we have assumed that all of the light is collected
over a full ring resonance linewidth. If one had a narrow en-
ough filter with bandwidth 2πB that would select out photons
generated within just a small window of a ring resonance, the
associated calculation would yield

PI�Ω� �
ℏωμF

B−1

PPL
2

PA
jFμP �ωμP �j2jFμF �ωμP ∕ 2 − Ω�j2

jFμF �ωμP ∕ 2� Ω�j2; (56)

where Ω� ωμP ∕ 2 now represents the center frequency of the
accepted light.

It is worth noting that there is an entire frequency “comb” of
resonances on either side of half of the resonance being
pumped that essentially satisfies both energy and momentum
conservation for the generated correlated photon pairs. Gen-
eration is significant up until ωμS � ωμI − ωμP becomes too
large. Quantifying this a bit more, the generation rate will
be reduced by a factor of 2 when ωμS � ωμI − ωμP �
4vμF ∕ �jFμF �ωμF �j2L� � ωμF ∕QμF . Taylor expanding ω�m;N� �
ω�m;Nm� � vm�N − Nm� ∕R� Ξm�N − Nm�2 ∕R2, and remember-
ing that if ωμS is associated with resonance order N that ωμI is
associated with resonance order NP − N , we find ωμS�
ωμI − ωμP � 2ΞF �N − NF �2 ∕R2. Thus, when

N − NF � R�ωμF ∕ �2jΞF jQμF ��1 ∕ 2; (57)

the generation rate drops by a factor of 2.
Armed with Eqs. (51), (47), and (56), a classical (namely,

DFG or SHG) experiment that determines L2 ∕ �PA� as well
as the strength of a typical enhancement factor, jFμF �ωμF �j2,
allows for an accurate prediction of the average power of
photons generated in a corresponding quantum experiment.

B. Third-Order Processes
The main results of this subsection were first presented in
[23], and so we direct the reader there for details. Again
we assume that the pump frequency ωP is at the center of
one of the ring resonances, ωP � ωμP , and we find the average
power associated with half of the generated photons to be

PI �
ℏωμP

T
�γPPL�2jFμP �ωμP �j4; (58)

where we have assumed that we are looking at photons gen-
erated within a pair of resonances near enough to NP that we
may take vμS ≈ vμI ≈ vμP and diμS �x; y� ≈ diμI �x; y� ≈ diμP �x; y�, as
well as ωμS ≈ ωμI ≈ ωμP , and FμS �ω� ≈ FμI �ω� ≈ FμP �ω�, with a
generation bandwidth time of

T � 2πR
dωjFμP �ωμP − ω�j2jFμP �ωμP � ω�j2 : (59)

The corresponding CW FWM calculation yields
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PI � PS�γPPL�2jFμP �ωP�j4jFμS �ωS�j2jFμI �2ωP − ωS�j2; (60)

where γ is as above, only now defined in terms of a specific set
of center frequencies. We note that this expression agrees
with a well-known result [22], in the limit of no loss, small de-
tuning, and weak coupling (σμ ≈ 1). The comparison of the
classical (stimulated) process described by Eq. (60) with
the quantum (spontaneous) process described by Eq. (58)
largely follows the comparison between Eqs. (51) and (47),
respectively, for second-order processes. Again we find that
the generation bandwidth time T can be calculated, with the
result here given by

T � 2L
vμP jFμP �ωμP �j2

� ωμPL
2

2v2μPQμP

; (61)

and thus, if photons are collected across an entire ring reso-
nance linewidth, substituting Eq. (61) in Eq. (58), we find

PI �
ℏωμP vμP

2LjFμP �ωμP �j2
�γPPL�2jFμP �ωμP �j8

� ℏωμP
QμP
64π τμP

�γPPL�2
�
QμP vμP
ωμPL

�
4
; (62)

where we have introduced τμP � 2π ∕ωμP . Note that the ap-
pearance of QμP in the generation bandwidth time leads to
a net dependence of PI on three powers of QμP , rather than
the four that might be expected from Eq. (60). If one had a
filter with bandwidth 2πB, and collected photons generated
within just a small window of a ring resonance, one would find
instead

PI�Ω��
ℏωμP

B−1 �γPPL�2jFμP �ωμP �j4jFμP �ωμP −Ω�j2jFμP �ωμP �Ω�j2;
(63)

where Ω� ωμP is the center of the narrow frequency window
selected by the filter.

Once more there is an entire frequency comb of generated
photons. Here the generation rate is reduced by a factor of 2
when ωμS � ωμI − 2ωμP � 4vμP ∕ �jFμP �ωμP �j2L� � ωμP ∕QμP .
Taylor expanding as above while remembering that if ωμS is
associated with resonance order N that ωμI is associated with
resonance order 2NP − N , we find that, quite similar to above,
when

N − NP � R�ωμP ∕ �2jΞP jQμP ��1 ∕ 2; (64)

the generation rate drops by a factor of 2.
We conclude our analysis by summarizing in Table 2 all of

the results for stimulated and spontaneous processes in mi-
croring resonators. Here we report the “idler” powers as a
function of the quality factors Qμ and ring radius R, which
are parameters that can be easily measured and thus are ex-
perimentally used to characterize a device. These quantities
are directly related to the on-resonant intensity enhancement
factors jFμP �ωμP �j2, as such enhancement depends on the ef-
fective mode volume (∝ AR) as well as constructive interfer-
ence of the field in the ring, which is proportional to the time
that light spends in the resonator (proportional to Q).

Looking at the expressions reported in Table 2, we see that
for DFG and SPDC, the generated powers are inversely pro-
portional toAR. Similarly, the generated idler powers in FWM
and SFWM scale with the inverse of �AR�2. In other words, the
intensity enhancement associated with the volume of the re-
gion in which light is confined has the same weight, whether
the process is spontaneous or stimulated. The situation is dif-
ferent if we focus on the scaling of the generated powers with
Q. In this case, unfiltered SPDC and SFWM “idler” powers are
proportional to Q2 and Q3, respectively, while the correspond-
ing processes DFG and FWM scale with Q3 and Q4, respec-
tively. Finally, as in channel waveguides, stimulated and
spontaneous powers scale the same when we consider the
spontaneous generated power in a sufficiently narrow spec-
tral region centered at the idler/signal resonance.

4. CONCLUSION
Integrated nonlinear optical devices for use in the classical
regime are under constant development and improvement.
Many of these hold potential for use in quantum optics. Yet
given the calculated or measured efficiency of such a device
in the classical regime, it is not always easy to predict its ef-
ficiency in the quantum regime. In general, the power gener-
ated by a spontaneous process in a given device does not scale
with device parameters in the same way as the power gener-
ated by a stimulated process. Here we have employed a gen-
eral Hamiltonian formalism, which places quantum and
classical wave mixing processes on equal theoretical footing,
to calculate expressions for SPDC, DFG, SHG, SFWM, and
FWM in both channel waveguides and microring resonators
side-coupled to channel waveguides as two examples of de-
vices. These expressions are presented as two comprehensive
tables that clearly answer the questions posed in the introduc-
tion. In channel waveguides, the scaling behavior of both sti-
mulated and spontaneous processes with the length L of the
channel is independent of the order of the nonlinearity. In par-
ticular, the efficiency of phase-matched stimulated generation
scales as L2, whether we are considering DFG or FWM. The
same scaling is obtained for the generation rate of sponta-
neous processes within a sufficiently narrow spectral region
around the phase-matching condition. Similarly, the generated
idler power, integrated over the entire spectrum, scales with
L3 ∕ 2 for both SPDC and SFWM in a channel, as in the absence
of filtering the generation bandwidth time scales as L1 ∕ 2. This
is in contrast to the results for a microring resonator, in which
all second-order processes scale with ring radius R as R−1 and
all third-order processes as R−2 regardless of filtering. Consid-
ering enhancement due to light confinement in the channel,
which is inversely proportional to the effective area, we ob-
serve that this effect on the generated power is independent
of the nature of the process, stimulated or spontaneous, while
it depends upon the order of the nonlinearity. Indeed, for DFG
and SPDC, the generation rate is proportional to 1 ∕A, while
for FWM and SFWM, it scales with γ2 ∝ 1 ∕A2. This result is
consistent with the fact that for the example of a channel
the scaling with L is due solely to the interference of the fields
generated at different positions in the channel. That is, there is
no L-dependent field enhancement. Again this is in contrast
with the results for a microring side-coupled to a channel
waveguide, in which the additional confinement in the direc-
tion of propagation due to the ring plays a role. DFG and FWM
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scale with Q3 and Q4, respectively, in a ring resonator as do
the corresponding spontaneous processes within a suffi-
ciently narrow spectral region centered at the idler/signal re-
sonance. Unfiltered SPDC and SFWM generated powers, on
the other hand, are proportional to Q2 and Q3, respectively.

APPENDIX A
We begin with the Hamiltonian (28), where

S�k1; k2; k3; k4� �
3
2

���������������������������������������������������������
�ℏωk1

��ℏωk2
��ℏωk3

��ℏωk4
�

�4π�4ε20

s
χ̄3
n̄4Z

L ∕ 2

−L ∕ 2
dzei�k3�k4−k1−k2�z eiϕ�k1;k2;k3;k4�

A�k1; k2; k3; k4�
; (A1)

and

eiϕ�k1 ;k2 ;k3 ;k4�

A�k1; k2; k3; k4�
�

Z
dxdy

n̄4χijkl3 �x; y��dik1�x; y����d
j
k2
�x; y���dkk3�x; y�dlk4�x; y�

χ̄3ε
2
0n

2�x; y;ωk1
�n2�x; y;ωk2

�n2�x; y;ωk3
�n2�x; y;ωk4

� (A2)

is an effective area with χijkl3 �x; y� the material third-order
optical nonlinearity neglecting dispersion and magneto-optic
effects, diω�x; y� the ith component of the displacement field
at frequency ω, and n�x; y;ω� the material refractive index at
frequency ω, all at waveguide cross-sectional position �x; y�.
Following the backward Heisenberg picture approach of [9],
we then split the Hamiltonian into a trivial evolution piece

H0 � HL �
Z

dkℏωka
†
kak; (A3)

and an appropriately transformed time-dependent nonlinear
evolution piece

V̂�t��U�t1; t�eiH0t ∕ℏHNLe
−iH0t ∕ℏU†�t1; t�

�−

Z
dk1dk2dk3dk4S�k1;k2;k3;k4; t�ā†k1�t�ā

†
k2
�t�āk3�t�āk4�t�;

(A4)

where

U�t0; t� � eiH0t
0 ∕ℏe−iH�t0−t� ∕ℏe−iH0t ∕ℏ; (A5)

Ō�t� � U�t1; t�OU†�t1; t�; (A6)

with

Ō�t1� � O; (A7)

and

S�k1; k2; k3; k4; t� � S�k1; k2; k3; k4�ei�ωk1
�ωk2

−ωk3
−ωk4

�t; (A8)

such that the barred operators satisfy the equations of motion

iℏ
∂Ō�t�
∂t

� �Ō�t�; V̂�t��: (A9)

For a coherent asymptotic-in state

jψ ini � e�αA
†

P
−H:c:�jvaci; (A10)

with an average photon number of N P � jαj2, where

A†
P �

Z
dkϕP�k�a†k; (A11)

and

Z
dkjϕP�k�j2 � 1;

the asymptotic-out state can be written

jψouti � eαĀ
†

P
�t0�−H:c:jvaci; (A12)

where

Ā
†
P�t0� �

Z
dkϕP�k�ā†k�t0�; (A13)

and [recall (A9)] the barred operator satisfies

iℏ
dā

†
k�t�
dt

� 2
Z

dk1dk2dk3S�k1; k2; k3; k; t�ā†k1�t�ā
†
k2
�t�āk3�t�:

(A14)

This equation has the zeroth-order solution

�ā†k�t��0 � ā
†
k�t1� � a

†
k; (A15)

and so the first-order solution for the operator involved in our
asymptotic-out state is

ā
†
k�t� � a

†
k �

2
iℏ

Z
dk1dk2dk3

�Z
t0

t1

dtS�k1; k2; k3; k; t�
�
a
†
k1
a
†
k2
ak3

� a
†
k �

2i
ℏ

Z
dk1dk2dk3

�Z
t1

t0

dtS�k1; k2; k3; k; t�
�
a
†
k1
a
†
k2
ak3

� a†k �
4πi
ℏ

Z
dk1dk2dk3S�k1; k2; k3; k�

a†k1a
†
k2
ak3δ�ωk1

� ωk2
− ωk3

− ωk�; (A16)

where we have extended the range of integration from t0 →

−∞ to t1 → ∞. An important subtlety is that the state of gen-
erated photons in the χ3 process contains noncommuting op-
erators and cannot readily be split into an undepleted pump
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field and a generated field as in the case of a χ2 process. This is
in part due to the fact that we do not divide k (or ω) space up
into two regions as in the case of a χ2 process—we assume
that there is just one mode to consider, and thus no additional
labels appear. To get around this problem, when writing down
the state of generated photons for a SFWM process, we use
the Baker–Campbell–Hausdorff formula [24] to keep only
leading-order terms in the exponential that involve two-
photon creation operators. Thus, following

eA�B � eAe−
1
2�A;B��higher order termseB; (A17)

where any one of the “higher order terms” is proportional to

�S1; �S2; � � � �Sn−1; Sn� � � ���; Si�1;2;���n � A or B; (A18)

we take

A � α

Z
dkϕP�k�a†k − H:c:;

B � 4πiα
ℏ

Z
dkdk1dk2dk3ϕP�k�S�k1; k2; k3; k�a†k1a

†
k2
ak3 − H:c:;

(A19)

and work out

−
1
2
�A;B� � 2πiα2

ℏ

Z
dkdk1dk2dk3ϕP�k3�ϕP�k�

× S�k1; k2; k3; k�a†k1a
†
k2
− H:c:

� 8πijαj2
ℏ

Z
dkdk1dk2dk3ϕ�

P�k2�ϕP�k�

× S�k1; k2; k3; k�a†k1ak3 − H:c:. (A20)

Note that with the definition above Eq. (A19),

eBjvaci � jvaci; (A21)

and thus we may write our asymptotic-out state, neglecting all
higher-order and non-two-photon creation operator terms
mentioned above, as

jψouti � e�αA
†

P
�βC†

II�−H:c:jvaci; (A22)

where

C
†
II �

1���
2

p
Z

dk1dk2ϕ�k1; k2�a†k1a
†
k2
; (A23)

ϕ�k1; k2� �
2

���
2

p
πα2

β

i

ℏ

Z
dkdk0ϕP�k�ϕP3

�k0�

× S�k1; k2; k; k0�δ�ωk � ωk0 − ωk1
− ωk2

�; (A24)

and β is chosen such that the biphoton wave function is
normalized

Z
dk1dk2jϕ�k1; k2�j2 � 1. (A25)

Note that for jβj ≪ 1, we may write the state of generated
photons as

jψgeni � eβC
†

II−H:c:jvaci ≈ jvaci � βjIIi � � � � ; (A26)

where

jIIi � C
†
IIjvaci �

1���
2

p
Z

dk1dk2ϕ�k1; k2�a†k1a
†
k2
jvaci (A27)

is a normalized two-photon state

Z
dka†kakjIIi � 2jIIi; hII:jIIi � 1; (A28)

and therefore identify jβj2 with the probability of pair produc-
tion, making the average number of generated photon pairs
per pump pulse

N D � 2jβj2: (A29)

If we assume that the pump waveform ϕP�k� is peaked
strongly enough for some k0 > 0 such that its values are neg-
ligible for k < 0, the integrals over k involved in the biphoton
wave function may be restricted to the range 0 to∞, and this in
turn, due to the energy conserving delta function and approx-
imate momentum conserving S function, means that the bi-
photon wave function itself will be nonnegligible only for
k1 > 0 and k2 > 0 if typical dispersion relations are assumed.
This creates a one-to-one correspondence between wavenum-
bers and frequencies, and so we may write expressions in the
frequency representation by introducing

~aω �
�������������
dk�ω�
dω

r
ak�ω�; (A30)

~ϕP�ω� �
�������������
dk�ω�
dω

r
ϕP�k�ω��; (A31)

~ϕ�ω1;ω2� �
���������������
dk�ω1�
dω1

s ���������������
dk�ω2�
dω2

s
ϕ�k�ω1�; k�ω2��; (A32)

where

dk�ω1�
dω1

�
�
dk�ω�
dω

�
ω�ω1

; (A33)

and the prefactors ensure correct normalization

Z
∞

0
dωj ~ϕP�ω�j2 � 1; (A34)

Z
∞

0
dω1

Z
∞

0
dω2j ~ϕ�ω1;ω2�j2 � 1. (A35)

This allows us to write the biphoton wave function as
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~ϕ�ω1;ω2� �
2

���
2

p
πα2

β

i

ℏ

���������������
dk�ω1�
dω1

s ���������������
dk�ω2�
dω2

s Z
∞

0
dω

Z
∞

0
dω0

� �������������
dk�ω�
dω

r ��������������
dk�ω0�
dω0

r
ϕP�ω�ϕP�ω0�

S�k�ω1�; k�ω2�; k�ω�; k�ω0��δ�ω1 � ω2 − ω − ω0�
�
;

(A36)

and use Eq. (A35) to solve for the normalization factor

N D � N 2
P�χ̄3�2
n̄8

9K
64π2ε20

; �A37�

where

K �
Z

∞

0
ω1

dk�ω1�
dω1

Z
∞

0
ω2

dk�ω2�
dω2

J�ω1;ω2�dω1dω2; (A38)

with

J�ω1;ω2� �
����
Z

ω1�ω2

0
dω

�������������
dk�ω�
dω

r ������������������������������������
dk�ω1 � ω2 − ω�
d�ω1 � ω2 − ω�

s
~ϕP�ω�

× ~ϕP�ω1 � ω2 − ω�ℏ
����������������������������������
ω�ω1 � ω2 − ω�

p
×
Z

L ∕ 2

−L ∕ 2
dzei�k�ω��k�ω1�ω2−ω�−k�ω1�−k�ω2��z

×
eiϕ�k�ω1�;k�ω2�;k�ω�;k�ω1�ω2−ω��

A�k�ω1�; k�ω2�; k�ω�; k�ω1 � ω2 − ω��

����2: (A39)

We assume that the derivatives dk�ω� ∕ dω change very slowly
with ω, and so approximate them as constants dk�ω� ∕ dω ≈ 1 ∕ v
with little error. Similarly, we assume the effective area to be
constant over the frequencies of interest and write A�k�ω�,
k�ω1 � ω2 − ω�, k�ω1�, k�ω2�� ≈ A. Furthermore it is possible
to define the mode amplitudes such that we can take the
phase ϕ�k�ω�, k�ω1 � ω2 − ω�, k�ω1�, k�ω2�� to be zero. We spe-
cify the dispersion of the waveguide using a quadratic model
around the phase-matching condition

k�ω� � k�ωP� �
1
v
�ω − ωP� �

β2�ωP�
2

�ω − ωP�2; (A40)

where v−1 � �dk�ω� ∕ dω�ω�ωP
, β2�ωP� � �d2k�ω� ∕ dω2�ω�ωP

,
and find

~ϕ�ω1;ω2� � i
L

v2

�����������������
ℏ2ω1ω2

KA2

s Z
ω1�ω2

0
dω

sin��ω − ωP�Δt ∕ 2�
�ω − ωP�

��������������
πΔt ∕ 2

p
sin��ω1 � ω2 − ω − ωP�Δt ∕ 2�
�ω1 � ω2 − ω − ωP�

��������������
πΔt ∕ 2

p
×

����������������������������������
ω�ω1 � ω2 − ω�

p
sinc

�
β2�ωP�

2

��
ω −

ω1 � ω2

2

�
2

−

�
ω1 − ω2

2

�
2
�
L

�
; (A41)

K � ℏ2L2

v4A2

Z
∞

0
dω1

Z
∞

0
dω2ω1ω2

����
Z

ω1�ω2

0
dω

sin��ω − ωP�Δt ∕ 2�
�ω − ωP�

��������������
πΔt ∕ 2

p
×
sin��ω1 � ω2 − ω − ωP�Δt ∕ 2�
�ω1 � ω2 − ω − ωP�

��������������
πΔt ∕ 2

p ����������������������������������
ω�ω1 � ω2 − ω�

p

×sinc
�
β2�ωP�

2

��
ω −

ω1 � ω2

2

�
2
−

�
ω1 − ω2

2

�
2
�
L

�����2; (A42)
where, as we have the CW limit in mind, we have taken as our
pump waveforms “top-hat” pulses in time, that have the shape
of sinc functions in frequency, centered at ωP , and will later
take the limit of an infinite width in time

~ϕP�ω� �
sin��ω − ωP�Δt ∕ 2�
�ω − ωP�

��������������
πΔt ∕ 2

p : (A43)

Making the change of variables ωt � ω1 � ω2,
ωr � �ω1 − ω2� ∕ 2, extending the integral over ω from
−∞ → ∞, and setting ω ≈ ωP , ωt ≈ 2ωP (a good approximation
in the Δt → ∞ limit), we find

K � 4ℏ2L2ω2
Pπ

v4A2Δt

Z
∞

0
dωtδ�ωt

− 2ωP�
Z 1

2ωt

0
dωr

�
1
4
ω2
t − ω2

r

�
sinc2�β2�ωP�ω2

rL ∕ 2�

� 4ℏ2L2ω2
Pπ

v4A2Δt

Z
ωP

0
dωr�ω2

P − ω2
r�sinc2�β2�ωP�ω2

rL ∕ 2�

� 8ℏ2L2ω4
Pπ

2

v4A2ΔtT
;

where T is the generation bandwidth time defined earlier
[Eq. (32)]. Thus, recalling Eq. (A37) and introducing the non-
linear parameter [15]

γ � 3χ̄3ωP

4ε0v2n̄4A
; (A44)

the number of photons per pump pulse can be written

N D � 2�γℏωPN PL�2
ΔtT

: (A45)

Yet it is also true that if we consider a constant rate of pump
photons or pump power, PP � ℏωPN P ∕Δt, N D ∕Δt �
2�γℏωPN PL�2 ∕ �Δ2

t T � can be thought of as the average rate
of generated photons provided that jβj �����

pλ
p

≪ 1, where pλ
is the largest Schmidt coefficient in a Schmidt decomposition
[12] of the biphoton wave function. Thus Eq. (A37) remains
true in the CW limit, provided PP ≪ �γL�−1. Defining PI �
ℏωPN D ∕ �2Δt� as the average generated power associated
with one photon of each pair, we rewrite Eq. (A37) in a form
suggestive of the corresponding stimulated result as

PI �
ℏωP

T
�γPPL�2; �A46�

which is the same as the result presented above [Eq. (31)].
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APPENDIX B
We begin this section as the previous appendix, with the
Hamiltonian (28), and terms defined as above [Eqs. (A1)
and (A2)]. Coupled mode equations are derived by Taylor ex-
panding dispersion relations

ωmk � ωm � vm�k − km� �…; (B1)

where

ωm � �ωmk�k�km
; �B2�

vm �
�
∂ωmk

∂k

�
k�km

�B3�

in the linear regime, and as a first approximation, setting

ωmk ≈ ωm; �B4�

dimk�x; y� ≈ dim�x; y� (B5)

in the nonlinear terms, and introducing effective fields

gm�z; t� �
Z

dk������
2π

p amke
i�k−km�z; (B6)

where the integral goes over the range of k space appropriate
for the mode of interest. Note that while the pump, signal, and
idler may or may not exist in distinct propagation modes of the
waveguide, their center frequencies may be separated enough
that we may still define a gm�z; t� for each. Indeed because of
this separation, the points at which the k’s appearing in the
gm�z; t� are most naturally expanded about may be well-
separated, and as such the ranges over which each ei�k−km�z

is significantly nonzero will also be well-separated, meaning
we can introduce three m labels (m � P for pump, m � S

for signal, m � I for idler) corresponding to what formerly
had no label at all, with

�gS�z; t�; g†I �z; t�� � �gS�z; t�; g†P�z; t�� � �gI�z; t�; g†P�z; t�� � 0.

(B7)

This is most certainly the case for the CW process that we
consider here. We thus rewrite our initial Hamiltonian (28) as

HL �
X

m�P;S;I

�
ℏωm

Z
dzg†mgm � i

2
ℏvm

Z
dz

�
∂g

†
m

∂z
gm − g

†
m

∂gm

∂z

��
; (B8)

HNL � −
3
ε0

�����������������������������������������
�ℏωP�2�ℏωS��ℏωI�

24A2

s
χ̄3
n̄4

×
Z

dzei�2kP−kS−kI �zg†Sg
†
I g

2
P � H:c:; (B9)

as there are now 12, and not 6, ways to arrange the operators,
we have neglected terms corresponding to self- and cross-
phase modulation, and

A�
����
Z
dxdy

n̄4χijkl3 �x;y�
χ̄3

�diS�x;y����djI�x;y���dkP�x;y�dlP�x;y�
ε20n

2�x;y;ωS�n2�x;y;ωI�n4�x;y;ωP�

����
−1

;

(B10)

where, as above, we have chosen the mode amplitudes such
that we can take the phase associated with the effective area
to be zero. The Heisenberg equations of motion yield

∂gP

∂t
� −

i

ℏ
�gP;H �

� −iωPgP − vP
∂gP

∂z

−
6i
ℏε0

�����������������������������������������
�ℏωP�2�ℏωS��ℏωI�

24A2

s
χ̄3
n̄4 e

−i�2kP−kS−kI �zg†PgSgI ;

(B11)

∂gS

∂t
� −

i

ℏ
�gS;H3�

� −iωSgS − vS
∂gS

∂z

−
3i
ℏε0

�����������������������������������������
�ℏωP�2�ℏωS��ℏωI�

24A2

s
χ̄3
n̄4 e

i�2kP−kS−kI �zg†I g
2
P; (B12)

∂gI

∂t
� −

i

ℏ
�gI; H3�

� −iωIgI − vI
∂gI

∂z

−
3i
ℏε0

�����������������������������������������
�ℏωP�2�ℏωS��ℏωI�

24A2

s
χ̄3
n̄4 e

i�2kP−kS−kI �zg†Sg
2
P: (B13)

We then put

gm � ~gme−iωmt; (B14)

2ωP � ωS � ωI (B15)

and write the equations above in terms of new operators

Gm �
�����������������
ℏωmvm

p
~gm;

such that G†
mGm � Pm has units of power

1
vP

∂GP

∂t
� ∂GP

∂z
� −

6i
ε0

��������������������������
ω2
P

24A2vSvIv
2
P

s
χ̄3
n̄4 e

−i�2kP−kS−kI �zG†
PGSGI;

(B16)

1
vS

∂GS

∂t
� ∂GS

∂z
� −

3i
ε0

��������������������������
ω2
S

24A2vSvIv
2
P

s
χ̄3
n̄4 e

i�2kP−kS−kI �zg†I g
2
P;

(B17)
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1
vI

∂GI

∂t
� ∂GI

∂z
� −

3i
ε0

��������������������������
ω2
I

24A2vSvIv
2
P

s
χ̄3
n̄4 e

i�2kP−kS−kI �zG†
SG

2
P:

(B18)

We work in the undepleted pump (and seed) approximation,
in the limit of stationary fields, where the time derivatives van-
ish, and the strong pump and signal limit, GP;S ≫ GI , with a
uniform nonlinearity extending from z � − L

2 to z � L
2, leaving

∂GP

∂z
� 0; (B19)

∂GS

∂z
� 0; (B20)

GI � −
3i
ε0

��������������������������
ω2
I

24A2vSvIv
2
P

s
χ̄3
n̄4 G

†
SG

2
PL sinc

�
�2kP − kS − kI�

L

2

�
or, switching to the notation of Agrawal [15], where

γ � n2ω0

cAeff
� 3χxxxx3

4ε0cn̄2

ω0

cAeff
; (B21)

or, in our notation with n̄ � 4 ����������������
n2
PnSnI

q
, vm ≈ c ∕nm,

γ � 3ωI

4ε0vP
����������
vSvI

p χ̄3
n̄4

1
A
; (B22)

we find

GI � −iγG†
SG

2
PL sinc��2kP − kS − kI�L ∕ 2�; (B23)

and thus

PI � PS�γPPL�2 sinc2f2kP�ωP� − kS�ωS� − kI�2ωP − ωS�L ∕ 2g;
(B24)

exactly as above [Eq. (33)].
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