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Abstract. A theoretical study of cavity modes in one-dimensional photonic crystal slabs embedded in

Silicon-on-Insulator structures is reported. Three different methods are employed, namely a guided-mode

expansion in which the coupling to radiative modes is treated by perturbation theory, a grating or

scattering-matrix method for calculating the surface reflectance, and a Fourier modal expansion for in-

plane transmission calculations. It is shown that all methods lead to the same values for the quality factors

of cavity modes for both first- and second-order Bragg mirrors. We conclude that the quality factor of a

cavity mode can be determined with optical reflectance from the surface of the slab.
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1. Introduction

Photonic crystals (PhC) embedded in planar dielectric waveguides, com-
monly known as photonic crystal slabs, are of great interest for the control
of the electromagnetic field at optical wavelengths (Johnson et al. 1999;
Sakoda 2001; Johnson and Joannopoulos 2002). In particular, systems
characterized by a strong dielectric modulation in the plane of the wave-
guide and a high dielectric contrast between the core layer and the upper
and lower claddings have been receiving much attention owing to the
in-plane control provided by the photonic band gap and to the vertical
confinement of light induced by dielectric mismatch. These systems are
characterized by the existence of truly guided modes lying below the light
line of the cladding material (or materials if the waveguide is asymmetric),
and of quasi-guided modes if their energy lies above the light line in the first
Brillouin zone. The latter are coupled to the radiative modes of the planar
waveguide, thus producing out-of-plane diffraction losses and a related
spectral linewidth in the optical excitation of these resonances; quasi-guided
modes can be excited by plane waves incident from the surface of the slab
(Popov 1993; Fujita et al. 1998; Astratov et al. 1999). On the contrary, truly
guided modes have zero intrinsic linewidth and can be excited by in-plane
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transmission measurements, or else by attenuated total reflectance using a
prism as recently reported in (Galli et al. 2004). It is very difficult to treat
the electromagnetic problem in these systems from a general point of view,
i.e. by using a single theoretical approach that allows to calculate all the
physical properties, such as complex photonic dispersion, reflection or
transmission and losses, in a three-dimensional theoretical scheme. Exact
numerical methods such as finite-difference-time-domain (FDTD) can in
principle give a complete description of the problem, but they are rather
heavy from a computational point of view, which limits also the physical
dimensions of the systems that can be modelled. Alternative theoretical
approaches employed to study one-dimensionally patterned waveguide gratings,
such as the eigenmode expansion method, have also been used in the literature
(Čtyroký et al. 2002).

In this work we study defect cavities in one-dimensional (1D) PhC slabs,
namely Fabry-Pérot cavities in waveguide geometry, and address the prob-
lem of determining the quality (Q) factor of localized cavity modes. These
devices are considered as potential building blocks in Silicon-On-Insulator
(SOI) planar photonic integrated circuits operating at optical wavelengths
for advanced telecom applications, thus we focus on SOI slab structures.
We consider defect cavities surrounded by first- and second-order Bragg
mirrors. We tackle the problem by three different theoretical approaches:
(i) a recently developed guided-mode expansion (GME) method (Andreani
and Agio 2002; Andreani 2002) that yields the mode energies and Q-factors,
(ii) a calculation of surface reflectance at varying angles of incidence using
grating or scattering-matrix methods (SMM), and (iii) a calculation of
in-plane transmission on a finite structure employing a Fourier modal
expansion (FME) method. The GME and SMM methods require that the
defect cavity be repeated with supercell periodicity along the 1D axis, while
the FME method deals with a finite structure. The goal of this work is
twofold. First, to show that the different methods yield the same results for
the Q-factors. Second, to prove that the intrinsic Q-factor of a single cavity
can be determined by working on a periodic structure in a diffraction
geometry, i.e., by measuring the reflectance from the surface of the sample
at varying angles of incidence.

This paper is organized as follows. The theoretical methods are briefly
reviewed in Section 2, in particular we shall discuss the structure and the
physical quantities addressed by each specific method. In Section 3 we
present and discuss the results concerning the structure under study and the
conditions leading to the determination of Q-factors of cavity modes. Section
4 contains concluding remarks.
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2. Overview of theoretical methods

2.1. THE GUIDED-MODE EXPANSION

This method has been recently proposed to study guided and quasi-guided
modes in PhC slabs (Andreani and Agio 2002; Andreani 2002) and it is
presented here in its general formulation. Starting from the second-order
Maxwell equation for the magnetic field

r� 1

�ðrÞr �H

� �
¼ x2

c2
H ð1Þ

where �ðrÞ is the spatially dependent dielectric constant, the field is expanded
in an orthonormal set of basis states as

HðrÞ ¼
X

l

clHlðrÞ ð2Þ

and then Equation (1) is transformed into a linear eigenvalue problem

X
m

Hlmcm ¼
x2

c2
cl ð3Þ

where the matrix Hlm is given by

Hlm ¼
Z

1

�ðrÞ ½r �H�lðrÞ� � ½r �HmðrÞ�dr ð4Þ

For the case of a PhC slab, we have a planar waveguide along z and a
periodic 2D patterning in the xy plane. The basis set HlðrÞ is chosen to
consist of the guided modes of an effective waveguide, where each layer j
(with j ¼ 1; 2; 3) is taken to have a homogeneous dielectric constant given by
the spatial average of �jðx; yÞ within the unit cell. It should be noted that the
definition of the effective dielectric constant as a spatial average is not unique.
For the effective homogeneous waveguide the planar dynamics can be sep-
arated from the vertical one, thus the index l can be written as
l ¼ ðkþG; aÞ, where k is the Bloch vector in the xy plane, G is a 2D re-
ciprocal lattice vector and a ¼ 1; 2; . . . ; amax is a discrete index which labels
the guided modes at wave vector kþG. The magnetic field is then written as

HkðrÞ ¼
X
G

X
a<amax

caðkþGÞF̂aðzÞeiðkþGÞ�x ð5Þ
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where F̂aðzÞ is a normalized spatial envelope function representing the guided
mode of the effective waveguide (Yariv and Yeh 1984) and x ¼ ðx; yÞ is the in-
plane spatial vector. Equation (4) then becomes

Ha;a0

G;G0
¼
Z

1

�ðrÞ r � F̂�aðzÞe�iðkþGÞ�x
h i

� r � F̂a0 ðzÞeiðkþG0Þ�x
h i

dr ð6Þ

The matrix elements of Equation (6) can be expressed in terms of the inverse
dielectric tensor in each layer gjðG;G0Þ ¼ ��1j ðG;G0Þ, by assuming the sepa-
rability of �ðrÞ and calculating the 2D integral in the xy plane. The matrix
gjðG;G0Þ is the same quantity which appears in usual 2D plane-wave calcu-
lations and can be conveniently evaluated by a numerical inversion of the
dielectric matrix �jðG;G0Þ (Ho et al. 1990). Both transverse electric (TE) and
transverse magnetic (TM) guided modes are included in the expansion and
are coupled by the dielectric modulation in the xy plane (Ochiai and Sakoda
2001a, b), leading to the folding and splitting of guided modes in the first
Brillouin zone. In the present case of a 1D lattice, as schematically shown in
Fig. 1a, TE and TM polarizations are uncoupled. A systematic study of
photonic mode dispersion and gap maps of 1D lattices in a PhC slab has
recently been performed (Gerace and Andreani 2004a). In this work only TE
polarization is considered and defect cavities are treated by introducing a
supercell periodicity along the 1D axis, as discussed in Section 3.

We point out that the guided modes of the effective waveguide represent an
orthonormal set of states, however the basis set is not complete since the
radiative modes are not included. The coupling to radiative modes at all
energies produces a second-order shift of the resonance energies: neglecting
this effect (usually of the order of a few percent) is the main approximation of
the present method. A most important effect is the first-order coupling to
radiative modes at the same energy for modes that fall above the light line
leading to a radiative decay, i.e., to an imaginary part of the energy, which
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Fig. 1. Schematic illustration of (a) the three layer geometry used in the GME method; (b) the geometry

for the grating method in classical diffraction and TE polarization.
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can be calculated by time-dependent perturbation theory. This procedure,
formally analogous to Fermi Golden Rule in quantum mechanics, leads to an
expression for the imaginary part of the frequency given by

�Im x2
k

c2

� �
¼ p Hleaky;guided

�� ��2q k;
x2

k

c2

� �
ð7Þ

where qðk; x2
k=c2Þ is the 1D density of photonic states at fixed in-plane wave

vector (Ochiai and Sakoda 2001b), and the operatorHleaky;guided is expressed as

Hleaky;guided ¼
Z

1

�ðrÞ ½r �H�leakyðrÞ� � ½r �HguidedðrÞ�dr ð8Þ

Results for intrinsic losses in 1D PhC slabs and for intrinsic and extrinsic
(disorder induced) losses in 2D PhC slabs with line defects have been pre-
sented elsewhere (Andreani and Agio 2003; Gerace and Andreani 2004a, b).

Besides neglecting the second order coupling to radiative modes, the main
approximations of the present method concern the choice of the average
dielectric constant in each layer, which defines the basis states for the
expansion, and the truncation of the reciprocal lattice vectors to a set with
modulus lower than a certain jGmaxj. The number of guided modes in the
expansion is usually taken to be amax ¼ 8 in the calculations, which is largely
sufficient for convergence in the energy range considered. The momentum-
space cutoff plays the same role and has the same properties as in usual
plane-wave calculations.

2.2. THE GRATING METHOD

The Q-factor of cavity modes studied in Section 3 can also be estimated by
considering a periodic system along the direction of the cavity and calculating
optical spectra for light incidence on the surface of the PhC slab. Illuminated
by an incident plane wave, the transmission or reflection spectrum of the
periodized cavity (a 1D grating in fact) should present an anomaly for the
resonant wavelengths. This anomaly results from a pole of the scattering
matrix, which relate the Rayleigh expansion of the electromagnetic fields in
the claddings (Popov 1993). The method we used for the calculation of the
transmission and reflection spectra is a frequency-domain method, which
relies on Fourier expansion techniques for all the electromagnetic fields
quantities. Because the literature on the analysis of gratings with Fourier
expansion techniques is largely documented (Popov 1993), the method is not
detailed here and we assume that the reader is familiar with the rigorous
coupled-wave analysis (Moharam et al. 1995), with its enhanced version for
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TM polarization and conical diffraction (Lalanne and Morris 1996) and for
crossed gratings (Li 1997). The implementation we used, which, can also be
applied to 2D photonic lattices, is described in (Whittaker and Culshaw 1999)
and will be referred to henceforth as scattering-matrix method (SMM).

The geometry for the grating calculation is shown in Fig. 1b. The light
beam is incident on the surface of the structure in direction perpendicular to
the grating, i.e., a classical (non-conical) diffraction geometry is used. We
assume TE-polarized light with respect to the plane of incidence, as shown in
the figure. Studies of other propagation direction (conical diffraction) could
also be useful but are not considered here.

2.3. FOURIER MODAL METHOD WITH PERFECTLY MATCHED LAYERS

Fourier expansion methods like the rigorous coupled-wave analysis (Moha-
ram et al. 1995) or the differential method (Popov and Nevière 2000), which
are widely used for modelling periodic structures, can also be used for
modelling non-periodic systems. Such an extension has been first pointed out
in (Lalanne and Silberstein 2000; Silberstein et al. 2001). This approach
drastically extends the domain of application of grating theories, and will be
referred to henceforth as Fourier modal expansion (FME) method. Referring
to Fig. 2, a supercell is introduced in the z-direction, perpendicular to the
plane xy of the slab. The boundaries of the supercell incorporate perfectly
matched layers (Berenger 1994) that absorb the light scattered by the cor-
rugation. The electromagnetic fields are null on every transversal boundary
and can be expanded in a Fourier series (plane-wave expansion). Dividing the
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Absorbing boundary

corrugated region
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Fig. 2. Schematic picture of geometrical structure employed in the FME method. The scattering matrix is

used to relate the field amplitudes between the different layers along x, and a Fourier expansion is made

along z with supercell periodicity.

282 D. GERACE ET AL.



structure into uniform layers along x, radiative and guided modes are cal-
culated for each layer in a Fourier basis. Transmission and reflection can be
evaluated by using a scattering matrix to match the field amplitudes between
different layers

bðiÞ

fðiÞ

� �
¼ S

0

fðtÞ

� �
ð9Þ

where bðiÞ and fðiÞ are column vectors whose elements represent the ampli-
tudes of the backward and forward propagating modes at the input plane,
and similarly fðtÞ is the vector of amplitudes of the forward field at the output
plane. As an example, let us consider the waveguide geometry of Fig. 2. If we
assume to illuminate the corrugated region with the fundamental TE mode,
all components of the vector fðiÞ will be zero except the component f ðiÞp ¼ 1
corresponding to that mode. The amplitudes of backward- and forward-
propagating modes are then computed by using the S-matrix, and the
reflected and transmitted intensity can be simply defined by R ¼ jbðiÞp j2 and

T ¼ jf ðtÞp j2. The Q-factor of a cavity mode can be evaluated by

Q ¼ Reð~kÞ=½2Imð~kÞ�, where ~k is the complex pole of the scattering matrix.

For two-dimensional geometries in integrated optics, the FME with per-
fectly matched layers has been benchmarked for scattering problems in
dielectric Bragg mirrors (Čtyroký et al. 2002) and has been used to compute
efficiently Bloch waves of grating waveguides (Cao et al. 2002). For more
computationally intensive three-dimensional geometries, it has been applied
to the calculation of radiation losses in line-defect PhC waveguides (Lalanne
2002; Sauvan et al. 2003), and to the electromagnetic analysis of optical
microcavities like micropillars (Lalanne et al. 2004a) or PhC wires (Lalanne
et al. 2004b).

3. Numerical results

We apply the theoretical tools described in Section 2 to a Fabry-Pérot cavity
embedded in a SOI-based 1D PhC slab. A schematic picture of the structure
is shown in Fig. 3, where the parameters are also defined and the supercell
along the direction of periodicity is shown. The latter is used in the calcu-
lation of the photonic band dispersion by the GME method, and also of
reflectance by the SMM.

The cavities are designed with the FME to have a resonant wavelength of
the defect mode at k ¼ 1:5lm in a SOI slab with a silicon layer of thickness
d ¼ 260 nm. Two kinds of mirrors with a mid-gap frequency equal to the
resonant frequency are considered, namely first- and second-order Bragg
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mirrors. Two physical mechanisms are responsible for the finite mode lifetime
of the cavity. For first-order Bragg mirrors, the fundamental Bloch mode of
the mirror is truly guided, and the mode lifetime is limited solely by a mode-
profile mismatch problem between the fundamental guided mode of the slab
waveguide (which is cycling between the mirrors) and the fundamental Bloch
mode of the mirror (Palamaru and Lalanne 2001). This mismatch problem
results into radiation losses in the claddings with a finite modal reflectivity of
98% at k ¼ 1:5lm for the fundamental guided mode impinging onto a semi-
infinite mirror. The first-order gap lies fully below the cladding light lines and
the intrinsic Q-factor calculated for a cavity with semi-infinite mirrors is
rather high. The cavity designed with second-order Bragg mirrors suffers
from additional losses. In this case, the second-order photonic gap lies above
the light line in air and the cavity mode has sizeable contributions from leaky
Bloch modes of the mirrors. Thus as the light is reflected back from the
mirrors, it is additionally radiated into the claddings. This additional source
of radiation results in a lower modal reflectivity of 93.5% at mid-gap fre-
quency and to a smaller intrinsic Q-factor. Bragg mirrors if third and higher
orders have lower Q-factors due to the increase of intrinsic losses with
increasing frequency, as we have verified.

We start with the case of a cavity surrounded by second-order Bragg
mirrors. The structure has the following parameters: d ¼ 260 nm,
a ¼ 560 nm, Lcav ¼ 335 nm, L1 ¼ 100 nm, L2 ¼ 460 nm, with an air fraction
fair ¼ L1=a ¼ 0:1786. In Fig. 4 the photonic band dispersion is shown for the
ideally infinite 1D lattice as well as for the cavity structure. The frequency is
plotted as a function of the component of the wave vector k along the
periodicity direction. Only TE-polarized modes are considered here, which
are the ones whose electric field is parallel to the stripes (polarization along y).

cavL L2L1

z

x

x

y

A=supercell period

d
a

N=7 air slits

Si

air

SiO2

Fig. 3. Schematic picture of the structure considered for calculations with GME and SMM approaches.

Upper and lower claddings are assumed to be semi-infinite along z, and the structure is uniform along y.
The main structural parameters are defined. The air fraction is fair ¼ L1=a; N is the number of air slits

between consecutive cavity layers.
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The dielectric constants of the patterned core layer and the uniform upper
and lower claddings are set to the following values: �air ¼ 1, �Si ¼ 12:1104,
�SiO2

¼ 2:0736, as appropriate for these materials around k ¼ 1:5 lm. An
effective dielectric constant given by the spatial average in each layer is
chosen to define the basis set for the GME method, which is a very good
approximation for TE modes (Gerace and Andreani 2004a). The three light
lines appearing in Fig. 4 correspond, for increasing energies, to the effective
core layer with average dielectric constant �eff, to the uniform SiO2 cladding
and to the air light line. The dispersion of the Fabry-Pérot resonator is
displayed in a reduced Brillouin zone (BZ) in Fig. 4b, owing to the super-
periodicity introduced in the calculation. The supercell period is defined as
A ¼ NL1 þ ðN � 1ÞL2 þ Lcav ¼ Na� L2 þ Lcav, and it is about seven times
larger than the period of the Bragg reflector, a, in this particular case; thus,
the BZ is reduced by a factor of about seven. The photonic bands, folded in
the reduced zone, can be recognized in Fig. 4b as compared to those of
Fig. 4a. The main difference is that a defect mode appears as an almost
dispersionless band within the TE band gap, at an energy Ecav ’ 0:825 eV
(k ¼ 1:5lm). This defect mode lies in the radiative region of the ðk;xÞ plane
and it can be excited by light incident on the surface of the planar waveguide
(Bristow et al. 2003).

In Fig. 5a the band dispersion of the defect mode is displayed in the energy
range between 0.7 and 1 eV, and in Fig. 5(b) the imaginary part of mode
energies calculated by the perturbative approach described in Section 2.1 is
also shown. The imaginary part of frequency is always much smaller than the
real part, thereby justifying a posteriori the perturbative treatment. In Fig. 5c
the calculation of variable angle reflectance by the SMM is plotted on the
same energy range, in order to make a direct comparison with the dispersion
of Fig. 5a and b. The same supercell along the periodicity direction was

(a) (b)

a
a

A

cavity

Fig. 4. Photonic band dispersion of TE-polarized modes as a function of dimensionless wave vector for

(a) 1D lattice of Silicon stripes on a SiO2 cladding with lattice constant a ¼ 560nm, thickness d ¼ 260 nm,

air fraction fair ¼ 0:1786, and (b) 1D cavity of length Lcav ¼ 335 nm and seven air slits between two

consecutive cavities in the supercell.
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employed for SMM calculations. It is known (Popov 1993; Fujita et al. 1998;
Astratov et al. 1999) that the sharp resonance features observed in reflectance
or transmittance experiments correspond to the excitation of photonic modes
which are matched in frequency and wave vector to the incoming beam. This
way, each resonance marks a point in the ðk;xÞ plane, and the wave vector
component parallel to the surface can be extracted from the angle of inci-
dence by the relation k ¼ ðx=cÞ sin h. The SMM calculation allows to
reproduce exactly the experimental situation described above. Very good
agreement between GME and SMM is found in the present case, in particular
concerning the energy position of the defect mode and of the band gap edges.
The excitation of the cavity mode can be recognized in the reflectance
spectrum as a dispersionless feature as a function of the angle of incidence.
Moreover, the spectral linewidth of the structure observed in reflectance are
related to the imaginary parts of Fig. 5b. Experimental results on SOI-based
1D PhC slabs have been reported (Patrini et al. 2002), in which the photonic
band dispersion of quasi-guided modes is obtained by variable angle reflec-
tance measurements. Moreover, cavity modes of Fabry-Pérot resonators with
supercell periodicity were probed with the same experimental technique on
GaAs-based systems (Bristow et al. 2003). The vertical Q-factor, Qv, of the
cavity mode, that is the one determined by out-of-plane losses, depends
slightly on the parallel wave vector because the imaginary part of the energy
does. This effect vanishes in the limit of a very large supercell. In order to
smear out the effect of a finite supercell width and to get a single number for
the Qv-factor from the calculations of Fig. 5a and b, we average the mode
energy and the corresponding imaginary part over the first BZ and then
apply the definition Qv ¼ Eav=½2ImðEÞ�av. Thus, a Qv of 250 is obtained for
such a structure, which is in favorably good agreement with the Q-factors
estimated from the resonant features in reflectance spectra. The latter do not

(a) (b) (c)

Fig. 5. (a) Dispersion of the defect mode, (b) imaginary part of mode energy corresponding to each

photonic band, and (c) surface reflectance for angles ranging from 0� to 60� in steps of 5� for classical

diffraction and TE polarization (geometry of Fig. 1b). Reflectance curves are shifted by DR ¼ 0:5 for

clarity. Structure parameters are the same as in Fig. 4.
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change appreciably when changing angle of incidence, which is in good
agreement with the calculations of Fig. 5b. For an estimation of the Qv from
reflectance spectra, we chose to analyze the resonant feature at 10�, which has
a resonance energy of Ecav ’ 0:825 eV and an estimated full width at half
maximum (FWHM) of � 3:5meV, which roughly correspond to Qv ’ 235.
This value, obtained by dividing the resonance energy for the FWHM,
slightly depends on the number of air slits in the mirrors around the cavity
layer and is already converged for N ¼ 7.

In Fig. 6 transmission calculations by the FME method are shown for a
1D PhC slab of finite length (Fig. 6a), and for a cavity between two mirrors
with the same number of slits (Fig. 6b). The mirrors are composed of five air
slits in both cases. The same structure parameters as in the previous calcu-
lations are used. The reflection and transmission coefficients are calculated
after excitation with the fundamental TE guided mode of the initial planar
waveguide. The band gap is clearly seen to be in good quantitative agreement
with both GME calculation of Fig. 5a and SMM calculations of Fig. 5c,
between 0:75 and 0:9 eV. The cavity mode produces a Lorentzian peak in the
transmission spectrum, which is displayed in Fig. 6b, with a calculated Q-
factor of 188. The total Q of such a system can be expressed as (Painter et al.
1999)

Q ¼ QpQv

Qp þ Qv
ð10Þ

where Qp is the planar Q-factor due to the confinement induced by the
mirrors. The resonant transmission in the cavity mode is very low in this case,
owing to reflection and diffraction losses over the length of the structure
(calculations not shown).
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Fig. 6. (a) Transmission through five air slits Bragg mirror (parameters as in Fig. 4); the width of the

photonic band gap should be compared to calculations of Fig. 5a and c. (b) Transmission through a

structure analogous to the one of Fig. 7a, with a cavity surrounded by mirrors with five air slits.
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In order to make a direct comparison with the calculations of Fig. 5, we
show a detailed view of the transmission peak for the structure represented in
Fig. 7a. The cavity layer is inserted between two Bragg mirrors with seven air
slits each. The calculated total Q-factor for this structure is Q ¼ 231, as
indicated in Fig. 7b. This value is in good quantitative agreement with the
one obtained by the calculation of Qv from either the GME or the SMM
methods in Fig. 5. This means that with seven air slits in the mirrors Qp is
much larger than Qv, and thus Q ’ Qv.

In Table 1 the calculated Q-factors and the maxima of the transmission
peaks for different numbers of air slits in the mirrors are shown. On
increasing the number of periods in the mirrors surrounding the cavity, it is
clear that the total Q-factor tends to Qv. Thus we confirm that all theoretical
methods adopted here lead to the same value for the vertical Q-factor. Also,
we conclude that the Q-factor can be determined by measuring the radiative
coupling between a plane wave incident from the surface and the cavity mode
with supercell repetition, as described by the calculations of Fig. 5. This may
be more convenient than measuring the in-plane modal transmission: indeed,
when the mirrors have many periods the total structure is longer in length
and the transmission in the cavity mode is low, because of reflection and
diffraction losses, thus making the measurement a difficult one.

We notice that no optimization of the structure was made to reach a high
Q-factor as done, e.g., in (Lalanne and Hugonin 2003). Higher Q-factors can
be obtained in a natural way by using first-order Bragg mirrors, i.e., with a
photonic gap at the border of the BZ in the region below the cladding light
lines. In Fig. 8 the GME calculations for a cavity embedded in Bragg mirrors
of this kind are shown. The parameters of the structure are: d ¼ 260 nm,
a ¼ 310 nm, Lcav ¼ 335 nm, L1 ¼ 100 nm, L2 ¼ 210 nm, with an air fraction
fair ¼ L1=a ¼ 0:3226. The mirrors have a first-order photonic band gap
around 0:825 eV, as displayed in the 1D lattice dispersion of Fig. 8a, and the

(a)

mirror
7 air slits

x
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input output

cavity

Absorbing boundary

Absorbing boundary

airn

Sin

SiO 2
n
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Fig. 7. (a) Schematic picture of the geometry employed for the FME calculation; (b) Transmission of the

fundamental TE mode through the structures displayed in (a), with parameters as in Fig. 4.
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corresponding cavity mode for the system with N ¼ 7 air slits between con-
secutive cavities is plotted in Fig. 8b. In Fig. 8c the imaginary part of the
energy corresponding to the photonic modes of Fig. 8b is shown. The vertical
Q-factor of this cavity mode is calculated to be Qv ¼ 1700. It should be noted
that the imaginary part of this cavity mode is roughly as dispersive as the one
of Fig. 5b when looked on a linear scale (it seems more dispersive in Fig. 8c
because it is an order of magnitude smaller and it is represented in a log
scale). In Table 2 the FME results corresponding to the same parameters are
presented. They lead again to conclusions similar to those of the previous
case: the Q-factor from FME calculations increases with the number of air
slits and tends to the Qv obtained with the GME calculation, with a very low
transmission coefficient. Transmission experiments performed on systems
with first order Bragg mirrors cavity modes were reported in (Peyrade et al.
2002), and the present theoretical results are in good agreement with the
experimental data.

In Fig. 9 we show the reflectance of the first-order cavity structure in the
energy region of the defect mode. The spectral structure corresponding to
the cavity mode is very narrow and has a non-negligible dispersion with the
incidence angle, in agreement with the results obtained by the GME method

Table 1. Quality factors and transmission peaks calculated with the FME method

Number of slits Q-factor Tpeak(%)

3 71 45
4 150 15

5 188 2.5

6 220 0.3

7 231 0.03

Parameters of the structure as in Fig. 4, but with increasing number of air slits per mirror.

(a) (b) (c)

cavity

Fig. 8. (a) Photonic dispersion of a 1D lattice of Silicon stripes on a SiO2 cladding with lattice constant

a ¼ 310nm, thickness d ¼ 260 nm, air fraction fair ¼ 0:3226. (b) 1D cavity of length Lcav ¼ 335 nm and

seven air slits in the mirrors; (c) imaginary part of energy for the cavity system and vertical Q-factor.
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(see Fig. 8c). It is interesting to notice that the cavity mode becomes more
pronounced at high values of the angle of incidence, close to the grazing
condition. This follows from the fact that the defect mode associated with the
first-order structure has the dominant wave vector components close to the
edge of the BZ, i.e., below the light line. In other words, diffraction occurs
mainly for a parallel wave vector close to the air light line. We conclude that
the energies and Q-factors of cavity modes associated with both first- and
second-order Bragg mirrors can be measured by surface reflectance in a
periodic structure, however the cavity mode is more easily observed at large
(small) values of the angle of incidence for the first-order (second-order)
cavity structure.

As a final comment, the computing time and memory requirements are
quite modest for the three methods employed in this work, for the present
case of a 1D waveguide patterning. The largest computational effort is re-
quired by the SMM because of the need of calculating reflectance spectra
from the surface at different angles of incidence. Anyway, also in the latter
case the computing time is of the order of a few minutes on a Personal
workstation.

Table 2. Quality factors and transmission peaks calculated with the FME method

Number of slits Q-factor Tpeak (%)

3 79 90
4 250 72

5 625 38

6 1071 10

7 1500 2

8 1580 0.13

Parameters of the structure as in Fig. 8, with increasing number of air slits per mirror.

Fig. 9. Reflectance of a cavity in a first-order Bragg structure (same parameters as in Fig. 8), showing the

resonant structure corresponding to the cavity mode. Reflectance spectra are calculated from 40� to 85� in
steps of 2.5� and are shifted by DR ¼ 0:5 for clarity.
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4. Conclusion

We have presented numerical results for cavity modes in 1D photonic crystal
slabs based on SOI technology. The three methods employed in this work,
namely guided-mode expansion, grating theory or scattering-matrix method,
and Fourier modal expansion have been shown to lead to the same values for
the cavity Q-factors. Cavity structures with first-order Bragg mirrors have
higher Q-factors than structures with second-order mirrors. The GME and
SMMmethods treat systems with a periodic repetition of the cavity along the
1D axis and infinite extension in the vertical direction, while the FME
method deals with a finite structure along the 1D axis and perfectly matched
layers in the vertical direction. The Q-factors obtained by the FME method
increase with the number of periods in the Bragg mirrors and tend to the
vertical Q determined by GME or SMMmethods when the effect of escape in
the finite 1D structure is negligible. Thus, the Q-factor of cavity modes can be
obtained from experiments by coupling from the surface of the waveguide
and measuring the reflectance of a periodized cavity system. The cavity mode
in reflectance spectra is more easily detectable close to grazing (normal)
incidence for structures with first- (second-) order mirrors. This may be
advantageous over transmission measurements that are made difficult by the
length of the structure, when the transmission in the cavity mode is very low
owing to diffraction losses.
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