
Photonic Bands and Radiation Losses
in Photonic Crystal Waveguides

Lucio Claudio Andreani
1Þ

Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento
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A method for the theoretical description of two-dimensional (2D) photonic crystals embedded in
planar waveguides is presented, which is based on an expansion of the magnetic field in the basis of
guided modes of an effective waveguide. The method yields the dispersion of photonic modes below
and above the light line, and in the latter case it gives also the radiative losses of quasi-guided modes
due to diffraction out of the plane. Photonic bands and gap maps of strong- and weak-index contrast
systems display confinement effects and other notable differences compared to the ideal 2D case.
The radiative losses in periodic 2D systems are found to increase with the refractive index contrast
between core and cladding, and with the radius of the holes in the triangular lattice.

1. Introduction Photonic crystals, namely materials with a periodic dielectric constant,
were first proposed by Yablonovitch [1] and John [2] as a way to suppress spontaneous
emission and to achieve localization of light by disorder. A periodic modulation of the
refractive index leads to the validity of Bloch–Floquet theorem and to the formation of
photonic bands, in analogy to electron bands in crystalline solids. A frequency region
where no photonic energies are found and therefore light propagation cannot take
place is called a photonic gap. A complete band gap occurs when light cannot propagate
in any direction of the Brillouin zone, either for a selected polarization state or for both
polarizations. After an initial period of slow development, the research field of photo-
nic crystals has progressed very rapidly in recent years, especially when nanotechnology
techniques for the fabrication of photonic structures in the near-infrared and visible
regions have become available.
Three-dimensional photonic crystals are the only ones which may possess a truly

complete band gap [3, 4], yet their fabrication at sub-micrometric scales is hard to
achieve and not flexible enough to allow for the controlled introduction of line and
point defects. Two-dimensional photonic structures embedded in planar waveguides,
also known as photonic crystal slabs, can instead be fabricated in the near-infrared and
visible regions by nanolithography and etching techniques [5–16]. In these systems, the
propagation of light is controlled in the 2D plane by the photonic structure, and in the
vertical direction by the dielectric discontinuity of the slab waveguide. Photonic crystal
slabs, however, are characterized by the so-called light-line problem: only photonic
modes which lie below the light line of the cladding material are truly guided and sta-
tionary, while modes lying above the light line are subject to radiation losses and are
called quasi-guided modes, or guided resonances. Radiation losses of these modes corre-
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spond physically to out-of-plane diffraction of a Bloch wave which propagates in the
plane; the issue of out-of-plane losses is a crucial one for prospective applications of
photonic crystals to various kinds of devices.
While the energies of guided modes can be calculated by introducing a supercell in

the vertical direction and using 3D plane-wave expansion [7], the frequency dispersion
and especially the losses (i.e. the imaginary part of the frequency) of quasi-guided
modes are more difficult to obtain and are often calculated by numerical simulations
with the finite-difference time domain (FDTD) technique [14, 15]. Recently, another
approach to the complex energies of quasi-guided modes based on finding the poles of
a scattering matrix operator has been proposed [17, 18]. In the present work we de-
scribe an alternative method which allows to calculate the energies of photonic modes
in photonic crystal slabs, both below and above the light line; for quasi-guided modes,
both real and imaginary parts of the energies are obtained. A few illustrative results
are presented and discussed. More detailed results for the real part of the photonic
mode dispersion can be found in Ref. [19]. All examples shown here refer to the trian-
gular lattice of circular air holes as a photonic pattern.

2. Method To illustrate the method, let us start from the second-order equation for
the magnetic field

r� 1
EðrÞr �H

� �
¼ w2

c2
H ; ð1Þ

where EðrÞ is the spatially-dependent dielectric constant. If the magnetic field is ex-
panded in an orthonormal set of basis states labelled by the index m as

HðrÞ ¼
P
m
cmHmðrÞ ; ð2Þ

then Eq. (1) is transformed into a linear eigenvalue problem

P
n
Hmncn ¼

w2

c2
cm ; ð3Þ

where the “Hamiltonian” matrix Hmn is given by

Hmn ¼
ð

1
EðrÞ ðr �Hm*ðrÞÞ � ðr �HnðrÞÞ dr : ð4Þ

In the present case of a photonic crystal slab we have a waveguide along z and a
periodic 2D patterning in the xy-plane. The basis set HmðrÞ is chosen to consist of the
guided modes of an effective waveguide, where each layer j is taken to have a homo-
geneous dielectric constant given by the spatial average of Ejðx; yÞ within the unit cell.
The index m of Bloch states can be written as m ¼ ðkþG;aÞ, where k is the Bloch
vector in the xy-plane, G is a 2D reciprocal lattice vector and a ¼ 1; 2; . . . ;amax is a
discrete index which labels the guided modes at wavevector kþG. Both transverse
electric (TE) and transverse magnetic (TM) guided modes are included in the expan-
sion and are coupled by the dielectric modulation in the xy-plane. The matrix elements
Hmm0 � HkþG;a; kþG0;a0 of Eq. (4) can be calculated by noting that the dx dy integral in
each layer j yields the Fourier transform E�1

j ðG;G0Þ of the inverse dielectric function,
which is the same quantity which appears in 2D plane-wave calculations.
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The guided modes HmðrÞ of the “effective” waveguide represent an orthonormal set
of states, however, the basis set is not complete since the leaky waveguide modes are
not included. When the guided modes are folded in the first Brillouin zone, most
(sometimes all) of them fall above the light line, i.e. in the energy region of leaky
modes. Coupling to leaky modes at all energies produces a second-order shift of the
resonance energies of all modes: a comparison with exact reflectance calculations indi-
cates that such a real energy shift is usually small [19]. More important, first-order
coupling to leaky modes at the same energy leads to a radiative decay, i.e. to an imagin-
ary part of the energy. This can be calculated by Fermi’s golden rule, like in usual time-
dependent perturbation theory of quantum mechanics. The imaginary part of the fre-
quency is given by

�Im
w2

k

c2

� �
¼ p

ð
1

EðrÞ ðr �H*leakyðrÞÞ � ðr �HguidedðrÞÞ dr

����
����
2

q k;
w2

k

c2

� �
; ð5Þ

where the 1D photonic density of states at fixed in-plane wavevector is [16]

q k;
w2

k

c2

� �
¼

P
kz>0

d
w2

c2
� 1
Eclad

ðk2 þ k2zÞ
� �

¼ 1
4p

ncladcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � c2k2

Eclad

s ð6Þ

for each specified photonic mode polarization and parity. Only symmetric waveguides
(i.e. with the same upper and lower claddings) are considered here. In this case, mirror
symmetry sxy with respect to a horizontal xy-plane bisecting the waveguide is a symme-
try operation, and the solutions of Maxwell equations can be classified as even or odd
with respect to specular reflection sxy.

3. Dispersion of Photonic Modes In Fig. 1a we show the dispersion of photonic modes
in a membrane photonic crystal with air claddings, also called air bridge: the chosen
value E ¼ 12 for the dielectric constant of the core corresponds to either Si or GaAs.
The membrane is patterned with a 2D triangular lattice of holes. Such free-standing
membranes have recently been fabricated and characterized [11, 12, 14]. A few modes
lye below the cladding light line and are truly guided, due to the large refractive index
contrast between the membrane material and the air, while all other modes lie above
the light line and are quasi-guided. The dispersion of truly guided modes calculated by
the present method is in good quantitative agreement with the results of 3D plane-
wave calculations with a supercell in the vertical direction [7]. The dispersion of the
even modes shows a gap between a=l ¼ 0:28 and 0.37: this is the well-known even gap
of the triangular lattice of holes, and is shifted with respect to the gap in the ideal 2D
case (which would occur between a=l ¼ 0:21 and 0.27 for the assumed hole radius
r ¼ 0:3a). The blue shift of mode energies in photonic crystal slabs with respect to the
2D case is a general phenomenon and is due to vertical confinement in the dielectric
waveguide. In Fig. 1b we also show the dispersion of guided modes in the effective
waveguide corresponding to the parameters of Fig. 1a, folded in the first Brillouin zone:
it corresponds to the empty lattice dispersion in electronic structure calculations. The
lowest (nonzero) energy level at the G point is six-fold degenerate for both parities, due
to the hexagonal symmetry of the photonic lattice. Comparison of Fig. 1a with Fig. 1b
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indicates how band splittings and gaps occur when free waveguide photons are coupled
by the off-diagonal Fourier components of the dielectric tensor. A second-order wave-
guide mode starts at a=l ¼ 0:46 for both parities in the effective waveguide as well as
in the patterned membrane. The cutoff energy of the second-order mode decreases on
increasing the core thickness (d ¼ 0:4a in Fig. 1).
Figure 2 shows the gap maps of the triangular lattice of holes in two photonic crystal

waveguides with Ecore ¼ 12 and Eclad ¼ 1 (Fig. 2a) or Eclad ¼ 11 (Fig. 2b): these values are
representative of waveguides with a strong or weak refractive index contrast, respec-
tively. The parameters of Fig. 2b are close to those describing the GaAs/AlGaAs sys-
tem. The core thickness is assumed to be d ¼ 0:4a: gap maps for other values of d and
for the ideal 2D case are given in Ref. [19]. Figure 2a shows that only an even gap
occurs in the air bridge case for all values of the hole radius: the gap is blue-shifted
with respect to the ideal 2D situation. In contrast, both even and odd gaps are found in
Fig. 2b for the GaAs/AlGaAs system, whose gap map is close to the ideal 2D one. The
main difference for the gap map in a waveguide is that an overlap of even and odd
gaps occurs for hole radii larger than about 0:31a (compared to 0:4a in the ideal 2D
case): thus a complete band gap for all directions and polarizations opens already at
relatively small values of the hole radius, which are easier to fabricate than lattices with
small dielectric separation between the holes and are also more convenient in terms of
propagation losses.
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Fig. 1. Dispersion of photonic modes a) in a membrane photonic crystal slab with Ecore ¼ 12,
Eclad ¼ 1, and b) in the corresponding effective waveguide. The membrane is patterned with a
triangular lattice of holes with pitch a and radius r ¼ 0:3a. The core thickness is d ¼ 0:4a. Filled
(open) circles: even (odd) modes with respect to specular reflection in the mid-plane of the
waveguide. The dotted lines represent the dispersion of light in the effective core and cladding
materials



4. Diffraction Losses of Quasi-Guided Modes Figure 3 shows a 3D plot of the com-
plex energy dispersion of even modes in a membrane photonic crystal with core thick-
ness d ¼ 0:3a and hole radius r ¼ 0:3a of the triangular lattice. The xy-projection gives
the real energy dispersion (similar to that of Fig. 1a), while the z-axis gives the imagin-
ary part of the frequency. The losses are nonzero above the light line of the cladding
material (air in this case), while they vanish for truly guided modes below the light line.
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Fig. 2. Gap maps for the triangular lattice of air holes in photonic crystal waveguides with a)
strong and b) weak refractive index contrast between core and cladding. The waveguides are pat-
terned with a triangular lattice of pitch a and variable hole radius. The core thickness is d ¼ 0:4a
in both cases. Solid (dashed) lines represent the edges of photonic gaps for modes which are even
(odd) with respect to specular reflection in the mid-plane of the waveguide
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Fig. 3. Three-dimensional plot of the
complex energies of photonic modes in a
photonic crystal slab with Ecore ¼ 12,
Eclad ¼ 1. The membrane is patterned
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The imaginary part of the frequency is at most of the order of 0.02, i.e. is small in
absolute terms, thereby justifying the use of perturbation theory. Im ðwÞ is different for
each mode and depends strongly on the wavevector. The losses calculated by the pre-
sent finite-basis expansion method are in good quantitative agreement with those ob-
tained with exact FDTD simulations in three dimensions [15]: this validates the present
approximation of treating coupling to leaky modes within time-dependent perturbation
theory. For most of the modes, Im ðwÞ grows on approaching the light line (reflecting
the divergence of the 1D density of states (6)), however, it always goes to zero when
crossing the light line: this is due to the behavior of the coupling matrix element, as
shown in Ref. [16] within a perturbative treatment of the in-plane dielectric modulation.
At the G point, most of the modes are lossless, while only a two-fold degenerate mode
has a finite imaginary part of the frequency: in fact only modes with the symmetry of
the dipole can be coupled to the radiation field at normal incidence, while modes with
different symmetries become radiative only at oblique incidence.
A mode above the light line with a finite Im ðwÞ is subject to diffraction out of the plane

during propagation; correspondingly, it can be excited by an external electromagnetic
field incident on the surface of the photonic crystal slab. This is the basis for the surface-
coupling method proposed in Ref. [8] for the measurement of the photonic band disper-
sion in a waveguide: the reflectivity from the sample surface displays sharp resonant fea-
tures which are associated with the excitation of photonic modes, and which yield the
energy and the Bloch vector in the first Brillouin zone. Reflectance spectra at different
angles of incidence and for different sample orientations allow to map the dispersion of
quasi-guided modes in the whole Brillouin zone. The surface-coupling technique has been
used by other groups [20, 21] and has become an important characterization technique,
which is complementary to in-plane transmission in the waveguide. Most resonant fea-
tures become vanishingly weak at normal incidence, when they correspond to modes
which do not have dipolar symmetry at the G point, while only the resonances correspond-
ing to symmetry-allowed modes at G remain strong at normal incidence [20].
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Eclad ¼ 1. The core thickness is d ¼ 0:3a in both cases



It is important to know how diffraction losses depend on various parameters, e.g. the
dielectric contrast between core and cladding and the filling fraction of the 2D lattice.
The radiative width of the dipole-allowed mode at the G point can be used to this
purpose, because it is a single number whose behavior can be studied as a function of
structure parameters. Figure 4 shows Im ðwÞ of the lowest symmetry-allowed mode at
the G point for different values of the refractive index contrast in the waveguide (Fig.
4a) and of the hole radius (Fig. 4b) in the triangular lattice. In both cases the core
thickness is d ¼ 0:3a. Figure 4a indicates that Im ðwÞ is much larger for a strong refrac-
tive index contrast in the vertical direction than in the case of a weak refractive index
contrast. This is in agreement with a previous model [10], based on a zeroth-order
separable approximation for the dielectric constant, which suggested that the diffraction
losses scale as ðDEÞ2 � ðEcore � EcladÞ2. Figure 4b shows that the losses increase rapidly
with the air fraction in the triangular lattice: interestingly, they reach a maximum for
r ¼ 0:45a and decrease again when the holes are enlarged towards the close-packing
condition. These results show that a picture of radiation losses being localized in the air
holes [10] is to a large extent correct for the triangular lattice, but still somewhat incom-
plete: rather, they suggest that the losses go to zero when either the air fraction or the
dielectric fraction are made to vanish.

5. Conclusions The expansion in the basis of guided modes of an effective waveguide
is seen to be an efficient and physically transparent method for the calculation of mode
dispersion and diffraction losses in photonic crystal slabs. The method takes full account
of the three-dimensional nature of the patterned waveguide, yet it is conceptually and
formally close to a two-dimensional plane-wave calculation. The approximation of ne-
glecting the leaky modes of the effective waveguide for the mode dispersion, and of
treating them by Fermi’s golden rule for the diffraction losses, is justified by compari-
son with results obtained with other more exact methods [7, 15].
The photonic mode dispersion in a photonic crystal slab displays confinement effects

with respect to the ideal 2D case; within the present method, the mode dispersion can
also be usefully compared with the dispersion of “free waveguide photons”, which are
the analog of free electrons or the empty lattice in the theory of electron bands in
solids. In the specific case of gap maps for the triangular lattice of holes, results for the
air bridge case show that only the even gap occurs (thus there is no complete band gap
for both polarizations at any hole radius), while for the GaAs/AlGaAs system a full
band gap for both polarizations may occur already for hole radii r larger than about
0:3a. The occurrence of second-order or higher waveguide modes, which may spoil the
presence of a gap, must be analyzed in any specific situation and favors the choice of
small values for the core thickness, particularly for high index-contrast systems.
The diffraction losses of quasi-guided modes above the light line are found to be

complicated functions of the mode index and of the wavevector. The imaginary part of
the frequency often increases when the mode approaches the light line, but eventually
goes to zero for all modes in the guided mode region. At k ¼ 0, only modes with the
symmetry of the dipole have finite losses due to diffraction in the normal direction.
Looking at the trends as a function of structure parameters, the losses increase on in-
creasing the dielectric contrast between core and cladding and on increasing the air
fraction in the triangular lattice, with a maximum around r=a ¼ 0:45. These trends are
expected to hold also for other geometries and for linear waveguides in photonic crys-
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tal slabs: in the latter case, specific calculations of Im ðwÞ will yield propagation losses
of defect modes. This will allow to quantify for linear photonic crystal waveguides the
theoretical limit of intrinsic diffraction losses, which assumes ideal structures without
disorder, roughness on non-ideal hole effects.
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