$Gruppi\ e\ simmetrie$

 $Gian carlo \ Campagnoli$

Percorsi della Fisica

Indice

Prefazione						
1	Simmetrie					
	1.1	Simme	etrie spaziali	2		
		1.1.1	Molecole e cristalli	5		
		1.1.2	Gruppi di simmetria	7		
		1.1.3	Le congruenze	9		
	1.2	Simme	etria delle equazioni di moto	12		
		1.2.1	Rotazioni e traslazioni spaziali	13		
		1.2.2	Traslazioni temporali	18		
		1.2.3	Inversione spaziale	18		
		1.2.4	Inversione temporale	23		
	1.3	Sisten	ni di riferimento inerziali	24		
		1.3.1	Trasformazioni di Galilei	24		
		1.3.2	Trasformazioni di Lorentz	26		
	1.4	La tec	oria dei gruppi in fisica	29		
2	Str	utture	algebriche (I)	35		
	2.1		oi	35		
		2.1.1	Gruppi finiti	41		
		2.1.2	Insiemi coniugati (cosets)	42		
		2.1.3	Elementi coniugati e classi	44		
		2.1.4	Sottogruppi coniugati e sottogruppi invarianti	47		
		2.1.5	Omomorfismo e isomorfismo tra gruppi	49		
	2.2	Prodo	otti tra gruppi	50		
		2.2.1	Il prodotto diretto di sottogruppi	50		
		2.2.2	Il prodotto diretto esterno	52		

		2.2.3 Il prodotto semidiretto di sottogruppi	54				
	2.3		55				
3	Strutture algebriche (II) 59						
	3.1	Anelli	59				
	3.2	Corpi	62				
	3.3	Spazi vettoriali	63				
		3.3.1 Spazi euclidei e spazi unitari	69				
		3.3.2 Omomorfismo e isomorfismo tra spazi					
		lineari	74				
	3.4	Algebre	75				
	3.5	Matrici rettangolari	76				
	3.6	Matrici quadrate	78				
	3.7	Operatori lineari	85				
		3.7.1 Sottospazi invarianti	90				
		3.7.2 Autovalori e autovettori	91				
		3.7.3 Operatori lineari in spazi unitari	96				
4	Le rappresentazioni dei gruppi 109						
	4.1		05				
			10				
			13				
		4.1.3 Simmetrie dell'hamiltoniana	17				
		0	18				
		4.1.5 Rappresentazioni indotte: esempi	19				
		4.1.6 Rappresentazioni unitarie e non unitarie	25				
	4.2	Rappresentazioni riducibili ed irriducibili	30				
		4.2.1 Ortogonalità delle rappresentazioni irriducibili 1	36				
			39				
		4.2.3 La rappresentazione regolare	42				
		±	45				
	4.3	Decomposizione delle rappresentazioni	53				
		4.3.1 Compatibilità	62				
	4.4	Il prodotto di rappresentazioni	62				
		4.4.1 Prodotto di matrici e prodotto di rappresen-					
			62				
			66				
		4.4.3 Rappresentazioni irriducibili di prodotti diretti 1	68				

5	Tr	asformazioni nello spazio euclideo	171				
	5.1	Rotazioni proprie ed improprie	171				
		5.1.1 Il gruppo SO(3)	171				
		5.1.2 Il gruppo ortogonale $O(3)$					
	5.2	Il gruppo Euclideo	187				
	5.3	Appendice					
6	Ιg	I gruppi puntuali					
	6.1	Assi e piani di simmetria	197				
	6.2	Gruppi puntuali di primo tipo	204				
		6.2.1 I gruppi uniassici C_n	204				
		6.2.2 I gruppi diedrici \mathcal{D}_n	205				
		6.2.3 I poliedri regolari	208				
		6.2.4 Il gruppo tetraedrico T	214				
		6.2.5 Il gruppo ottaedrico O	215				
		6.2.6 Il gruppo icosaedrico Y	217				
	6.3	Gruppi puntuali di secondo tipo	219				
		6.3.1 I gruppi S_{2n}	220				
		6.3.2 I gruppi C_{nh} e C_{nv}	221				
		6.3.3 I gruppi \mathcal{D}_{nh} e \mathcal{D}_{nd}	223				
		6.3.4 I gruppi tetraedrici T_d e T_h	226				
		6.3.5 Il gruppo ottaedrico O_h	229				
		6.3.6 Il gruppo icosaedrico Y_h	229				
	6.4	I gruppi cristallografici	230				
		6.4.1 I sottogruppi dei gruppi cristallografici	230				
7	I ca	ratteri irriducibili	233				
	7.1	I caratteri dei gruppi puntuali	234				
	7.2	Le rappresentazioni di $SO(3)$	244				
		7.2.1 Il prodotto $D^{(l_1)} \times D^{(l_2)} \dots \dots \dots \dots$	256				
	7.3	Vettori e tensori irriducibili	259				
		7.3.1 I vettori sferici	259				
		7.3.2 I tensori sferici	262				
	7.4	Le rappresentazioni di $O(3)$					
		7.4.1 Compatibilità con i gruppi puntuali					
	7.5	Simmetrie assiali					
	7.6	Tavole dei gruppi cristallografici	279				

8	Applicazioni elementari								
	8.1	Classificazione dei livelli							
		8.1.1	Potenziale con simmetria sferica	285					
		8.1.2	Potenziale con simmetria cubica	. 292					
	8.2	Propri	ietà delle funzioni partner	. 292					
	8.3	Pertur	rbazioni non dipendenti dal tempo	296					
		8.3.1	Effetto Zeeman	305					
		8.3.2	Effetto Stark	307					
		8.3.3	Elettrone di valenza nel campo cristallino	309					
	8.4	Regole	e di selezione	311					
		8.4.1	Elementi di matrice diagonali	321					
Bibliografia									
In	Indice analitico								

Prefazione

La teoria dei gruppi e delle loro rappresentazioni costituisce il linguaggio con il quale è possibile trattare le proprietà di simmetria dei sistemi. I metodi della teoria dei gruppi sono utilizzati in quasi tutti i campi, dalla fisica atomica e molecolare alla fisica dei solidi alla teoria quantistica dei campi e delle particelle elementari; le conoscenze che si richiedono vanno da nozioni molto elementari sui gruppi (finiti e continui) a più sofisticati concetti sui gruppi continui e sulla teoria delle rappresentazioni. Infatti, i gruppi cristallografici, SO(3), SU(2), SU(3), i gruppi di gauge, ad esempio, sono parte del linguaggio corrente della fisica.

Questo volume è l'ampliamento di alcuni argomenti trattati nei corsi di Teoria dei Gruppi che ho tenuto negli anni passati presso l'Università di Pavia per la Laurea e per il Dottorato di Ricerca in Fisica. Esso si pone come un testo introduttivo con l'intento di offrire agli studenti un orientamento semplice su problemi di simmetria.

Nel primo capitolo si presenta la nozione di gruppo di simmetria nell'ambito della geometria elementare come insieme di trasformazioni che mutano un oggetto in sé e si discute brevemente la struttura microscopica delle molecole e dei cristalli; si considerano le rotazioni, le rotoinversioni, le traslazioni ed i gruppi puntuali. Si esamina il problema della simmetria delle leggi fisiche cioè il problema di classificare i fenomeni fisici e le equazioni che cercano di interpretarli in relazione alle proprietà di invarianza per traslazioni spazio-temporali, per rotazioni spaziali, per inversione temporale, per trasformazioni inerziali e si accenna ai gruppi di Galilei e di Lorentz. Una attenzione particolare è dedicata al problema dell'invarianza per inversione spaziale (parità): a questo proposito viene discusso l'esperimento di C.S. Wu sul decadimento β dei nuclei di ^{60}Co che ha dimostrato come non ci sia conservazione della parità nelle interazioni deboli. Si discute infine il

ruolo della teoria dei gruppi sottolineando che l'invarianza dell'hamiltoniana di un sistema per un gruppo di trasformazioni permette di caratterizzare le possibili soluzioni delle equazioni dinamiche.

Nel secondo capitolo sono esposti gli elementi della teoria astratta dei gruppi con particolare riferimento ai gruppi finiti.

Il terzo capitolo presenta alcuni complementi di algebra e riassume le nozioni essenziali sulle matrici, sugli spazi vettoriali e sugli operatori lineari che sono utili nella teoria delle rappresentazioni dei gruppi.

Nel capitolo quarto viene esposta la teoria delle rappresentazioni con riferimento ai gruppi finiti. Sono ricavate le proprietà delle rappresentazioni e dei caratteri irriducibili, si discute il ruolo degli operatori di proiezione sia nella decomposizione delle rappresentazioni riducibili che nella costruzione delle matrici rappresentative irriducibili; si considerano infine aspetti vari del prodotto di rappresentazioni.

I due successivi capitoli sono dedicati ad una descrizione sistematica dei gruppi di trasformazioni dello spazio euclideo. In particolare, nel quinto capitolo si studiano da un punto di vista elementare il gruppo delle rotazioni proprie SO(3), il gruppo delle rotazioni proprie e improprie O(3) e il gruppo delle traslazioni; ogni elemento di SO(3) è descritto usando come parametri l'angolo di rotazione ed i coseni direttori dell'asse oppure i tre angoli di Eulero.

Il sesto capitolo è una descrizione sistematica dei gruppi puntuali, cioè dei sottogruppi finiti di O(3).

Nella prima parte del capitolo settimo sono illustrati, attraverso qualche esempio elementare, alcuni metodi per la valutazione dei caratteri irriducibili dei gruppi puntuali: le tavole dei caratteri sono calcolate esplicitamente per i più semplici tra i gruppi di questa classe. I caratteri irriducibili dei gruppi cristallografici sono raccolti nelle tavole in Sez. 7.6. Nella seconda parte del capitolo, dopo il calcolo delle rappresentazioni irriducibili ordinarie (a un valore) di SO(3) negli spazi delle armoniche sferiche con i relativi caratteri, sono trattati il prodotto di rappresentazioni di SO(3), i coefficienti di Clebsch-Gordan, i vettori e i tensori sferici, le rappresentazioni di O(3). Si ha, inoltre, un accenno al problema della compatibilità tra le rappresentazioni irriducibili di un gruppo puntuale e quelle di O(3); come esempio, si discute la compatibilità tra le rappresentazioni irriducibili di O_h ed O(3) e si definiscono le armoniche cubiche. Infine, sono trattate le rappresentazioni ad un valore dei gruppi \mathcal{C}_{∞} , $\mathcal{C}_{\infty h}$, $\mathcal{C}_{\infty v}$ e $\mathcal{D}_{\infty h}$ che sono

connessi con la simmetria assiale continua.

Il capitolo ottavo è dedicato ad alcune applicazioni elementari: classificazione degli stati elettronici nella fisica atomica, proprietà delle funzioni partner di una rappresentazione irriducibile, effetti di una perturbazione statica sui livelli degeneri, effetto Zeeman, effetto Stark. Viene inoltre discusso il ruolo della simmetria nel ricavare le regole di selezione per transizioni indotte da una perturbazione dipendente dal tempo. Un cenno importante a questo proposito riguarda il problema della classificazione degli operatori vettoriali e tensoriali secondo le rappresentazioni irriducibili del gruppo di simmetria del sistema.

Con l'eccezione dello studio elementare di alcuni gruppi continui (SO(3), O(3), gruppo euclideo, traslazioni) in questo volume si tratta essenzialmente di gruppi finiti; i gruppi continui saranno argomento di un lavoro successivo.

Ringraziamenti

Molti sono i motivi di gratitudine e amicizia che mi legano a Erio Tosatti; gratitudine che rinnovo in questa circostanza per avermi iniziato alle applicazioni dei gruppi nella fisica dei solidi.

Ringrazio cordialmente Annibale Magni, Fabio Pavesi e Silvano Romano per le utili osservazioni a una versione preliminare di questo lavoro.

Vivi ringraziamenti devo a Paolo Mascheretti per avere ideato e disegnato molte delle figure che compaiono nel volume.

Sono molto riconoscente ad Antonio Casella, che mi ha sempre stimolato a trasformare in libro le note redatte per le lezioni, e a Peppino Giuliani per le molte utili discussioni.

Ringrazio infine Pierangelo Bergamaschi per la perizia e la pazienza con cui ha realizzato tutte le figure.

Sarò grato a tutti coloro che vorranno formulare osservazioni e critiche.

Giancarlo Campagnoli Pavia, maggio 2008