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Summary. — Consistent nonrelativistic electromagnetic theories are
investigated by stressing the requirements of Galilean relativity. It is
gshown that Maxwell’s equations admit two possible nonrelativistic limits,
accounting respectively for electric and magnetic effects. A Galilean
theory is then built which combines these two theories and .can embody
a large class of experimental facts. As a result, several so-called «rela-
tivistic » effects are shown to necessitate a re-appraisal, or at least, a
more careful discussion. It is finally shown precisely how the old-fashioned
formulation of the electromagnetic theory in terms of field strengths and
field excitations clashes with Gralilean relativity in its constitutive equa-
tions only, leading to the idea of a privileged frame of reference (the
ether) or to Einsteinian relativity! :

1. - Introduction.

Does there exist a consistent and physically meaningful nonrelativistic
theory of classical electromagnetism? The present paper tries to answer this
question, the paradoxical nature of which seems obvious almost seventy years
after the advent of relativity theory, forced upon physics by the very diffi-
culties of nonrelativistic electromagnetism. We i)aa,inta,in however and wish
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to convince the reader that the real paradox rather lies in the lack of rigour and
the vagueness which characterizes the present understanding of the «rela-
tivistic » aspects of electromagnetic theory. This is partly due to the generally
imprecise meaning attached to the qualification of a theory or a physical ef-
fect as «nonrelativistic ». We feel that there is but one consistent definition,
according to which «nonrelativistic » is taken to mean «in agreement with
the principle of Galilean relativity ». Numerous recent developments have
shown rather gurprising aspects of Galilean physics as studied with the tools
and from the points of view developed for (Einsteinian) relativistic physics ().
These studies are interesting because of their direct applications (why use
Einsteinian relativity when the (81mpler) Galilean one is sufficient?) as well as
by the light they shed upon the relativistic theories themselves.

For these reasons we feel it necessary to investigate some questions, such as:

@) What are the Galilean limits—if they exist—of the Maxwell equations
and the Lorentz force? " As a corollary: which electromagnetic effects may
be considered as nonrelativistic, and which can only show up in a relativistic
theory? :

b) How do the electric and magnetic fields behave under a Galilean
transformation? We believe that this point is important, because one can find
in some well-known textbooks (?) « low-velocity formulae » which are incorrect,
or at least misleading, in the sense that they do not correspond to any con-
sistent Galilean limit.

¢) More generally, what equations could have been written in the 1850’
by a physicist trying to embody the known phenomena of electromagnetism
in a Galilean invariant theory?

It is not trivial to answer the above questions, and, to begin with, let us
remark at once that one cannot take carelessly the limit ¢ — co in Maxwell’s
equations, since the result simply depends upon one’s favourite system of
units (*)! It turns out, however, that correct results may be obtained by taking
very carefully the limit ¢— oo, as will be seen later (see the Conclusions).

However, we will not rely on such a limit process to establish our results.
At this point, let us only notice that the OGS system of units is a priori very

(*) Tor a general acoount of Galilean invarianee and its applications, see the review
article by J.-M. L&vy-LEBLOND: in Group Theory and ils Applications, Vol. 2, edited
by E. M. LoesL (New York, 1971), where references to the original literature will
be found.

(*) E. M. PurceLL: Berkeley Physics Oourse, Vol. 2, Klectricity amd Magnetism,
Problem 6-10 (Reading, Mass, 1965); L. D. LiaNpavu and E. M. Lirscrirz: The Olas-
sical Theory of Fields, Sect. 3-10 (New York, 1959).

(®) Bystems of units in electromagnetism are beautifully discussed by A. SOMMERFELD:
_ Blectrodynamics, Sect. 2, 7 and 8 (New York, 1952).
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“inconvenient for our purposes, since the velocity of light enters its very de- .
 finition. We shall thus use a system of units of the MEKSA type, depending on
 gwo constants s, and u,, where s, (i4,) is defined by the force between two charges
(currents) and the unit of charge (current) in the usual way.

Our main observation is the following: there exist two different and perfectly
well-defined Galilean limits of classical electromagnetism, and not just a single
"« nonrelativistic » limit. The first limit is valid when electric effects are dominant
. (E>e¢B): we call it the electric limit; the gecond one holds when magnetic

effects are dominant (¢B >>E): it will be called the magnetic limit. Although
thege limits remain in any case the fundamental ones, they can be combined
in order to build more general Galilean invariant theories, which will be de-
scribed in Sect. 3 and Appendix B.

From a mathematical point of view, the existence of two limits arises be-
cause there are two different kinds of «Galilean four-vectors», and thus two
possible descriptions of a Galilean current four-vector. Both are physically
relevant because there exist positive and negative electric charges: this is why
there are physical situations where either electric effects, or magnetic effects,
are dominant. v

_As a consequence, it is not 8o easy to decide whether a given phenomenon
is relativistic or not. For example, the magnetic force between two currents
ig certainly a relativistic effect, if the current is considered as a transport of
charge. However, in the framework of the magnetic limit, it is perfectly pos-
gible to write down a phenomenological Galilean invariant theory of magnetism
and magnetic forces. The plan of the paper is as follows. In Sect. 2 we derive
the equations of the two fundamental limits. In Sect. 3 we build a general
Galilean theory of electromagnetism, combining, so to speak, these two Galilean
limits, by introducing two kinds of electromagnetic fields, and we discuss its
physical interpretation. Finally, in Sect. 4, we examine the problem from an
entirely different point of view, by working with the electric and magnetic
excitations D-and H in addition to E and B: we show how the breaking of Ga-
lilean invariance can be pushed into the constitutive equations D= sE and
B = uH, which lead naturally to the hypothesis of an absolute frame of ref-
erence. Appendix A connects our Galilean electromagnetic theories with the
general theory of Galilean wave equations, Appendix B exhibits two «im-
proved » Galilean limits of the Maxwell’s equations, Appendix C deals with the
delicate problem of determining if the spin-orbit coupling exists in a non-
relativistic theory (and how much of it).

2.. — The two fundamental limits.

2'1. Galilean transformation for the current four-vector. — That two independent
limits are necessary can be seen most clearly by working out the Galilean trans-
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formation law for the current four-vector (0, j). Indeed, the usual Lorents
transformation ef a four-vector (%, u) admits two different Galilean limits, viz,

Uo = Uy ,
2.1 1
( ) u=u—=-vy,,
. ¢
,‘ l= —_—
(2 2) ( uo uo v u,
u'=u,

where v ig the velocity of the transformation.
Equations (2.1) are valid if v/e< 1 and || < o), 4.e. if the four-vector
is «largely timelike »; for example the usual Galilean transformation

oAt = ¢Af,

(2.3)
Ar'= Ar—vAt,

only holds if |Ar|< ¢|At]. Observe that the spatio-temporal gradient obeys
the alternate transformation law

10 _ 18 1 o
(2.4) cdt  eot o V7
V' =V

Indeed eqgs. (2.2) must be used if v/e<<1 and [u|>>|u,|, that is, for a « largely
spacelike » four-vector. Applying eqgs. (2.1) and (2.2) to the current four-vector,
we obtain what will be seen to be the electric limit (eqs. (2.1)) if o]o| >>|j] and
the magnetic limit (eqs. (2.2)) if olo| < |j|. Obviously, if there existed only
bositive (or negative) electric charges, the electric limit alone would bephysically
relevant. The existence of two types of electric charges allows |j| to be much
larger than olg| in many cases—this is the usual situation at & macroscopic
level (in particular when ¢ =0 while j 5= 0)—s0. that both limits are phys-
ically interesting.

2'2." Hlectrio limit. - Let us first turn to the case ole] >§| Jls which implies
that ¥ >>c¢B. This is the electric limit (subseript ¢) which corresponds to the
transformation law (2.1) for (00, j):

’
0, =0,5"
j:.—:j‘—vea .
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... Notiee that the continuity equation

9, _
7 T V=0

(2.6)
is Galilean invariant according to eqs. (2.4) and {(2.5) and coﬁﬁhueé td hold
in this limit: the current j, is a transport of charge. Taking into aceount that
|E,| >¢|B,], we can derive the following transformation law for the electro-
magnetic field (from its usual Lorentz transformation):

E=E,,

(2.7) ,

B,=B,— su,v X E,.
These last equations show that the motion of an electric field (and, more gener-
ally, any time variation) induces a magnetic ﬁeld while g time- -varying magnetie
field does not induce any electric field.. Thus Faraday’s law of induction is no
- longer true in this limit: there can be no « Faraday term » — dB,[0t in Maxwell’s
equations, which now read

V-E, =g./e, V-B, =0,

2. E, .
( 8) VXEe":O; VXBezsoﬂo%t— +,u'0Je'-

By using egs. (2.4) it is straightforward to check that egs. (2.8) are invariant
under the Galilean transformations (2.5)-(2.7). Physically, the theory based
on these ‘equations will describe situations where isolated electric charges:
‘move with low velocities. The electric field E, is derived from a scalar potential
¢., the magnetic field B, from a vector potential A4,:

{ E¢=—-V<p,,,

(2.9)
B,=VxA,,

which obey the transformation law

/ ‘P; = @ey
(2.10) ,
A, = A, — g pvp,.

Hence the 4-potential (p,, c4,) is & 4-vector of the type (2.1). Now, egs. (2.8)

do not yet determine the theory, since we have not given the limit of the Lo-
rentz force

(2.11) F— f dsr [o(r) B(r) + j(r) xB(r)] .
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If one demands Galilean invariance of the force (F'= F), it is easy to con-
vince oneself that a magnetic force f d®rj. x B, iz inconsistent with the field
transformation law (g.7 ). Hence we can only have electric forces given by

(2.12) F.= f a7 oy(r) E,(r) .
Thivs,' indeed, is the limit of the expression (2.11) under the « electric » conditions
¢le] >|j| and |E|>c¢|B|. Thus, in the electric limit, the magnetic field B,
does exist, but has no effect at all! However, in the more general theory de-
veloped in Sect. 3, there will be magnetic forces due to B,.

2'3. Magnetio limit. — We now consider the opposite case, in which elo| <
<|j| or |E|< ¢|B| in order to obtain the magnetic limit (subseript m). This
limit provides a phenomenological theory of magnetostatics, and may be ap-
plied to the usual situations at a macroscopic level, where magnetic effects are
in general dominant because of the balance between positive and negative
charges. In this limit, the current four-vector transforms according to eqs. (2.2):

Q:n = 0, — &0 YoV "Jim
(2.13)

o/ .
i = JIme

Taking into account that |E,|<¢|B,|, one obtains the field transformation law

E,'n =E_ +vxB,,
(2.14)

B, =B, .

These equations imply that the motion of a magnetic field (or its time variation)
induces an electric field, while a time-varying electric field does not produce
any magnetic field. Hence there can be no displacement current in Maxwell’s
equations which read in this limit

V-E, = oufe, V-B, =0,
(2.15) VXE, — ‘"aaitm’ V 5By = o -

Again, it is straightforward to check that eqs. (2.15) are invariant under the
Galilean transformations (2.13) and (2.14). It is very important to remark
that eqs. (2.13) (or (2.15)) allow only stationary currenis

(2.16) Vij.=0,

and the current j, cannot be related to a transport of charge.
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. In this limit, there cannot be any accumulation of charge in a fixéd volume.
The fields E,, and B,, may be derived from potentials ¢, and A, according to

2:17) - —a)
and the 4-potential (¢n, c4,) is in this case a 4-vector of the type (2.2):

(p:n =Py 'Am ’
(2.18)

A, =4,.

As in the electric limit, we must finally give the force law; it is easy to see
that an electric force

[arr ou(r) En(r)

is inconsistent with Galilean invariance, and there can exist only magnetic
forces:

(2.19) ‘ F,= j A% ju(r) X Bu(r) .

This is also the correct form of expression (2.11) in the magnetic limit ¢|o| < |j]
and |E| < c|B|. Hence the electric field E,, is nonzero, but it does not produce
.any observable effect.

2'4. Remarks. — i) Equations (2.8) contain the displacement current, and
eqs. (2.15) Faraday’s law of induction. However the induced fields B, and
E,, have a rather formal existence, since they do not produce any effect. In
the next Section we shall build a more complete theory, where B, and E,, do
produce observable effects.

ii) The total charge AQ,, induced by a change of frame of reference van-
ishes; indeed, following (2.13), we have

(2.20) AQn=[Beulr) a3 = — aupie[@3r 0 jinlr)

By remembering that tejm =V XB, (see (2.15)) one transforms AQ, in a
vanighing surface integral

(2.21) AQm=sov-mexdzs=0.
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This is a typically Galilean situation where there is a global conservation law
(@ = const) without a local equivalent, i.e. o,, and j,, do not obey a continuity
equation. The variation of charge in a given volume is not due to a current
flow through the boundary; this agrees of course with our earlier statement
about the current j, not to be thought of as a transport of charges. This may
explain how the requirement of local charge conservation by MAXWELL, through
the introduction of the displacement current, gave rise to a relativistic theory.
Indeed, because of the relativity of simultaneity, Einsteinian relativity re-
quires any conservation law to be local. Galilean relativity on the other hand
allows for nonlocal conservation laws, with opposite charges for instance ap-
Pearing at distant points simultaneously, which is a Galilean, but not Einsteinian,
invariant statement. ' '

iii) It may seem somewhat strange that the constant u, (s,) appears in
the electric (magnetic) limit, since this constant cannot be experimentally
defined. But one is free to measure @n in units different from. o,, and B, in
units different from B,. Defining ‘ '

(2.22 B,=B.[sps,  Gn=0nlootto,

one obtains equations for the electric (magnetic) limit which depend now only
on & (Hy).

iv) One can find in some textbooks (*) the following « low-velocity limit »
for the field transformation law: )

E'=E+'v><B,

{(2.23)
B'=B—¢uvxE.

These equations coincide neither with (2.7) nor with (2.14) and do not cor-
respond to any kind of Galilean limit. Indeed, eqs. (2.23) do not even define
a group law: composition of two such transformations does not yield a trans-
formation of the same type. In particular, it is not consistent with the Gali-
lean additivity of velocities. We think that egs. (2.23) have no well-defined
meaning, and should be avoided altogether.

v) We have already pointed out the main defect of both limits, if we
are to write down a physically interesting theory of electromaguetism; the
fields B, and E,, produce no effect at all, 80 that we have, for example, no mag-
netic force between a current and a moving charge, and no induced current
in the presence of time-varying magnetic fields.

vi) Both limits may be viewed as illustrations of the general theory of
Galilean wave equations for zero-mags, spin-1 particles (see Appendix A).
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3.-A general formulation of Galilean electromagnetism.,

3°1. Definition of the theory. — The difficulties which were pointed out at

the end of the previous Section arise because we require the Galilean invariance
- of the force. The only way to avoid this difficulty is to distinguish carefully
between electric and magnetic charges and currents in their interaction with
the fields. It is possible to generalize the previous theories slightly by intro-
ducing only one kind of electromagnetic field (E,B) (see Appendix B). But
in the most general formulation we must consider simultaneously electro-
magnetic fields of the electric type (E.,, B,) and of the magnetic type (E,, B,,).
The fields (E,, B,) have «electric » sources (0., J.), they obey egs. (2.8) and
have the transformation properties (2.5) and (2.7). Similarly, the fields (E,,, B,,)
are generated by « magnetic» sources (9., j.) according to (2.15), with trans-
formation properties given by (2.13) and (2.14). But we now allow B, to interact
with j,, and E,, to interact with g, according to a force law

(81)  F=[a (0E,+jnxBu+ 0Ep+j.XBu+ gnEut juxB.).

In a Galilean transformation, the first two terms in (3.1) are separately invariant,
and the same property is also obviously true for the sum of the third and fourth
terms. The sum of the fifth and sixth terms is also invariant because, according
to (2.7) and (2.13),

(3.2) F—F= ——a.,mfdw [(0+m) Eot jin X (v X E))] =
= —-—ao,uovfd“r(jm'E,,) = souovfdsrv (@PeJm)=0.

- Conspicuously missing terms in (3.1) are g, E, and j,xB,: as was remarked
previously, these are precisely the terms which would break the Galilean in-
variance of the force.

3°2. Physical interpretation. — Before we proceed further, we must admit
that such a theory looks rather complicated, when compared to the usual
one! However we wish to show that it is able to describe a large class of elec-
tromagnetic phenomensa, and that a physicist deeply concerned about Galilean
invariance might have arrived at this formulation in the 1850’s.

It is necessary that the electric current in a wire be of the j,-type, other-
wise there would be no forces between two currents. Thus we assume that or-
dinary electric currents—and also magnetization currents—are of the j,-type,
while isolated charges are of the p,-type. The theory is then able to embody
the following experimental facts:

i) Existence of forces between isolated charges (Coulomb’s law).

ii) Existence of forces between currents and magnets.

15 — Il Nuovo Cimento B.
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iii) Existence of induced currents. More precisely, there exists an induced
electric field E,, in the presence of a time-varying magnetic field B,,. However,
since this field does not act on charges, it is necessary to add a constitutive
equation (Ohm’s law)

(33) : jm = G(Ee + Em)

in order to obtain an induced current. Note that despite the transformation
laws ((2.7), (2.13), (2.14)), eq. (8.3) does not break Galilean invariance, because
it is assumed to hold only in a reference frame where the conducting medium
is at rest.

iv) Bince B, acts on j,, moving electric charges exert forces on magnets
and currents. This accounts in particular for Rowland’s experiment: isolated
electric charges in motion may act on a magnet, or a current.

v) For the same reason, there is a spin-orbit coupling: a magnetic mo-
ment A moving with velocity v in an electrostatic field E, interacts with the
magnetic field B, = — gu,v X E,. Additional comments on this question are
offered in Appendix B.

vi) The theory admits nontrivial free fields. The field equations (2.8), (2.15)
with null sources imply harmonicity (vanishing Laplaciang) of their solution,
so that monochromatic « waves » necessarily correspond to uniform, that is
constant throughout space, fields. - However, there are genuine time-dependent
solutions of the following form:

E,=0, E, =E® exp [iwt],?
(3.4)

B, = B exp [iot], B,=0,

where B and E{ are uniform fields. Such solutions may be viewed as waves
travelling with infinite velocity (since they have an infinite wavelength and
a finite frequency). This is quite in keeping with the idea that a Galilean theory
cannot admit an intrinsic propagation velocity. These « waves » are able to
transmit instantaneous action-at-a-distance since B, and E,, act on the « true »
charges g, and currents j,, respectively (see eq. (3.1)). Hertz’ famous experiments
thus might be explained in the present theory, as well as other electromagnetic
radiation effects where the finite velocity of propagation is ignored.

Now for the defects: apart from the absence of propagating electromagnetic
waves, the most important shortcoming of Galilean electromagnetism is that
capacitors do not work, in particular with alternating currents! The reason is
that the current j,, is necessarily stationary, and there is no continuity equation.
Thus there is no relation between the intensity I in the wire and the time de-
- rivative dQ/dt of the charge stored in the capacitor, and one cannot write down
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the standard equations. We are forced to conclude that the behaviour of a

- capacitor is a purely relativistic effect!
Strictly speaking, one could argue that this is not entirely true, since we
could have decided the electric currents to be of the j,-type. But then there
would be no magnetic force between two cun'ents, and the theory would be-

“come rather uninteresting.

As a final remark, let us notice that the so-called quasi-static, or quasi-
stationary approximation cannot be made compatible with Galilean invariance.

3'3. Field energy and field momentum. — It is not very difficult to obtain
the expression for the density of field energy « in this theory. First it is clear
that the electrostatic energy is as usual (s/2)E}; the magnetostatic energy
can be obtained by using standard methods (), since we had to include Ohm’s
law (2.3) in our formulation. We thus obtain

_fp 1 p
(3.5) "= 21«:,-;-2/%3(,,,.

As usual, we assume that this expression still holds with time-varying fields;
Poynting’s theorem written in the form

ou

(36) 8t+E Ja+E Jm+v §=0

will be satisfied provided Poynting’s vector S is defined by
(3.7) s =i(E5xBe+ E.xB,).

Finally let us give the expression for the density of field momentum p. Again
we can use standard derivations (°) to show that p is given by

(3.8) - p==5E,XB,.

Indeed one can see that f+ Op/ct, where f is the density of force, i.e. the
integrand in the r.h.s. of eq. (8.1), is equal to the divergence of a rather unin-
spiring dyadic, which we do not feel necessary to write down here. Since there
is momentum in the field, Newton’s third law is no longer true; for example,
let us take an electric charge ¢ moving at right angles towards a straight wire

(8) W. PaxorskY and M. PHiriips: Olassical Electricity and Magnetism, Chap. 10
(Reading, Mass., 1962).
(5) J. D. JacksoN: Classical Electrodynamics, Chap. 6 (New York, 1962).
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carrying a current I. This charge will experience a force F = qv XB,,, while
the total force on the wire is zero (although there is of course a nonzero torque)
(Fig. 1). This example shows that Newton’s third law, if it is compatible with
Galilean invariance, is not required by it.

Fig. 1. — The reciprocal action of a charge in motion and a’current-carxying straight
wire: a) the wire exerts a neat force on the charge, b) the charge exerts a zero force
(but nonzero torque) on the wire.

We conclude this Section with two remarks: first there is no relation between
the density of field momentum p and Poynting’s vector S, in contrast to the
usual case. Secondly, the density of field momentum and enérgy, and also
the total fleld momentum and energy, are separately Galilean invariant. This
may look rather strange, since one could expect that they transform according
to one of the two nontrivial Galilean limits of the Lorentz transformation
(ef. (4.11)). However our theory is not really a limit of the usual one, but
rather a combination of two limits, and there is perhaps no reason o expect
the correct transformation law.

4. - Galilean invariance and the constitutive equations of the vacuum.

Up to now we have taken the modern point of view (°) according to which
the fundamental fields are E and B. However, in older presentations of elec-
tromagnetism (*), it was customary to introduce, in addition to E and B, two
other fields, namely the electric and magnetic excitations D and H. We wish
to show that in this formulation, all the breaking of Galilean invariance.can
be confined to the constitutive equations

(4.1) - D=:cE, B=uH

(®) R.P.FreYNMAN: The Feynman Lectures in Physics, Vol. 2 (Reading, Mass., 1965);
..8ee -also-the. first quoted beok in-ref. (2). - : o
("). Bee e.g. ref. (3), Part I.
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...eveh.in vacuum (g==g, u =U,). We emphasize that in this Section our
point of view is completely different from the previous one: we do not want
to build a Galilean invariant theory, but rather to exhibit how the requirement
of Galilean invariance may lead to the hypothesis of an absolute reference frame.
- The-fields -(E, B; .H, D)-obey- the usual-equations-(7)-

V-D =p, V-B =0,
(4.2) __9oB _ob .
VXE__aV VXﬂ—at+h
where
(4.3) % 4 y.j=0
N | §Z+ J— »

The Lorentz force is given by
(4.4) F=[ar [o(r) Etr) +j(r) xB(r)].

It is remarkable that these equations are Galilean invariant with respect to the
following transformation laws:

8

E’=E+'DXB, D/=D,
(4.5) :
B'=B, H=H—-vxD,
o'=e,
(4.6) { L
. J =J—vo,

since these entail F'=F.

Notice that the continuity equation is satisfied, and that the current j
may correspond to a transport of charge. Poynting’s theorem holds in the
conventional form

8B 8D _ B
S T B +Ej+V-(ExH) =0.

(4.8) H
The energy density is given by
(4.9) vw=4E-D+ iB-H
and the momentum density by

(4.10) ~ p=DxB.

It is quite interesting to observe that (u, p) now obeys the Galilean transfor-
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mation law for energy-momentum, written for massless particles (*):

= h—p-v,
(4.11)
p'=p

(for massive bodies

: U'=u—p-v—+ tdv?,
(4.12)

pP=p—adv

where d is the mass density (*)). Since the volume is /Galilean invariant, the
transformation law for energy and momentum densities is the same as that
of energy and momentum. One can say from (4.11) that the Galilean theory
remembers the existence of photons!

Up to now, everything is quite nice, but the constitutive equations (4.1) are
immediately seen to break Galilean invariance as they are inconsistent with
the transformation laws ((4.5), (4.6)). The only way out (apart from relativity,
of course!) is to assume that the constitutive equations hold only in some par-
ticular frame of reference, and this brings us at once to the ether theory. This
Section shows that the following statement, « Maxwell’s equations are incom-
patible with Galilean invariance », i8 a little bit loose. It is a perfectly valid
statement provided one works with the fields E and B alone, but if one works
with the excitation fields D and H also (which after all was the custom at the
beginning of the century!) the structures (4.2) of Maxwell’s equations and (4.4)
of the Lorentz force are entirely compatible with Galilean rela.tivify. It is then
only at the level of the constitutive equations (4.1) that Galilean invariance
breaks down.

5. — Conclusions.

Let us conclude by coming back to our previous view-point and discuss
only Galilean invariant theories. What we have shown is that the following
three assumptions are inconsistent:

1) Galilean invariance;

2) continuity equation: V- Jj=— %# 0;

3) magnetic forces between electric currents.

In the electric limit we keep 1) and 2), while in the magnetic limit we as-
sume 1) and 3) to hold true. We have alto shown that it is possible to combine
both limits to build a Galilean invariant theory of electromagnetism. This
_ theory looks complicated and awkward when compared to the usual one, al-
though it is able to embody a large class of experimental facts.
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The Galilean limits cannot be obtained by letting ¢ go to infinity in the equa-
tions, without being very cautious (?).

The effect of the limiting process, as a matter of fact, depends upon the
gystem of units. Any system, such as the GGS one, where ¢ enters in the very
__definition of the units is bound to give inconsistent results. On the other hand,
in an MKSA-type system, the initially «independent » coefficients s and u,
turn out to be related through the formula gu,e?=1. This is sufficient to
show that Maxwell’s equations cannot have a nonrelativistic limit (¢—>oco) where
& and u, both remain finite. The possibility of keeping one of them finite,
at will, implies the existence of the two Galilean limits already recognized.
In fact the following prescription yields the « magnetic » limit: express the
relativistic theory in terms of the usual E and B, keeping u, but eliminating s,
(written instead 1/u,0%), then let ¢ go to infinity. To obtain the «electric »
limit, _express the rela,tlwstlo theory in terms of E and a redefined magnetic
field B = B (see also Appendlx A), keeping & but eliminating u, (writtem
1/e,0%), then let ¢ — oo:

It is straightforward to check that this prescription gives the correct limits
for Maxwell’s equations, the Lorentz force, the field transformation law, Poyn-
ting’s vector and the field energy and momentum. (
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APPENDIX A

Galilean electromagnetism and wave equations.

A direct construction of Galilean wave equations (?), based on the Bargmann-
‘Wigner method, shows that free massless spm-one particles are characterized
by a 6- component wave function, namely a pair of vector fields (L, M); they
obey the following wave equation:

V-L =0, VM =0,

(A1) VxL_—%l, VxM=0,

(®) Relevant observations about this point have been made by H. BACRY and J. KUBAR-
ANDRE: Int. Journ. Theor. Phys. (to be published), in a paper which is mainly devoted
to magnetic monopoles in a Galilean framework. We intend to come back to this
problem from the point of view developed in the present paper. »
(*) J.-M.Lgvy-LesLoNDp: Comm. Math. Phys., 6, 286 (1967). The present paper corrects
and develops Sect. 6 of this article.
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which is-invariant under the Galilean transformation

{ L' =L—vxM,
(A.2)

M=M,.

- The-unicity of-this -description ‘might be thought to contradict the existence

of two Galilean limits for the relativistic theory. However both these theories
(for free fields) may be cast in the standard form (A.1). The identification

L=E,, M=B8B,,

immediately converts the general equations (A.1) into those of the magnetic
limit, (2.14). By setting L = B,[e,u,, M = — E, one instead recovers the electric
limit (2.7). The interchange of the two limits by the substitution (Bw<>—E,,
E, <> B,[¢ou,) is obviously linked to the invariance of the original Maxwell’s
equations under the substitution (B« —E, E <> B/s,u,) .

APPENDIX B

We exhibit very briefly two Galilean invariant theories, in which one intro-
duces two kinds of currents, (g.,j,) and (gm, Jw), but only one kind of electro-
magnetic field (E, B).

a) Improved electric limit:

‘

V-E =g,/e, V-B =0,
B.1 oE L
( ) VxE.—:O, VXB=8oMo'a—t+Mo(]a+]m)’
(B.2) F= fdw (0E + ¢uE + jnxB).

b) Improved magnetic limit:

V-E = (0.4 0m)/¢05 V-B =0,
(B.3) Vsz_.%_?, VXB:,unjmy
(B.4) F=[dr(e,E+j,xB+juxB).

The interested reader will easily find which physical effects are taken into

~account by ‘eqs. (B.1), (B.2) and (B.3), (B.4) respectively.




$ALILEAN ELECTROMAGNETISM 233

APPENDIX C

Relativity and spin-orbit coupling.

The spin-orbit coupling in atomic physics is conventionally derived through
a « nonrelativistic » reasoning; one argues that the static electric field of the
nucleus gives rise to a magnetic field in the reference frame of a moving elec-
tron, the magnetic moment of which then interacts with this field. Unfortu-
nately the coupling thus calculated is half the real one and this is explained
by the Thomas precession, usually presented as a « purely relativistic » effect.
Now, there is some difficulty, to say the least, in understanding how a relativistic
effect may induce a factor of 2, independently of the value of ¢! Moreover,
the expression for this coupling energy contains a factor ¢~* which seems rather
strange for a nonrelativistic effect. Nevertheless, the conventional argument
seems to be borne out by our consistently Galilean discussion of Subsect. 32 i)
which yields indeed the usual, twice too small, « nonrelativistic » coupling.
However, this is but an illusion; the theory of Sect. 3 is not a Galilean limit
of the Maxwell theory. As a consequence, the & factor in the spin-orbit
coupling cannot be compared with the ¢~ factor of the Thomas term deriving
from relativistic kinematics. On the other hand, from the point of view of
the Galilean limits of the Maxwell theory, there is no spin-orbit coupling at all.
Indeed, we need to use here the « electric » limit to account for the electro-
static field of the nucleus. Now, in that limit (Sect. 2°2), the magnetic field
induced in a moving reference frame (see eqs. (2.7 )) does not act on currents
or magnets (see eq. (2.12)) as we have stressed; the magnetic moment of the
electron does not interact with it. In that sense, the induction of the magnetic
field is as relativistic an effect as the Thomas precession, and the spin-orbit
coupling should be viewed as a 100 o/, rather than 50%, relativistic property.

® RIASSUNTO (%

8i indaga sulle teorie elettromagnetiche non relativistiche consistenti, mettendo in
evidenza le esigenze della relativitd galileiana. Si dimostra che le equazioni di Maxwell
ammettono due possibili limiti non relativistici, che sono responsabili, rispettivamente,
degli effetti elettrici e magnetici. 8i costruigce poi una teoria galileiana che unisce queste
due teorie, e che pud includere un’ampia classe di fatti sperimentali. 8i prova, come
risultato, che parecchi effetti cosiddetti « relativistici » necessitano di una nuova valu-
tazione, o, per lo meno, di una pil attenta discussione. Infine, si dimostra precisamente
come Dlantica formulazione della teoria elettromagnetica, in termini di forze del
campo e di eccitazioni del campo, 8i scontra con 1a relativitd galileiana solamente nelle
sue equazioni essenziali, portando all’idea di un mezzo di riferimento privilegiato
(’etere) o alla relativitd di Einstein !

(*) Traduzione a cure della Redazione.



