Structural Studies on Membrane Proteins by Solid-State NMR Spectroscopy

Daniel Huster

Junior Research Group "Structural Biology of Membrane Proteins" Institute of Biochemistry/Biotechnology Martin-Luther-Universität Halle-Wittenberg

Membrane Proteins

- About 30% of the human genes encode for membrane proteins.
- Membrane proteins play important roles as receptors and channels, in signal transduction and cell communication and many others.
- About 60% of all targets for newly developed drugs are membrane proteins.

Structure Determination of Membrane Proteins

- By 2007 only ~100 structures of a few membrane proteins were known in strong contrast to ~35000 structures of soluble proteins
- Standard methods for structure determination fail for membrane proteins

Why Solid-State NMR?

Review

TRENDS in Biochemical Sciences Vol.28 No.3 March 2003

Membrane proteins: the 'Wild West' of structural biology

Jaume Torres¹, Tim J. Stevens² and Montserrat Samsó³

¹School of Biological Sciences, Nanyang Technological University, 637616, Singapore

²Department of Biochemistry, University of Cambridge, UK CB1 2GA

³Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA and Department of Anesthesia, Brigham & Women's Hospital, Boston, MA 02115, USA

Concluding remarks

Membrane proteins remain a big challenge for the structural biologist. Because of experimental difficulties associated with their hydrophobic span, classical techniques such as X-ray crystallography and solution NMR, have been producing structures at a very slow pace. Therefore, alternative techniques are being sought. But because membrane proteins belong to a heterogeneous class of proteins, ranging from membrane-associated systems so big that can be studied with single-particle techniques, to single TM helices, this search has resulted in a plethora of new experimental approaches with various degrees of resolution. EM crystallography is clearly competing in resolution with X-ray diffraction, whereas single-particle and AFM techniques can detect conformational changes in large complexes. Progress using uniaxially oriented bilayers has been especially intense in the analysis of TM helix structure, particularly with the

lement the areas in which SDSL-EPR is weaker. Specifically, SSNMR has perhaps the brightest future because of the diversity of nuclei and nuclear spin interactions that can be observed, although use of complementary techniques will be crucial, especially taking into account the improvement in computational and prediction tools. We nope for progress in faceting strategies, nardware and development of experiments in the near future. However, we can expect that membrane proteins will still be beyond the reach of proteomics for the foreseeable future; some years left until the 'Wild West' is fully explored, then.

Structure Determination

NMR-Methoden zur Untersuchung von Membranproteinen

Magic Angle Spinning Techniques

Isotopic Labeling

- → NMR active isotopes of spin ½ that can be detected by solid state NMR methods are rare (¹³C, ¹⁵N), which calls for specific enrichment
- 1. Chemical synthesis if peptides at the solid phase
- Almost any given labeling scheme can be done, provided specifically labeled amino acids are available
- ③ No scrambling of the label
- ⊗ Expensive!!!
- $\ensuremath{\mathfrak{S}}$ Peptides should be smaller than ~50 residues

Isotopic Labeling

- 2. Biosynthesis with uniformly ¹³C Glucose/¹⁵N Ammoniumcloride
- © Relatively cheap
- © Works in principle for all recombinant proteins
- Many membrane proteins do not express well, are toxic for bacteria, or aggregate
- ☺ Poor resolution in solid-state NMR spectra
- ⊖ ¹³C spin diffusion
- ☺ Dipolar truncation

Isotopic Labeling

- 3. Biosynthesis with specifically labeled ¹³C Glucose or ¹³C Glycerol
- ③ Moderate cost
- © Works in principle for all recombinant proteins
- © Better resolution in solid-state NMR spectra
- © No ¹³C spin diffusion
- O No dipolar truncation
- Many membrane proteins do not express well, are toxic for bacteria, or aggregate

2-¹³C glycerol 1,3 ¹³C glycerol

Specific and Extensive ¹³C/¹⁵N Labeling

Ten-amino acid selective & extensive labeling (TEASE)

PET-15b vector

MGSSHHHHHHH SSGLVPRGSH MLEDP

451	INFTTE FL	K SVS EK YGA K	AEQLAREMAG
481	Q A K G KKIRN <mark>V</mark>	EE AL KT <mark>y</mark> EK <mark>y</mark>	RADINKKINA
511	KDR AA I AAAL	E <mark>SV</mark> KL <mark>S</mark> DI <u>SS</u>	NLNRFSRGLG
541	YAGKFTS <u>LA</u> D	WITE FG K AV R	TENWRP lfv K
571	TETII AG NAA	T alvalvfs I	LTGSALGIIG
601	YGLLMAVTGA	LIDE <u>SLV</u> EK A	NK FWG I

Labeled amino acids:

Ala:	25 α	Phe: 8 α,1, 5
Leu:	19 β, γ, CO	His: 74
Gly:	17 α	Tyr: 5 α, 1, 5
Ser:	16 α	Trp: 3 α, 5, 7, 9
Val:	10 α, β	

Total: 110 out of 198 for Colicin la

¹³C Labeling on ubiquitin

Magic Angle Spinning Techniques

1st Isotropic Chemical Shifts

Structural Information from Isotropic Chemical Shifts

¹³C Cα chemical Shifts show a strong correlation with the backbone conformation of a protein

TALOS – Torsion Angle Prediction

Torsion Angle Likelihood Obtained from Shift and sequence similarity

Conclusions/Remarks

- Solution Structure elements and even full structural models of membrane proteins
- Secondary chemical shifts are solely determined by the proteins secondary structure, there are no differences between chemical shifts in solution and in the solid state (Luca et al., 2001)
- \odot With the lack of internal standards in solid-state NMR, chemical shift differences between C α and C β are independent of referencing!
- © Experiments can be carried out at any temperature
- Sor the determination of highly resolved NMR structures, additional constraints are necessary! Isotropic chemical shifts are not unique

2nd Dipolar Coupling Measurements by Proton Driven Spin Diffusion

Proton Driven Spin Diffusion

Crosspeaks are due to diploar coupling D ~ r^{-3}

- → Strong cross peak: 2.5 4.5 Å
- → Medium cross peak: 2.5 5.5 Å
- → Weak cross peak: 2.5 6.5 Å
- → Very weak cross peak: 2.5 7.5 Å

PDSP

(Hartmut Oschkinat)

PDSP

⇔ High precision, redundandcy
⇔ Simple experiment, low rf heating
⊕ good sensitivity
⊕ Peptide structure is provided
⇔ number of ¹³C labelled residues is resolution dependend

(Hartmut Oschkinat)

Magic Angle Spinning Techniques

3th Nuclear Overhauser Enhancement

- Protein-Lipid-Interaction
- Protein Structure

C-Terminus of the Human N-ras Protein

- \rightarrow ¹³C-¹³C dipolar coupling measurement is not feasible for sensitivity reasons
- → Additional structural constraints may come from protein-membrane interactions
 - $\ensuremath{\textcircled{\odot}}$ Intermolecular cross-relaxation rates provide this information
 - \odot ¹H MAS NOESY only works for small peptides

¹H NOESY MAS

Magic Angle Spinning Techniques

Recoupling

Festkörper- NMR zur Untersuchung von Membranproteinen

Separation isotroper und anisotroper NMR-Signale

→ In t_1 wird die anisotrope Wechselwirkung evolviert und seitenspezifisch in t_2 das MAS-Spektrum detektiert.

Separation von: Pulverspektren MAS-Seitenbandspektren MAS-Zeitsignalen

Rückkopplung anisotroper Wechselwirkungen

$$\omega_D(t) = C_1 \cos(\gamma + \omega_r t) + C_2 \cos(2\gamma + 2\omega_r t)$$

$$C_1 = -\delta \frac{\sqrt{2}}{2} \sin(2\beta) \left(1 + \frac{1}{3} \eta \cos(2\alpha) \right) \quad C_2 = \delta \left\{ \frac{1}{2} \sin^2 \beta - \frac{\eta}{6} \left(1 + \cos^2 \beta \right) \cos(2\alpha) \right\}$$

Magic Angle Spinning Techniques

4th Torsion Angle Measurement

CP:

REDOR: C_vN_z

90° ¹⁵N_y: C_yN_x

 $C_x \cos((\Psi_{CH}(t_1) + \Psi_{NH}(t_1))/2) \cos((\Psi_{CH}(t_1) - \Psi_{NH}(t_1))/2)$

	Crystalline	POPC/Zn ²⁺ (5 mM)
B18 L-4	-80°	-120°
B18 L-8	-80°	-110°
B18 L-15	-90°	-120°

- \odot High precision (± 5°)
- ⊗ Complicated experiment, high rf heating
- ⊗ Low sensitivity
- ⊗ unique labelling pattern, 1D resolution

Methods

5th Explicit Distance Measurements

Magic Angle Spinning Techniques

- \odot High precision (0.1 Å)
- $\ensuremath{\textcircled{\odot}}$ Unique distance constraint
- $\ensuremath{\textcircled{\text{\circle*{1.5}}}}$ Low sensitivity, high rf heating
- $\ensuremath{\mathfrak{S}}$ Needs isolated spin pair
- $\ensuremath{\mathfrak{S}}$ Experiments at low temperature

Static Solid Techniques

Static Solid Techniques

6th Oriented Membrane Stacks

a) Multilamellare Lipidvesikel

© High precision © Peptide topology ⊗ Complicated experiment, high rf heating ⊗ Low sensitivity ⊗ Very complicated sample preparation (large membrane proteins are very difficult to orient) ⊗ No peptide structure ☺ Flat coil probe

Outlook

 The limitations of solid-state NMR for structure determination are defined by sensitivity and resolution.

Sample preparation:

5.5 mg protein

29 mg lipid

35 wt% H₂O

4 amino acids ¹³C-labeled (~30 µg each)

 $\cong 0.25\%$ of the rotor volume

Barré et al., Eur. Biophys. J. 32 (2003) 578-584