Basi molecolari delle amiloidosi

ΡV

Biochimica UNIPV Vittorio Bellotti Monica Stoppini Patriza Mangione* Sofia Giorgetti Sara Raimondi Loredana Marchese Silvia Cassinelli Dora Mascherpa Laura Casorati IT

NMR Udine (Esposito et al.)

AFM Genova (Relini et al)

Cristallografia Milano (Bolognesi et al)

Biotecnologie IRCCS Giampaolo Merlini Laura Obici Simona Donadei Laura Verga Giovanni Palladini Proteomica ed espressione Biochimica Biotecnologia (Napoli Pucci/Piccoli) EU

UK amyloid disease Referral centre MB Pepys

VIB (camelide mAb) Lode Wyns

Finanziamenti: MIUR-Ministero Sanità-Cariplo-EU. (Re

(Regione Lombardia?!)

Table 1. Amyloid Proteins and Their Precursors.*					
Amyloid Protein	Precursor	Distribution	Туре	Syndrome or Involved Tissues	
Αβ	Aβ protein precursor	Localized Localized	Acquired Hereditary	Sporadic Alzheimer's disease, aging Prototypical hereditary cerebral amyloid angiopa- thy, Dutch type	
A Pr P	Prion protein	Localized Localized	Acquired Hereditary	Sporadic (iatrogenic) CJD, new variant CJD (alimentary?) Familial CJD, GSSD, FFI	
ABri	ABri protein precursor	Localized or systemic?	Hereditary	British familial dementia	
ACys	Cystatin C	Systemic	Hereditary	Icelandic hereditary cerebral amyloid angiopathy	
Αβ2Μ	Beta ₂ -microglobulin	Systemic	Acquired	Chronic hemodialysis	
AL	Immunoglobulin light chain	Systemic or localized	Acquired	Primary amyloidosis, myeloma-associated	
AA	Serum amyloid A	Systemic	Acquired	Secondary amyloidosis, reactive to chronic infec- tion or inflammation including hereditary peri- odic fever (FMF, TRAPS, HIDS, FCU, and MWS)	
ATTR	Transthyretin	Systemic Systemic	Hereditary Acquired	Prototypical FAP Senile heart, vessels	
AApoAl	Apolipoprotein A-I	Systemic	Hereditary	Liver, kidney, heart	
AApoAII	Apolipoprotein A-II	Systemic	Hereditary	Kidney, heart	
AGel	Gelsolin	Systemic	Hereditary	Finnish hereditary amyloidosis	
ALys	Lysozyme	Systemic	Hereditary	Kidney, liver, spleen	
AFib	Fibrinogen Aa chain	Systemic	Hereditary	Kidney	

β 2-m and dialysis related amyloidosis

Cell membranes

Plasma

Amyloid deposits

6B

AFM of natural amyloid fibrils extracted from an amyloid deposit

Relini et al. JBC 2006

Spot number	
1-6	full length
7-9	ΔN6 β2-m
10-12	Lys 58 cleaved species
	(Corlin et al Clin Chem 2005)

Giorgetti et al Protein Science 2007

1	Naiki, et al 1997. <i>Amyloid</i> 4: 223–232 *	Na Citrate 50mM pH 2.5-4	β2-m 100 μM + seeds	37 deg
2	McParland et al 2000. <i>Biochemistry</i> 39: 8735–8746 *	Na citrate 50 mM pH 2.5 100 mM NaCl	β2-m 100 μM No seeds	"
3	Esposito et al <i>Protein</i> <i>Science</i> 2000, °	Na Citrate Na citrate 50 mM pH 6.5	β2-m N-terminal truncated 100 μM +seeds	"
4	Chiti et al <i>J Biol Chem.2001</i> °	Na Citrate Na citrate 50 mM pH 7.3	Refolding intermediate 100 μM + seeds	"
5	Yamamoto al, 2004, J <i>Am</i> Soc Nephrol, °	Na Phosphate 50 mM 100 mM NaCI pH 7.4 20%TFE	β2-m 100 μM +seeds heparin	"
6	Yamamoto al, <i>Biochemistry</i> 2004 43, 11075-11082 Kihara et al,2005,JBC,280:120 2-8 °	Na Phosphate 50 mM 100 mM NaCl pH 7.4 0.5% SDS	β2-m 25 μM +seeds	"
7	Myers et al Biochemistry 2006 °	Na acetate-Phosphate pH 7 conditioned seed by Heparin 60μg/ mg apoE 14 μg/mg	β2-m 45 μM / ΔN6 truncated + seeds (Collagen type II)	"
8	Jahn Thomas. Nat Struct Biol °	Buffer A pH 7	β2-m refold. intermediate + seeds	"
9	Borysik AJ et al ° Kidn. Int 2007	PBS Buffer pH 7.4	∆N6 beta 2m + GAGs	
10	Relini et al JBC 2006 °	Phosphate buffer pH 6.4	Collagen type I	37-40°c

Kinetics and thermodynamics of β 2-m isoform interaction with collagen type I determined by surface plasmon resonance measurements

Ligand	pH	$k_{\rm on} (\mathrm{M}^{-1} \mathrm{sec}^{-1})$	$k_{\rm off}({ m sec}^{-1})$	$K_{d}\left(\mathrm{M} ight)$
β ₂ -m	7.4 6.3 x	: 10 ²	2.6×10^{-1}	4.1×10^{-4}
β_2 -m	6.4 4.1 x	(10^2)	9.0×10^{-2}	2.2×10^{-4}
β_2 -m I ₂ , <i>T</i> = 30"	7.4 3.4 x	: 10	2.6×10^{-1}	7.6×10^{-3}
β_2 -m I ₂ , <i>T</i> = 600"	7.4 2.8 x	: 10	2.3×10^{-1}	4.3×10^{-3}
β ₂ -m I ₂ , <i>T</i> = 1200"	7.4 6.6 x	(10^2)	2.4×10^{-1}	4.4 x 10 ⁻⁴
$R3A\beta_2m$	7.4 2.1 x	(10^2)	1.4×10^{-1}	6.7 x 10 ⁻⁴
$H31Y\beta_2m$	7.4 3.0 x	(10 ²	1.4×10^{-1}	6.8×10^{-4}
$\Delta N6\beta_2 m$	7.4 1.4 x	(10^3)	4.7×10^{-2}	3.4 x 10 ⁻⁵
$\Delta N6\beta_2 m$	6.4 1.0 x	(10^3)	5.0×10^{-3}	4.9 x 10 ⁻⁶

Giorgetti et al Protein Science 2005

Incubation of 50 μ M β 2-m at 37-40°C pH 6.4 with fibrillar collagen type I

Height data 4 days after 20nm filtration

Amplitude data 4 days after 20nm filtration

Amplitude data 2 days after 200nm filtration

Height data 2 days after 200nm filtration

Relini et al JBC 2006

A potent promoter of fibrillogenesis on collagen is also heparin

 β_2 -m 0.1 mg/ml, heparin 3 μ g/ml, t of amyloid fibrils observation= 24 ore

 β 2-m in solution in the presence of heparin after filtartion 20 nm

Relini et al 2007 submitted

Limited proteolysis

Proteasis (Asp N/ trypsin)

MS analysis and

Limited proteolysis

Esposito et al. Protein Sci. 2000 May;9(5):831-45

Myers et al Biochemistry. 2006 Feb 21;45(7):2311-21.

Borysik AJ et al ° Kidney Int. 2007 Jul;72(2):174-81

An hypothetical model for the tissue specific localisation of β 2-m amyloid fibrils

interactors of the amyloidogenic proteins

Lode Wyns

Mireille Dumoulin

http://www.vib.be/VIB/EN/

Nanobodies

	ml tot	Mg tot
Nb_20a (=Nb_b2m1a)	5ml	6,665mg
EP502 1,333mg/ml		
VUB-ULTR		
07/03/07		
Nb_20b (=Nb_b2m1b)	5ml	5,085mg
EP503 1,017mg/ml		
VUB-ULTR		
07/03/07		
Nb_21(=Nb_b2m4)	6,5ml	4,888mg
EP539 0,752mg/ml		
VUB-ULTR		
07/03/07		
Nb_22a (=Nb_b2m2a)	4ml	4,612mg
EP505 1,153mg/ml		
VUB-ULTR		
07/03/07		
Nb_24 (=Nb_b2m3)	5ml	9,945mg
EP506 1,989mg/ml		
VUB-ULTR		
07/03/07		
Nb_25 (=Nb_b2m5)	4ml	7,664mg
EP668 1,916mg/ml		
VUB-ULTR		
07/03/07		
Nb_29a (Δb2m)	10ml	4,41mg
CA94 0,441mg/ml		
VUB-ULTR		
07/03/07		
Nb_29c ($\Delta b2m$)	13,5ml	5,8995mg
CA69 0,437mg/ml		
VUB-ULTR		
07/03/07		
Nb_31 (Δb2m)	9,5ml	3,9615mg
CA7069 0,417mg/ml		
VUB-ULTR		
07/03/07		

Use of chemical cross linkers

st b2mst b2mcrlink

oligomers

Corazza et al. JBC 2004

Fogolari et al Biophys J 2007

Kihara et al JBC 2006

Chiti et al. JMB 2001

Effect of Trp replacement of $\beta\text{2-m}$ folding kinetics

Effect of Trp replacement of β 2-m folding kinetics

80

60

40

20

0

-20

-40

-60

-80

(b) (deg cm²dmol¹)

Near UV CD

NMR: ¹⁵N relaxation measurements

X-ray:W60G

X-ray: wt+HLA PDB 2BSS

Trinh CH et al Crystal structure of monomeric human β -2-microglobulin reveals clues to its amyloidogenic properties Proc Natl Acad Sci U S A. 2002 PDB 1LDS

D53 HLA R35

PDB 2BSS

ApoA-I Variant	Fragments	ref
Gly26Arg	1-83	BBA 156:762-768, 1998
Leu60A r g	1-88, 1-92, 1-93	, 1-94 PNAS 89 :7389-7393, 1992
Trp50A r g	1-86, 1-92, 1-93	QJ Med 88 :695-702, 1995
Glu70Phe71Trp72 Deletion	ND	Kidney Int 53:276-281, 1998
Leu90Pro	1-88, 1-94	Am J Pathol 154:221-227
Arg173Pro	1-90 to 1-100	BBRC 257:584-588, 1999
60-71 Deletion/ ValThr	1-83,1-92	J Clin Invest 97:2714-2721, 1996
Insertion		
Leu174Ser	1-93	Am J Pathol 155: 695-702, 1999
Leu178His	NA	BBRC 242 :534-539, 1998
Leu75Pro	≈ 1-96	Amyloid 10:215-223, 2003
		Gastroenterology. 126:1416-1422, 2004
Ala175Pro	ND	New Engl J Med 346:1786-91, 2002
Leu64Pro	≈ 1-96	Am J Kidney Dis. 44:1103-9, 2004

PDB 1AV1

2A01

1 DEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEV

	length (a.a)	mass (Da)	pl	net charge	mean net charge	mean hydrophobicity
ApoA-I (1-93)	93	10720	4.3	-9	(R) 0.097	(H) 0.412
ApoA-I (full length)	243	28078	5.27	-9	0.037	0.409

(a) Apolipoprotein A-I (apoA-I)

¹<u>DEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWD</u> <u>SVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEV</u>KAKVQPYLDD FQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRAR AHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSE KAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ²⁴³

1

2

2

Λ

5

6

a: Coomassie stainingb: Western blotting

- 1. [1-93]apoA-I from ex vivo fibrils
- 2. wt apoA-I
- 3. soluble fraction of bacterial cells transformed with pGEX-4T-3/[1-93]apoA-I
- 4. GST- containing proteins selected by GSHagarose affinity chromatography
- 5. products of trombin digestion
- 6. recombinant [1-93]apoA-I isolated by HPLC

Z aggregation propensity

PH 4WT0,184Gly26Arg0,016Trp50Arg-0,063Leu60Arg-0,023Leu64Pro0,049Leu75Pro0,049

pH 4 pH 7 0,185358 -1,093692 0,016048 -1,10802 -0,063729 -1,19181 -0,027002 -1,153235 0,049564 -1,236317 0,049564 -1,236317

According to the algoritms for the prediction of aggregation propensity the amyloidogenic mutations in the 1-93 polypeptide do not favour the aggregation Dobdon and Pawlor pesornal comm.

Secondary structure transition induced by a pH jump

Effect of TFE (2, 2, 2- trifluoroethanol) on the ApoA-I (1-93) secondary structure

The transition is reversible in the early phase

Stopped fluorescence for monitoring the first phase of the pH mediated structure transition

Far-UV CD of 1-93 Apolipoprotein AI variants

pH induced Aggregation of 1-93 Apolipoprotein AI variants

No massive fibrillar conversion in this time scale

- 1. Identificazione della proteasi....
- 2. Descrizione delle condizioni compatibili con l'attività della proteasi....
- 3. Correlazione algoritmi-esperimenti di fibrillogenesi.....
- 4. QC di apo mutate.....

The discovery that amyloidogenic mutations destabilises the globular proteins has generated the medical approach of "ligand mediated stabilisation" (Maria Saraiva & Jeff Kelly)

Pavia is involved in designing new molecules through the collaboration with Mark Pepys lab.in London

Transizione da struttura globulare a fibrillare

4ajm15 is the strongest stabiliser of the TTR tetramer so far described (Carol Robinson personal communication)- Olo-TTR does not make fibrils or oligomers

UCL Business spin-out Pentraxin Therapeutics awarded grant from the Wellcome Trust Seeding Drug Discovery Initiative Fine