

Andrea Trita

Laboratory of Quantum Electronics and Nonlinear Optics Electronics Department - University of Pavia

OUTLINE

Introduction
 Silicon photonics
 The SiGe/Si approach to Silicon Photonics
 Dislocations formation at SiGe/Si interfaces

Dislocations in SiGe planar waveguides:
Consequences on the guided optical field

OUTLINE

>Introduction

Silicon photonics
 The SiGe/Si approach to Silicon Photonics
 Dislocations formation at SiGe/Si interfaces

Dislocations in SiGe planar waveguides: Consequences on the guided optical field

Cheap photonic chips for optical communications industry

>Optical interconnects

Silicon as optical material

Advantages

Bandgap energy = 1.12eV

At 1.3-1.5µm n_{si}~3.5

Crystalline structure

Disadvantages

Indirect bandgap

Centrosimmetric crystalline structure

Does not exhibit electro-optic effect

Poor efficiency as light emitter

High transparency at telecom wavelength(1.3- $1.5\mu m$)

Tight optical confinement in combination with SiO₂

High nonlinear optical coefficients $(g_{R,Si} \sim 20 \text{ cm/MW} - g_{R,Silica} = 0.93 \times 10^{-5} \text{ cm/MW})$

5

≻The optical waveguide.

>The optical waveguide.

>Technological approaches

□Possibility to tune the optical properties of the material acting on the Ge fraction

□At low Ge fraction the small index contrast between Si and SiGe allows for monomodal structures with micrometric dimensions

□Elevated nonlinear optical coefficients

SiGe approach to optical waveguides

Ge has 4,2% larger lattice constant than Si

J.W. *Matthews* and A.E. *Blakeslee*, J. Crystal Growth 32 (1974), p. 265.

OUTLINE

Introduction
 Silicon photonics
 The SiGe/Si approach to Silicon Photonics
 Dislocations formation at SiGe/Si interfaces

Dislocations in SiGe planar waveguides:
Consequences on the guided optical field

PRIN Project 2005: "SiGe optical waveguides: design, fabrication, characterisation and their application to Raman amplication"

Laboratory of Quantum Electronics and Nonlinear Optics- University of Pavia
 L-NESS (Laboratory for Epitaxial Nanostructures on Silicon and Spintronics) – Politecnico di Milano
 Material Science Department - University of Milano Bicocca
 Physics Department - University of Insubria

	Sample number	<i>SiGe layer</i> <i>d</i> [μm]	<i>SiGe cap</i> [μm]	Nominal x	
Fixed x varying d	#7645	0.2	10	2	
	#7646	0.4	10	2	
	#7693	0.8	10	2	
	#7689	1.5	10	2	
	<i>#7382</i>	2	10	2	Fixed
	#7546	2	10	4	d
	#7544	2	10	5	varying x
	<i>#7542</i>	2	10	6	~

Consequences on the guided optical field

	Sample number	<i>SiGe layer</i> <i>d</i> [μm]	<i>SiGe cap</i> [μm]	Nominal x	
Fixed x varying d	#7645	0.2	10	2	
	#7646	0.4	10	2	
	#7693	0.8	10	2	
	#7689	1.5	10	2	
	<i>#7382</i>	2	10	2	Fixed
	#7546	2	10	4	d
	#7544	2	10	5	varying x
	<i>#7542</i>	2	10	6	<u>л</u>

Consequences on the guided optical field

Consequences on the guided optical field

Experimental results indicate that the refractive index inside the waveguides presents sharp localized variations

>The origin of these sharp refractive index variations can be ascribed to the presence of dislocations

>Dislocations are organized in bunches so that refractive index variations occur over a spatial scale comparable with λ

Consequences on the guided optical field

Transmission Electron Microscope (TEM) at EMEZ (Electron Microscopy centre of the ETH Zurich)

>Raman micro-spectroscopy at the University of Milano Bicocca

Finite Element Method (FEM) opto-structural model of the waveguide. (University of Pavia-University of Milano Bicocca)

The strain field due to the bunches of dislocations is evaluated analitically

and inserted in the FEM model

Finite Element Method (FEM) opto-structural model of the waveguide.(University of Pavia-University of Milano Bicocca) The strain field is converted into a refractive index distribution through the elasto-optic tensor and optical modes supported by the structure are evaluated

Experimentally (optical characterization, TEM, Micro-raman) and theoretically (FEM model), it has been shown that:

Bunches of dislocations

Experimentally (optical characterization, TEM, Micro-raman) and theoretically (FEM model), it has been shown that:

Bunches of dislocations

Sharp localized perturbations to the strain fields

Experimentally (optical characterization, TEM, Micro-raman) and theoretically (FEM model), it has been shown that:

Bunches of dislocations

Sharp localized perturbations to the strain fields

Sharp localized perturbation to the refractive index

Experimentally (optical characterization, TEM, Micro-raman) and theoretically (FEM model), it has been shown that:

Bunches of dislocations

Sharp localized perturbations to the strain fields

Sharp localized perturbation to the refractive index

Detectable output intensity perturbation

andrea.trita@unipv.it