Marcella Facchini Department of Biochemistry "A. Castellani" Microanalysis of proteoglycan sulfation in the growth plate Prof. Antonio Rossi

The *diastrophic dysplasia sulfate transporter (DTDST* or *SLC26A)* family of disorders include phenotypes with different clinical outcomes from mild to letal. The gene encodes a widely distributed sulfate/chloride antiporter of the cell membrane whose function is crucial for the uptake of inorganic sulfate, which is needed for proteoglycan sulfation. Proteoglycans (PG) are a family of macromolecules characterized by one or more polysaccharide chains, called glycosaminoglycans (GAG), covalently linked to a core protein.

We have already demonstrated undersulfation of GAG chains in articular cartilage from patients compared to the controls and in a diastrophic dysplasia (dtd) mouse model available in our laboratory. However sulfation of the cartilage growth plate has never been measured due to the low amount of tissue available and the difficulties in isolating this small area. The aim of this work was to measure PG sulfation of the growth plate on mutant and wild-type mice. The growth plate was obtained from sections of the tibia of 2 weeks old mice by microdissection and disaccharides released from PG after enzymatic digestion were labeled with 2-aminoacridone (AMAC) and analysed by FACE (fluorophore assisted carbohydrate electrophoresis). Our results demonstrate a significant undersulfation of dtd growth plate compared to wild-type animals confirming previous data on articular cartilage.

In the future we plan to study growth plate PG sulfation in mice at different ages and in the different zones of the growth plate to elucidate the role of sulfation on proper development and differentiation of the tissue.

Works that will be presented at the XXIst meeting of the European Connective Tissue Society (FECTS), Marseille,)-13 July 2008:

References

- 1. Benedetta Gualeni¹, Antonia Icaro-Cornaglia², <u>Marcella Facchini¹</u>, Antonella Forlino¹, Federica Riva², Fabio Pecora¹, Giuseppe Cetta¹, Marco Casasco², Antonio Rossi¹. Epiphyseal cartilage alterations in a mouse model of diastrophic dysplasia. ¹Department of Biochemistry, University of Pavia, Italy ²Department of Experimental Medicine Histology and Embryology Unit, University of Pavia, Italy
- 2. Fabio Pecora¹, Antonella Forlino¹, Benedetta Gualeni¹, Anna Lupi¹, <u>Marcella Facchini¹</u>, Roberta Gioia¹, Sofia Giorgetti^{1,2}, Loredana Marchese^{1,2}, Ruggero Tenni¹, Giuseppe Cetta¹ and Antonio Rossi¹. Two dimensional gel electrophoresis of murine articular cartilage.¹Department of Biochemistry, University of Pavia; ²Laboratori di Biotecnologie, IRCCS Policlinico S. Matteo, Pavia, Italy.