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REINSTATING SCHWARZSCHILD’S ORIGINAL

MANIFOLD AND ITS SINGULARITY

SALVATORE ANTOCI AND DIERCK-EKKEHARD LIEBSCHER

Abstract. A review of results about this paradigmatic solution1 to the field

equations of Einstein’s theory of general relativity is proposed. Firstly, an intro-

ductory note of historical character explains the difference between the original

Schwarzschild’s solution and the “Schwarzschild solution” of all the books and the

research papers, that is due essentially to Hilbert, as well as the origin of the mis-

nomer.

The viability of Hilbert’s solution as a model for the spherically symmetric field of

a “Massenpunkt” is then scrutinised. It is proved that Hilbert’s solution contains

two main defects. In a fundamental paper written in 1950, J.L. Synge set two

postulates that the geodesic paths of a given metric must satisfy in order to comply

with our basic ideas on time, namely the postulate of order and the non-circuital

postulate. It is shown that neither Hilbert’s solution, nor the equivalent metrics that

can be obtained from the latter with a coordinate tranformation that is regular and

one-to-one everywhere except on the Schwarzschild surface can obey both Synge’s

postulates. Therefore they do not possess a consistent arrow of time, and the

only way for obviating this defect is through a change of topology. The true raison

d’être of the Kruskal maximal extension with its odd doubling and bifurcate horizon

stays just in its capability to produce the needed change of topology, that can be

demonstrated through a constructive cut-and-past procedure applied to two Hilbert

space-times.

The second main defect of Hilbert’s space-time is constituted by the existence

of an invariant, local, intrinsic quantity with a simple operational interpretation

that diverges when it is calculated at a position closer and closer to Schwarzschild’s

surface, i.e. at an internal position in Hilbert’s metric. The diverging quantity is the

norm of the four-acceleration of a test particle whose worldline is the unique orbit of

absolute rest defined, through a given event, by the unique timelike, hypersurface

orthogonal Killing vector. It is an intrinsic quantity, whose local definition only

requires the knowledge of the metric and of its derivatives at a given event, just like

it happens with the polynomial invariants built with the Riemann tensor and with

its covariant derivatives. The regularity of the latter invariants at a given event

has been considered by many a relativist like a “rule of thumb” proof of regularity

for the manifold at that event, in the persistent lack of a satisfactory definition of

local singularity in general relativity.

1The notion solution includes the topology of space-time in our context. Different
solutions may be locally isometric.
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The divergence of the above mentioned norm of the four-acceleration, i.e. of the

first curvature of the worldline, is a geometric fact. It can be proved however with

an exact argument, relying on a two-body solution found by Bach, that a physical

quantity, the norm of the force per unit mass exerted on a test particle in order to

keep it on the orbit of absolute rest, is equal to the norm of the four-acceleration,

hence it diverges too on approaching Schwarzschild’s surface.

We claim that the rôle and interpretation of topological differences between

partly isometrical manifolds as well as that of the singularities is not really settled,

in particular that the Schwarzschild solution and its topological relatives are in

more ways singular than the invariants of the Riemann tensor indicate.

Due to these facts we assert that the topology chosen by Schwarzschild should be

taken as a serious alternative to the commonly used Hilbert or Kruskal topologies.

1. Introduction: Schwarzschild’s original solution and the

“Schwarzschild solution”

The content of this review would be hardly understandable without a
proviso of historical character: Schwarzschild’s original solution, as undis-
putably testified by Schwarzschild’s “Massenpunkt” paper [1], describes a
manifold that is different from the one defined by the solution that goes un-
der the name of Schwarzschild in practically all the books and the research
articles written by the relativists in nearly nine decades. That solution must
be instead credited to Hilbert [2]. The readers should not be induced by this
assertion into believing that it is our intention to deprive Schwarzschild of
the merit of his discovery, and to attribute it to the later work by Hilbert. It
is not so: an accurate reading of Schwarzschild’s paper and of the momen-
tous Communication by Hilbert [3] shows in fact that, while Schwarzschild’s
derivation of the original solution is mathematically flawless, Hilbert’s red-
erivation contains an error. Due to this overlooked flaw, Hilbert’s manifold
happened to include Schwarzschild’s manifold, but by chance it resulted not
to be in one-to-one correspondence with it. This fact was deemed rather
irrelevant by Hilbert, but soon developed into a conundrum that puzzled
theoreticians like Marcel Brillouin [4], and had to become of crucial impor-
tance more than forty years later. In fact the birth of the black hole idea,
as noted for the first time by Abrams [2], can be considered just a legacy of
Hilbert’s magnanimity.

Schwarzschild’s paper, in which it is reported the first derivation of the
field of a “Massenpunkt” according to general relativity, is an impressive
example of mathematical precision and clearness of exposition. For the sake
of definiteness in the subsequent discussion, an English translation [5] of
that paper is provided in Appendix A.

On reading Schwarzschild’s paper, one immediately notes [6] that the
equations he set out to solve in the special case of a static, spherically sym-
metric field are not the final equations of general relativity [7, 8] found by
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Einstein and by Hilbert, specialised for the case of vacuum. In fact, equa-
tions (A.4) and (A.5) are the vacuum equations for the next-to-last version
of the theory [9] that Einstein communicated to the Prussian Academy of
Sciences on November 11th, 1915. These equations yield, in vacuo, the same
solutions as the equations of the final theory of November 25th, but their
covariance is limited to the unimodular transformations.

Due to this fact, it was highly inconvenient for Schwarzschild to avail, as
symmetry adapted coordinates, of the usual spherical polar coordinates r, ϑ,
ϕ, t, since the functional determinant of the transformation from Cartesian
to such polar coordinates is r2 sinϑ 6= 1; he had rather adopting polar

coordinates with the determinant 1, defined by equation (A.7). Using these
coordinates xi, the square of the symmetry adapted line element ds2 is
written by Schwarzschild, in equation (A.9), by means of f1, f2 = f3, f4,
i.e. three independent functions of the radial coordinate x1. These functions
must fulfill the conditions enumerated just after that equation: Minkowskian
behaviour at the spatial infinity, field equations, inclusive of the equation of
the determinant, and continuity everywhere, except at the origin.

When these conditions are obeyed, with the exception of the last one,
the three independent functions f1, f2, f4 were found by Schwarzschild to
be given by equations (A.12), (A.10) and (A.11) respectively. They contain
two independent integration constants, α and ρ. By appealing to Newton,
Schwarzschild obtained that α had, in his units, just twice the value of the
active gravitational mass. The remaining constant ρ was instead determined
by Schwarzschild by imposing his last condition, namely the continuity of
the components of the metric. The function f1 is in fact discontinuous when
3x1 = α3 − ρ. For a given α, the choice of a given value for ρ changes the
position of the discontinuity in the interval of definition [0,+∞[ of the radial
coordinate x1. It can also bring the discontinuity outside it. Therefore the
choice of ρ fixes the very choice of the manifold that describes the field of
a “Massenpunkt”. The requirement of continuity everywhere, except at the
origin, led Schwarzschild to set ρ = α3, i.e. to locate at the inner border of
the manifold the discontinuity that would have been named, after him, “the
singularity at the Schwarzschild radius”.

Let us compare now Schwarzschild’s determination of the manifold rep-
resenting the static, spherically symmetric gravitational field with the later
derivation done by Hilbert [3]. For ease of comparison, an English transla-
tion for the relevant part of the second of Hilbert’s Communications entitled
“Die Grundlagen der Physik” is reproduced in Appendix B. Hilbert could
avail of the generally covariant, final version of the theory, that he himself
had contributed to establish with his first Communication [8] bearing the
same title. Hence he could adopt the usual spherical polar coordinates and
write the line element for a spherically symmetric, static gµν field like in
expression (B.42). Thereby the line element is made to depend on three
arbitrary functions F (r), G(r), H(r), where r is a radial coordinate, whose
range, in keeping with its definition in term of the Cartesian coordinates
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wi, is given by 0 ≤ r < +∞. But, while Schwarzschild’s choice of a line
element depending on three arbitrary functions was not redundant, since
he had to fulfill both the field equations and the condition of the determi-
nant, Hilbert’s line element, after satisfying the field equations, would still
contain one arbitrary function. Therefore Hilbert chose to fix one of the
three functions F (r), G(r), H(r) by defining a new radial coordinate r∗

such that r∗ =
√

G(r). Then, of course, he was entitled to drop the asterisk
and write the line element with two unknown functions M(r) and W (r),
like in expression (B.43), that has become the canonical starting point for
all the textbook derivations of the “Schwarzschild solution”. As correctly
remarked by Abrams [2], what neither Hilbert nor, in his footsteps, the
subsequent generations of relativists were entitled to do was assuming with-
out justification that the physical range of the new radial coordinate is still
0 ≤ r < +∞. In fact, this is equivalent to inadvertently make the restrictive
choice G(0) = 0 in expression (B.42).

The new radial coordinate allowed Hilbert to avail of a straightforward
method of solution, based on the bright, although mathematically unwar-
ranted shortcut: writing the symmetry restricted action for the problem
under study and applying a symmetry restricted variational principle to it;
the correctess of the resulting solution is thereby not ensured, and must be
checked afterwards. In this way Hilbert eventually found the line element of
equation (B.45), that, at variance with Schwarzschild’s result, depends on
just one integration constant, α, again interpreted as twice the active gravi-
tational mass. The discontinuity in the coefficient of dr2, that is the counter-
part of the discontinuity exhibited by the function f1(x1) in Schwarzschild’s
equation (A.12), in Hilbert’s solution is fixed at r = α, because in Hilbert’s
calculation there is no free integration constant, like the ρ of Schwarzschild,
to move it around. This is the consequence of the unduly restrictive choice
G(0) = 0, i.e. of Hilbert’s lapse, and by no means a necessary consequence
of Einstein’s equations. Einstein’s equations do not fix the topology, and
additional reasoning is necessary to do so.

Nevertheless, Schwarzschild’s original solution and manifold, that were
the result of a mathematically correct procedure and of the pondered choice
of the integration constant ρ, went soon forgotten. Hilbert’s solution and
manifold, that were on the contrary the consequence of the inadvertent
fixing of an integration constant, were instead handed down to the posterity
as the unique “Schwarzschild solution”. A contribution to the rooting of the
misnomer undoubtedly came from Schwarzschild’s premature death. But the
main responsibility for it should be attributed to Hilbert himself, given his
exceptional, well deserved standing in the community of the mathematicians,
astronomers and physicists of his time, and of ours.
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In fact, while dismissing, in a short footnote2, Schwarzschild’s procedure
of removing the discontinuity to the origin as “not advisable”, Hilbert at-
tributed to Schwarzschild the finding of his own solution (B.45), hence of the
manifold inadvertently chosen by himself, the one for which 0 ≤ r < +∞,
with its two singularities located at r = 0 and at r = α in what the relativists
would have called “Schwarzschild coordinates”.

However such features, that would have so much bothered generations
of scholars, were only of very marginal interest for the great Hilbert. As
it appears from the enthusiastic, last words of his Communication [8] of
1915, he harbored the firm conviction that, by starting from just two very
simple axioms, thanks to the powerful instruments constituted by the cal-
culus of variations and by the theory of invariants, he had succeded in em-
bodying both Einstein’s new conceptions about gravitation and Mie’s new
ideas about electrodynamics [10, 11] into a mathematical structure of lasting
value. In Hilbert expectations, only the full theory would have been capa-
ble to provide an immediate representation of reality, at any scale, through
everywhere regular solutions. Hence, one should not worry if the first, very
partial soundings into the exact mathematical content of the theory, done
by neglecting the fundamental ingredient of the electromagnetic field, ex-
hibited, together with the confirmation of Einstein’s achievement [12] about
the perihelion of Mercury, a singular behaviour of difficult interpretation.

2. The wrong arrow of time of Hilbert’s manifold is at the

origin of the Kruskal extension

It is not here the place to recall in detail how it happened that the rela-
tivists gradually abandoned the attitude to look in general relativity for the
simile of the notion of singularity that had been so useful in the mathemat-
ical physics of the past. That ideal conception is well reflected in the very
notion of regularity of the interval and of the metric that Hilbert provided
just at the end of his derivation of the “Schwarzschild solution”. According
to Hilbert’s definition, the singularities exhibited by the components of the
metric both at r = 0 and at r = α = 2m were true singularities of the field
gµν , because they could not be erased by invertible, one-to-one transfor-
mations of coordinates. The notions of regularity and of singularity set by
Hilbert went unchallenged, with some notable exceptions, till the half of the
past century, when they found also a sharpened definition [13] in the book
by Lichnerowicz. It should be remarked here that Hilbert’s definitions of
regularity and of allowable coordinate transformations not only represented
the extension to the new theory of time-honoured conceptions of mathemat-
ical physics, but were in keeping with Einstein’s own ideas on the meaning
of general covariance [14]. According to Einstein, it was in fact necessary
to divest space and time coordinates of the last residuum of physical objec-
tivity, but for one aspect. For him, all the assertions of physics could be

2see Hilbert’s footnote at the end of Appendix B.
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reduced in the last instance to assertions about events, physically embodied
by spacetime coincidences between particles. The introduction of spacetime
coordinates is a convenient instrument for reckoning such coincidences. But
for the coordinates to absolve their residual physical function, it is necessary
that the transformations of coordinates do preserve the individuality of the
single event. There is therefore one sound physical reason why the allowed
transformations must be invertible and one-to-one, as required by Hilbert.

Einstein’s conception of the “Bezugmolluske” and the connected definition
of regularity by Hilbert would have resisted the lapse of the decades, if
the manifolds of general relativity had been truly Riemannian, rather than
pseudo-Riemannian, like they happen to be, and if the singular surface at
r = α in the Hilbert solution had not had null lines as generators. This
is why the doubt first arose about the true nature of the “singularity at
the Schwarzschild radius”. Along each one of the generators it is ds2 = 0.
Does it mean that we have to do with a light path, or does it mean that this
generator is not a worldline, but just one and the same event, misrepresented
in a coordinate system in which an inadequate choice of the coordinate
chart has created, together with the singularity of the metric, the illusion
of the presence of a light line? If so, why not try to find, through some
disallowed coordinate transformation, appropriately singular at r = α, a
new coordinate chart in which the light line, for all the finite values of the
Hilbert coordinate time t, would become associated with just one value of
the new coordinate time, and the metric would become regular at r = α?

After preliminary attempts that succeeded in the second task, but not in
the first one [15, 16, 17], both tasks were eventually accomplished together by
Synge [18] in a ground-breaking, now nearly forgotten paper. In its footsteps
came the results by Fronsdal, Kruskal and Szekeres [19, 20, 21] about the
so-called maximal extension of the Schwarzschild manifold. Of course, in
order to accomplish both tasks, Synge had to infringe the rules about the
admissible transformations set by Einstein and Hilbert. Synge’s ideas about
the definition of singularities in general relativity are worth mentioning,
because they were very clear, and pessimistic. With some reason, one may
add, because the situation, as we shall see in the sequel, has not greatly
improved since the time Synge’s paper [18] appeared in print. Synge wrote:

Obviously, before we talk of singularities at all, we should
define them. Adequate definitions should be invariant, but
there are difficulties here which may not appear on the sur-
face. It is true that some of these difficulties are overcome
by a limitation to regular transformations, but it is precisely
the non-regular transformations which are interesting. Thus
we must satisfy ourselves for the present with definitions de-
pendent on the coordinate system employed.

And then he provided his coordinate-dependent definition:
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Definition. A form gmndx
mdxn has a component singularity

at a point xr = ar which lies in a region R of the represen-
tative space V4 or on the boundary of R, if one or more of
the components gmn has no unique finite limit, independent
of path, as we approach ar through R; and it has a deter-

minantal singularity if the determinant g of gmn has not a
unique finite non-zero limit as we approach ar through R.

In keeping with this definition, one may assert that Synge and his followers
had succeeded, by an appropriately singular transformation, in removing
the singularity that the metric components exhibit at r = α. They had
also succeeded, by the same singular transformation, in reducing the points
with finite t coordinate on each one of the generators of the singular surface
r = α = 2m to have one and the same coordinate time in the new chart. As
a consequence of this second achievement, it became possible to draw and
explore mathematically how the timelike and the null geodesics prevailing
in the regions of Hilbert’s manifold with r < α and with r > α respectively
happen to connect smoothly at r = α. Such a connection could not be
properly explored in the original coordinates adopted by Hilbert, because in
these coordinates the connection of the geodesics occurs when t → ±∞, as
it is hinted by Figure (1a).

r=2m

r

(a)

t r=2m

cut r

(b)

time's arrow

time's arrow

time's arrow

time's arrow
time's arrow

time's arrow

time's arrow

time's arrow

t

A C

B

Figure 1. (a): Representation of Hilbert’s manifold in the r, t plane.

Light cones are drawn both in the inner region and in the outer region.

Time arrows are schematically drawn in keeping with the non-circuital

postulate. The postulate of order is thereby violated. (b) A cut is made

in Hilbert’s manifold. The topologically different manifold obtained in

this way allows for a consistent drawing of the time arrow.
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One can now notice that Synge and his followers, with their singular coor-
dinate transformations, had reached a third achievement too. This further
result is usually given scarce or no relevance at all in the literature, although
e.g. Rindler did not forget to make a fugitive mention of it in his book [22].
In order to appreciate its full value, one has rather resorting once more to
Synge, were a detailed discussion of the issue of the time arrow can be found
[18]. According to Synge, a manifold meant to be a model of physical reality
must fulfill two postulates. One of them is the postulate of order, according
to which the parameter of proper time along a timelike geodesic must always
either decrease or increase; the sense along which it is assumed to increase
defines the sense of the travel from past to future, namely the time arrow.
Since the geodesic equation is quadratic in the line element, fixing the time
arrow of the individual geodesic is a matter of choice. The second postu-
late deals with our ideas of causation, and establishes a relation between
the time arrows of neighbouring geodesics. Synge calls it the non circuital

postulate. It asserts that there cannot exist in space-time a closed loop of

time-like geodesics around which we may travel always following the sense

of the time-arrow.
Synge shows in detail [18] that the time arrow can be drawn in keeping

with the aforementioned postulates in the manifold that he obtained from
the Hilbert manifold with his singular coordinate transformation; the same
property obviously holds in the Kruskal-Szekeres manifold too. Does it hold
also in the Hilbert manifold? A glance to Figure (1a) is sufficient to gather
that this is not the case. The arrow of time can be drawn correctly in
the submanifold with r > α, i.e. in Schwarzschild’s original manifold, and
separately in the inner submanifold with r < α. A consistent drawing of
the arrow of time, in keeping with both postulates, is however impossible in
Hilbert’s manifold as a whole. This is an intrinsic flaw of the latter manifold;
it has nothing to do either with the fact that in Hilbert’s chart the metric
is not defined at r = α, or with the fact that the timelike geodesics appear
to cross the Schwarzschild surface at the coordinate time t = ±∞; it is a
flaw that cannot be remedied by any coordinate transformation, however
singular at r = α, but one-to-one elsewhere.

The only known ways to overcome this flaw are either by getting rid of
the inner region, thereby reinstating the original manifold [1], deliberately
chosen by Schwarzschild as a model for the gravitational field of a mate-
rial particle, or by completely renouncing the one-to-one injunction on the
coordinate transformations set, on physical grounds, by Einstein and by
Hilbert.

The second alternative is the one chosen by Synge and his followers: in
fact, not only Schwarzschild’s original manifold, but also Kruskal’s manifold
avoids the flaw of the arrow of time present in Hilbert’s manifold. Moreover,
it appears to preserve its inner region. However, it does so by a coordinate
transformation that duplicates the original manifold and alters its topology,
in a way that is best explained, rather than by looking at the equations for
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the transformation, by a straighforward cut-and-paste procedure applied to
two Hilbert manifolds.

This cut-and-past procedure can be realised in infinite ways, all entailing
an alteration of topology. One of them is accounted for in the sequence
drawn in Figures (1b), (2a) and (2b). In Figure (1b) the inner region of

v

u

r=2m

r=2m

r=2m r=2m
        

r=2m

A

B

C

A'

B'

C'

r=0

r=0

t
r=2m

cut r

time's arrow

time's arrow

time's arrow

time's arrow

A C

B

t
r=2m

cutr

time's arrow

time's arrow

time's arrow

time's arrow

A'C'

B'

(a)
(b)

Figure 2. (a) two manifolds, equal to the cut Hilbert manifold of

Figure (1b) are juxtaposed for suturing; (b) sewing together the edges

ACB and A′C ′B′ yields Kruskal’s manifold.

the Hilbert manifold of Figure (1a) is cut along the line AC. The resulting
manifold is topologically inequivalent to the Hilbert manifold. The topo-
logical alteration already allows to draw the arrows of time in keeping with
Synge’s postulates but, due to the existence of the border ACB, the new
manifold is evidently unphysical. However, if one takes two manifolds iden-
tical to the one of Figure (1b), juxtaposes them as it is shown in Figure (2a),
and eventually sews together the borders ACB and A′C ′B′ like in Figure
(2b), one obtains Kruskal’s manifold, and ascertains that the arrows of time
inherited from the two component manifolds with the cut still obey both
Synge’s postulates.

Therefore, rather than discarding it, like one does with the Schwarzschild
manifold, one can save the inner region of Hilbert’s manifold at the cost of
changing the topology of the latter with a cut, that is then remedied by
the doubling intrinsic to the Kruskal-Szekeres manifold. The mathematical
beauty of the latter is beyond question. Its physical usefulness much less
so, if, after having examined at length the properties of the Kruskal met-
ric, textbooks usually end the discussion by asserting that this indissoluble
union of a white and a black hole hardly has anything to do with some
entity really present in Nature. It is usually added that black holes should
be meant as the final result of the process of collapse, in which only part of
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the Kruskal manifold would be involved. It is however evident that enter-
ing such arguments means abandoning the discussion of actually existing,
well scrutinised vacuum solutions to the field equations of general relativity,
and venturing, despite the huge amount of work done on the subject, in
uncharted waters.

Anyway, when confronted with the Kruskal manifold, with its odd dou-
bling and its bifurcate horizon, we eventually gather how serious is the flaw
of the arrow of time in Hilbert’s manifold, if one could conceive resorting to
such extreme surgical means in order to remove just that flaw.

3. An invariant, local, intrinsic quantity that diverges at the

Schwarzschild surface

We have called Synge’s ideas about the issue of the definition of a singu-
larity in general relativity clear and pessimistic. His coordinate-dependent
definition is in fact a clear mirror of the difficulties that he met with. Of
course he would have had rather availing of an invariant definition of sin-
gularity, because in such a way the problem of defining what coordinate
transformations were allowable would have become much less challenging.
In fact, a scalar would maintain its value, no matter whether the transforma-
tions of coordinates should be limited to the ones allowed for by Einstein and
Hilbert, or whether Synge’s “interesting” transformations, namely nonreg-
ular ones, thereby capable of canceling the singular behaviour of the metric
at r = α in Hilbert’s solution, could be allowed too. However, no general
enough, physically satisfactory, invariant definition of singularity was avail-
able to him. A posteriori one must recognise that Synge’s pessimism was
justified, because for decades the problem has been ingeniously tackled by
several authors (see for instance [23, 24, 25, 26] [27, 28, 29, 30]) who pro-
posed several solutions but, by the admission [29] of some of them, it is also
possible that “there may not exist any useful, generally applicable notion of
the singular boundary of a space-time”.

Synge’s coordinate-dependent definition, on the other side, cannot be a
satisfactory answer if the nonregular transformations are decreed legitimate,
for then the locus r = α is either singular or regular according to whether
it is looked at in the Hilbert chart rather than in the Eddington-Finkelstein
[15, 16] or Kruskal charts respectively.

In the persistent lack of a physically satisfactory, general, invariant def-
inition of singularity, and due also to the growing awareness that Synge’s
[31] identification “gravitational field = curvature of space-time” had to be
substituted for Einstein’s old idea3 that in general relativity the gravita-
tional field was represented by the Christoffel symbols, the scalar invariants

3see [14], p. 802: “Verschwinden die Γτ
µν , so bewegt sich der Punkt geradlinig und

gleichförmig; diese Größen bedingen also die Abweichung der Bewegung von der Gleich-
förmigkeit. Sie sind die Komponenten des Gravitationsfeldes.”
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built with the Riemann tensor4, whose singularity is certainly sufficient for
proving the singularity of a manifold, began to be used, for lack of a better
alternative, as invariant, local, intrinsic indicators of its regularity too.

In the case of the Kruskal manifold, the latter scalar invariants pro-
vided the same verdicts about singularity and ad ignorantiam regularity
as Synge’s coordinate dependent definitions applied in the Kruskal chart:
the singularity at r = α is fictitious, due to the choice of the coordinates,
while the singularity at r = 0 is a true one, intrinsic to the manifold.

There is however one argument that suggests that such invariants might
not be as trustful indicators of regularity as they are generally believed to
be. Metrics endowed with spherical symmetry are indeed very special items.
When availing of a given metric, endowed with a high degree of symmetry,
as a model of physical reality, one would like not to incur the following,
perplexing situation: as soon as a certain symmetry of the metric is lifted,
one of its essential properties, as measured by some scalar quantity, changes
abruptly, no matter how small it is the deformation that destroys the original
symmetry.

Let us consider what is generally called a static spacetime, namely a
pseudoRiemannian manifold that admits a timelike Killing vector that is
hypersurface orthogonal; this Killing vector ξi fulfills the equations:

(3.1) ξiξ
i > 0, ξi;k + ξk;i = 0, ξ[iξk,l] = 0.

In symmetry adapted coordinates x0, x1, x2, x3, the line element of a static
spacetime reads

(3.2) ds2 =

3
∑

α,β=1

gαβ(x
1, x2, x3)dxαdxβ + V 2(dx0)2, V = V (x1, x2, x3).

Let us assume the line element to enjoy the following properties:

• the metric is a vacuum solution of Einstein’s field equations, regular
and Minkowskian at spatial infinity;

• the equipotential surfaces V = C = const.> 0, x0 = const. are
regular, simply connected, closed 2-surfaces;

• the intrinsic geometry of the 2-surfaces V = C, x0 = const., tends to
that of a closed regular 2-surface of finite area in the limit C → 0;

• the Kretschmann scalar RiklmR
iklm is everywhere finite.

Then a surprising theorem, found [32] by Israel, asserts that the only space-
time that fulfills the hypotheses enumerated above is Schwarzschild’s original
manifold [1]. Of course, Israel’s theorem does not say which of the hypothe-
ses happens to fail when the static spacetime is not Schwarzschild’s original
manifold; this detail can be learned on a case by case basis. One interesting
example is provided by the so called gamma metric.

4more precisely, the scalar polynomial expressions built with the metric gab, with the
Levi-Civita symbol ǫabcd, with the Riemann tensor Rabcd and with its covariant derivatives.
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The latter is one of the axially symmetric, static vacuum solutions [33]
calculated in 1922 by Bach, who availed of the general method of solution
[34, 35] found by Weyl and by Levi-Civita. Despite the nonlinear structure
of Einstein’s equations, Weyl succeeded in reducing the axially symmetric,
static problem to quadratures through the introduction of his “canonical
cylindrical coordinates”. Let x0 = t be the time coordinate, while x1 = z,
x2 = r are the coordinates in a meridian half-plane, and x3 = ϕ is the
azimuth of such a half-plane; the adoption of Weyl’s canonical coordinates
allows writing the line element of a static, axially symmetric field in vacuo

as:

(3.3) ds2 = e2ψdt2 − dσ2, e2ψdσ2 = r2dϕ2 + e2γ(dr2 + dz2);

the two functions ψ and γ depend only on z and r. Remarkably enough,
in order to provide a solution to Einstein’s equations, ψ must fulfill the
“Newtonian potential” equation

(3.4) ∆ψ =
1

r

{

∂(rψz)

∂z
+
∂(rψr)

∂r

}

= 0,

where ψz, ψr are the derivatives of ψ with respect to z and to r respectively,
while γ is obtained by solving the system

(3.5) γz = 2rψzψr, γr = r(ψ2
r − ψ2

z);

due to equation (3.4)

(3.6) dγ = 2rψzψrdz + r(ψ2
r − ψ2

z)dr

happens to be an exact differential.
The particular Bach’s metric we are interested in is defined by choosing for

ψ the potential that, in Weyl’s “Bildraum”, is produced by a thin massive
rod of constant linear density σ = k/2 lying on the symmetry axis, say,
between z = z2 = −l and z = z1 = l, that acts as source for the “Newtonian
potential” of equation (3.4). One then finds:

(3.7) ψ =
k

2
ln
r1 + r2 − 2l

r1 + r2 + 2l
,

where

(3.8) ri = [r2 + (z − zi)
2]1/2, i = 1, 2.

By integrating equations (3.5) and by adjusting an integration constant so
that γ vanish at the spatial infinity one obtains:

(3.9) γ =
k2

2
ln

(r1 + r2)
2 − 4l2

4r1r2
.

The resulting metric is asymptotically flat at spatial infinity and its com-
ponents are everywhere regular, with the exception of the segment of the
symmetry axis for which z2 ≤ z ≤ z1, for any choice of the parameters l and
k, assumed here to be positive.
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It may be convenient [36] to express the line element in spheroidal coor-
dinates by performing, in the meridian half-plane, the coordinate transfor-
mation [37]:

(3.10) ̺ =
1

2
(r1 + r2 + 2l), cos ϑ =

r2 − r1
2l

.

Then the interval takes the form

ds2 =
(

1 − 2l
̺

)k
dt2(3.11)

−
(

1 − 2l
̺

)

−k [
(

∆
Σ

)k2
−1

d̺2 + ∆k2

Σk2
−1

dϑ2 + ∆ sin2 ϑdϕ2
]

,

where

(3.12) ∆ = ̺2 − 2l̺, Σ = ̺2 − 2l̺+ l2 sin2 ϑ.

Therefore, provided that k 6= 0, the component g00 = V 2 of this static metric
exhibits closed, simply connected 2-surfaces on which V = C, and C → 0
when ̺→ 2l, in partial fulfillment of the hypotheses set by Israel. We note
that when k = 1 the metric reduces to Schwarzschild’s spherically symmetric
one. It does so in the strict sense: it is in one-to-one correspondence with
Schwarzschild’s original solution [1], not with Hilbert’s manifold [3]. The
latter would be retrieved from (3.11) with k = 1 if the radial coordinate ̺
were allowed the range 0 ≤ ̺ < ∞ while, due to (3.10), the allowed values
of ̺ are presently in the range 2l ≤ ̺ < ∞. Therefore, when k = 1 the
manifold fulfills all the hypotheses set by Israel.

Let us now explore the behaviour, as a function of k, of the Kretschmann
scalar K ≡ RiklmR

iklm of the gamma metric. The calculation and the study
of this scalar has been done long ago [37] by Cooperstock and Junevicus,
and was recently repeated by Virbhadra. We quote here his result [38],
expressed with spheroidal coordinates:

(3.13) K =
16l2k2N

̺2(k2+k+1)(̺− 2l)2(k2
−k+1)Σ3−2k2

,

with

N = l2 sin2 θ
[

3lk(k2 + 1)(l − ̺) + k2(4l2 − 6l̺+ 3̺2) + l2(k4 + 1)
]

+3̺[(k + 1)l − ̺]2(̺− 2l).(3.14)

We do not need a minute analysis of the function K(ρ, ϑ, k) for noting that,
when ρ → 2l, the Kretschmann scalar is a discontinuous parameter in the
set of the gamma metrics. It is sufficient to examine its behaviour in the
neighbourhood of k = 1, for arbitrarily small axially symmetric deviations
from spherical symmetry. By studying the zeroes of both the numerator
and the denominator of (3.13) one is then confronted with the following
situation. For all the values of ϑ, the denominator vanishes when ρ → 2l,
while the values of ̺ at which the zeroes of the numerator occur depend
on both k and ϑ. Hence in the neighbourhood of k = 1 the Kretschmann
scalar always diverges [37] for ρ → 2l, provided that k 6= 1. When k = 1,
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and the metric reduces to Schwarzschild’s one, both the numerator and the
denominator tend to zero as ρ→ 2l for all ϑ, and they do so in such a way
that the limit value of the Kretschmann scalar happens to be finite at the
“Schwarzschild radius”. Therefore, in the particular case of the gamma met-
ric, Israel’s theorem leads to this occurrence: the slightest deviation from
the spherical symmetry of Schwarzschild’s manifold destroys the regularity
of the Kretschmann scalar for ρ → 2l. This is a troublesome result, be-
cause the latter regularity is a necessary condition for the extension of the
Schwarzschild manifold to the inner region. The above mentioned slightest
deviation from the spherical symmetry renders the procedure of extension
impossible.

One may conclude, like Israel did [39] in a worried letter to “Nature”, that
“models with exact spherical symmetry possess idiosyncrasies which render
them dangerous, and perhaps misleading, as a basis for induction”. One
may instead wonder whether, at least in this case of static manifolds, one
had rather imputing the idiosyncrasies not to the spherical symmetry, but
to the chosen indicator of singularity, and whether a more reliable indicator
might exist. At variance with the polynomial scalars built with the Riemann
tensor, in the case of the gamma metric this indicator, hopefully endowed
with physical meaning, should not exhibit a discontinuous behavior, as a
function of k, when ρ → 2l. In the search of such an alternative indicator,
we can look into the history of general relativity, and draw inspiration from
the ideas about the entity representing the gravitational field that prevailed
before Synge set his identification [31] of the gravitational field with the
curvature of spacetime. For Synge that assertion was not an abstract, a
priori statement; it was instead rooted in the sort of physical reasoning that
had led him, already in 1937, to reject [40] Whittaker’s identification of the
gravitational pull [41].

In compliance with Einstein’s principle of equivalence [14], Whittaker had
assumed that the gravito-inertial force exerted on a pole test particle of unit
mass, whose worldline was a congruence with unit tangent vector ui(xk),
was defined by minus the first curvature vector ai of the congruence:

(3.15) ai =
dui

ds
+ Γiklu

kul,

namely, by minus the four-acceleration of the test particle. If one thinks
that in general relativity the gravito-inertial pull should balance the non-
gravitational forces, (3.15) can be read like the extension of Newton’s second
law to the new theory. This extension does not need to be postulated: it
can be derived from the conservation identities of the theory5, and it indeed
asserts that the force per unit mass ai exerted by, say, the electromagnetic
field on the pole test particle is balanced by minus the gravito-inertial pull
per unit mass expressed by the right-hand side of (3.15).

5For the case of an electrically charged pole test particle see the derivation by Papa-
petrou and Urich [42].
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Synge criticised Whittaker’s definition of the gravito-inertial pull on the
ground that in Einstein’s theory only relative kinematic measurements in-
volving nearby particles are permitted in general, hence one must renounce
the unattainable goal of determining absolutely the force acted by the grav-
itational field on any particle, and must be content with a differential law
that only allows for the comparison of the gravitational pull acting at ad-
jacent events. Let us consider then two pole test particles, both executing
geodesic motion, and imagine that their world-lines L, M be very close to
each other. If ηi is the infinitesimal displacement vector drawn perpendic-
ular to L from a point A on L to a point B on M , the acceleration of B
relative to A is defined by the infinitesimal vector

(3.16) f i =
D2ηi

ds2
,

where D/ds indicates absolute differentiation and ds is the infinitesimal arc
length of the geodesic L measured at A. But Synge himself [43] had proved
that

(3.17)
D2ηi

ds2
+Rijklu

jηkul = 0,

where Rijkl is the Riemann tensor and ui is the four-velocity of the particle
at A. By appealing to Newton, Synge postulated that the excess of the
gravitational force at the event B over the gravitational force at the event
A is defined (for unit test masses) to be the acceleration (3.16) of B relative
to A. Hence he found [40] that the excess of the gravitational pull is given
by

(3.18) f i = −Rijklujηkul.
Therefore, leaving behind Einstein’s principle of equivalence, through the
equation of geodesic deviation the identification between gravitational field
and curvature entered the theory of general relativity; subsequently the
polynomial invariants built with the Riemann tensor became indicators of
the singularity and ad ignorantiam regularity of the gravitational field.

One may observe, however, that just in the case of the static manifolds
Synge’s objection, that in Einstein’s theory only relative kinematic measure-
ments are permitted, hence “one must be content with a differential law that
only allows for the comparison of the gravitational pull acting at adjacent
events”, is not true.

To understand why, it is necessary a sharpening of the definition of static
manifold, that is generally overlooked. We have reported earlier that def-
inition, both in the coordinate form and in the intrinsic one, provided by
equations (3.1), according to which a manifold is static if it is endowed with a
timelike, hypersurface orthogonal Killing vector. Such a definition, however,
applies also to the Minkowski spacetime.

The attribution of the adjective “static” to the Minkowski spacetime does
not seem however to be an appropriate one. In fact, the notion of staticity
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is undisputably associated with the notion of rest. How is it possible to
call “static” the metric of the theory of special relativity, a theory that
denies intrinsic meaning to the very notion of rest? How is it possible that
the Minkowski metric remain static, as it does according to our definition,
after we have subjected it to an arbitrary Lorentz transformation, i.e. a
transformation that entails relative, uniform motion? Let us start from the
Minkowski metric, given by gik = diag(−1,−1,−1, 1) with respect to the
Galilean coordinates x, y, z, t, and perform the coordinate transformation

(3.19) x = X coshT, y = Y, z = Z, t = X sinhT

to new coordinates X, Y , Z, T . We get the particular Rindler metric [44],
whose interval reads

(3.20) ds2 = −dX2 − dY 2 − dZ2 +X2dT 2.

How is it possible that this metric turn out to be in static form too, despite
the fact that the transformation (3.19) entails uniformly accelerated motion?
The definition of static manifold needs to be completed by further specifying
that the timelike, hypersurface orthogonal Killing vector must be uniquely

defined by equations (3.1) at each event. This is the case, for instance, with
such solutions of general relativity as just Schwarzschild’s original solution
and the gamma metric, provided that the curvature is nonvanishing. In
these manifolds of general relativity the congruences built with the unique
timelike, hypersurface orthogonal Killing vector field define wordlines of ab-
solute rest. They are intrinsic to the manifold since, at variance with the
worldlines of observers arbitrarily drawn on a manifold, they are defined by
the metric alone through equations (3.1). In this case it is by no means true
that only relative kinematic measurements are allowed, because a single such
worldline can be recognised in an absolute way, from the local knowledge of
the metric and of its derivatives. From here it follows that the first curvature
(3.15) of the worldlines of absolute rest is a local and intrinsic property of a
truly static manifold. There is no valid objection to Whittaker’s definition
of the gravitational pull in this case: the norm a = (−aiai)1/2 in this case
is an invariant, local, intrinsic quantity, defined only by the metric, just like
the polynomial invariants built with the Riemann tensor happen to be. In
the case of the gamma metric, defined with the spheroidal coordinates (3.10)
by equations (3.11) and (3.12), the squared norm of the four-acceleration of
a test particle on a worldline of absolute rest reads [45]

(3.21) a2 =
16k2l2

[4(̺− l)2 − 4l2 cos2 ϑ]1−k2(2̺− 4l)1−k+k2(2̺)1+k+k2
,

Therefore, for any value of k < 2 and for all ϑ the norm a happens to grow
without limit as ̺→ 2l. At variance with what occurs with the Kretschmann
scalar, for ̺ → 2l, a does not exhibit any discontinuous behaviour when
crossing the value k = 1, for which the gamma metric specialises into the
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Schwarzschild metric, and the norm reduces to

(3.22) a =

[

l2

̺3(̺− 2l)

]1/2

.

The invariant, local, intrinsic quantity a, if used as indicator of singularity of
a static manifold, does not suffer from the “idiosyncrasies” exhibited by the
Kretschmann scalar K of equation (3.13): a uniformly diverges when ̺→ 2l,
thereby signalling the presence of an invariant, local, intrinsic singularity
just on the inner border of Schwarzschild’s original manifold, hence of an
inadmissible singularity in the interior of Hilbert’s manifold.

4. The singularity at the Schwarzschild surface is both

intrinsic and physical

Like Synge’s definition (3.18) of the relative gravitational pull, Whit-
taker’s definition of the gravitational force felt by a test body of unit mass
kept at rest in a static field is connected to the geometric definition of the
corresponding four-acceleration (3.15) by way of hypothesis. It is true that
the hypothesis is supported by the derivation from the Einstein-Maxwell
equations done by Papapetrou and Urich [42]. However, given the crucial
rôle that Whittaker’s definition has in determining the intrinsic singular
character of Schwarzschild’s surface, it seems worth calculating this force
directly from some actually existing exact solution of Einstein’s equations.
In this way one may hope to ascertain whether the divergence of an invari-
ant, local, intrinsic geometric entity is accompanied by the divergence of a
physical quantity. In this section the norm of the four-force exerted on a test
body in Schwarzschild’s field is obtained [46] by starting, in the footsteps
of Weyl [47],[33], from a particular two-body Weyl-Levi Civita solution of
Einstein’s equations, calculated in 1922 by R. Bach [33].

By availing of Weyl’s canonical cylindrical coordinates, this static, axially
symmetric two-body solution is obtained if one assumes, like Bach did, that
the “Newtonian potential” ψ entering the line element (3.3) is generated,
in the canonical “Bildraum”, by matter that is present with constant lin-
ear mass density σ = 1/2 on two segments of the symmetry axis, like the
segments P4P3 and P2P1 of Figure 3. We know already from (3.7) that the
particular choice

(4.1) ψ =
1

2
ln
r1 + r2 − 2l

r1 + r2 + 2l
+

1

2
ln
r3 + r4 − 2l′

r3 + r4 + 2l′
,

will produce a vacuum solution to Einstein’s field equations that reduces to
Schwarzschild’s original solution if one sets either l = 0 or l′ = 0. Of course,
due to the nonlinearity of (3.5), one cannot expect that γ will contain only
the sum of the contributions

(4.2) γ11 =
1

2
ln

(r1 + r2)
2 − 4l2

4r1r2
, γ22 =

1

2
ln

(r3 + r4)
2 − 4l′2

4r3r4
,
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Figure 3. Representation in the canonical z, r half-plane of the

mass sources for Bach’s two-body solution. r4, r3 and r2, r1 are the

“distances”, calculated in the Euclidean way, of a point P from the

end points of the two segments endowed with mass. P4P3 = 2l′,
P3P2 = 2d, P2P1 = 2l, again in coordinate lengths.

corresponding to the individual terms of the potential (4.1); a further term
is present, that Bach called γ12, and reads

(4.3) γ12 = ln
lr4 − (l′ + d)r1 − (l + l′ + d)r2

lr3 − dr1 − (l + d)r2
+ c,

where c is a constant. Since γ must vanish at the spatial infinity, it must be
c = ln[d/(l + l′)]. With this choice of the constant one eventually finds [33]
that the line element of the two-body solution is defined by the functions

e2ψ =
r1 + r2 − 2l

r1 + r2 + 2l
· r3 + r4 − 2l′

r3 + r4 + 2l′
,

e2γ =
(r1 + r2)

2 − 4l2

4r1r2
· (r3 + r4)

2 − 4l′2

4r3r4

·
(

d(l′ + d)r1 + d(l + l′ + d)r2 − ldr4
d(l′ + d)r1 + (l + d)(l′ + d)r2 − l(l′ + d)r3

)2

.(4.4)

With these definitions for ψ and γ the line element (3.3) behaves properly at
the spatial infinity and is regular everywhere, except for the two segments
P4P3, P2P1 of the symmetry axis, where the sources of ψ are located, and
also for the segment P3P2, because there γ does not vanish as required, but
takes the constant value

(4.5) Γ = ln
d(l + l′ + d)

(l + d)(l′ + d)
,

thus giving rise to the well known conical singularity.
Due to this lack of elementary flatness occurring on the segment P3P2,

the solution is not a true two-body solution; nevertheless Weyl showed [33]
that a regular solution could be obtained from it, provided that nonvanishing
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energy tensor density T
k
i be allowed for in the space between the two bodies.

In this way an axial force F is introduced, with the evident function of
keeping the two bodies at rest despite their mutual gravitational attraction.
By providing a measure for F , Weyl provided a measure of the gravitational
pull. Let us recall here Weyl’s analysis [47, 33] of the axially symmetric,
static two-body problem.

In writing Einstein’s field equations, we adopt henceforth Weyl’s conven-
tion for the energy tensor:

(4.6) Rik −
1

2
gikR = −Tik.

Einstein’s equations teach that, when the line element has the expression
(3.3), T

k
i shall have the form

(4.7)
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where

(4.8) T
1
1 + T

2
2 = 0.

By introducing the notation

(4.9) T
3
3 = r̺′, T

0
0 = r(̺+ ̺′),

Einstein’s equations can be written as:

(4.10) ∆ψ =
1

2
̺,

∂2γ

∂z2
+
∂2γ

∂r2
+

{

(

∂ψ

∂z

)2

+

(

∂ψ

∂r

)2
}

= −̺′;

(4.11) T
1
1 = −T

2
2 = γr − r(ψ2

r − ψ2
z), −T

2
1 = −T

1
2 = γz − 2rψrψz.

Weyl shows that ̺ must be interpreted as mass density in the canonical
“Bildraum”. To this end he considers the mass density distribution sketched
in Figure 4, where ̺ is assumed to be nonvanishing only in the shaded
regions labeled 1 and 2 respectively. According to (4.1), the potential ψ
corresponding to this mass distribution can be uniquely split in two terms
ψ1 and ψ2, such that ψ1 is a potential function that vanishes at infinity and
is everywhere regular outside the region 1, while ψ2 behaves in the same
way outside the region 2. The asymptotic forms of ψ1 and ψ2 are such that

(4.12) e2ψ1 = 1 − m1

R
+ · · ·, e2ψ2 = 1 − m2

R
+ · · ·

where the mass coefficients m1 and m2 are given by the integral
∫

̺dV =
2π
∫

̺rdrdz, performed in the canonical space and extended to the appro-
priate shaded region. Outside the shaded regions one has ̺ = 0, but there
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Figure 4. Representation in the canonical z, r half-plane of extended

mass sources of a two-body solution.

shall be some region between the bodies, let us call it L′, where ̺ = 0 but
T
k
i 6= 0, since in a static solution of general relativity the gravitational pull

shall be counteracted in some way. Weyl’s procedure for determining T
k
i in

L′ is the following. Suppose that T
k
i vanishes outside a simply connected

region L that includes both material bodies. Since ψ is known there, we
can avail of (3.6), together with the injunction that γ vanish at infinity,
to determine γ uniquely outside L. Within L′ we can choose γ arbitrarily,
provided that we ensure the regular connection with the vacuum region and
the regular behaviour on the axis, i.e. γ vanishing there like r2. Since ψ
is known in L′ and γ has been chosen as just shown, we can use equations
(4.10) and (4.11) to determine T

k
i there.

If the material bodies include each one a segment of the axis, just as
it occurs in Fig. 4, the force F directed along the z axis, with which the
stresses in L′ contrast the gravitational pull can be written as

(4.13) F = 2π

∫

C
(T2

1dz − T
1
1dr);

the integration path is along a curve C, like the one drawn in Fig. 4, that
separates the two bodies in the meridian half-plane; the value of the integral
does not depend on the precise position of C because, as one gathers from
the definitions (4.10), (4.11):

(4.14) T
1
1,1 + T

2
1,2 = 0

in the region L′. Since the region of the meridian half-plane where ̺ = 0 is
simply connected, by starting from ψ and from the vacuum equation (3.6),
now rewritten as:

(4.15) dγ∗ = 2rψzψrdz + r(ψ2
r − ψ2

z)dr

one can uniquely define there the function γ∗ that vanishes at the spatial
infinity. In all the parts of the z axis where ̺ = 0 it must be γ∗z = 0, γ∗r = 0,
hence γ∗ =const., γ∗r = 0. In particular, in the parts of the axis that go
to infinity one shall have γ∗ = 0; let us call Γ∗ the constant value assumed
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instead by γ∗ on the segment of the axis lying between the two bodies. The
definitions (4.11) can now be rewritten as:

(4.16) T
1
1 = −T

2
2 = γr − γ∗r , −T

2
1 = −T

1
2 = γz − γ∗z ,

and the integral of (4.13) becomes

(4.17)

∫

C
(T2

1dz − T
1
1dr) =

∫

C
(γ∗z − γz)dz + (γ∗r − γr)dr =

∫

C
d(γ∗ − γ).

Since γ vanishes on the parts of the z axis where ̺ = 0, the force F that
holds the bodies at rest despite the gravitational pull shall be

(4.18) F = −2πΓ∗

with Weyl’s definition (4.6) of the energy tensor. When the mass density
̺ has in the canonical space the particular distribution considered by Bach
and drawn in Fig. 3, Γ∗ is equal to Γ as defined by (4.5). The measure of the
gravitational pull with which the two “material bodies” of this particular
solution attract each other therefore turns out to be

(4.19) F = 2π ln
(d+ l)(d+ l′)

d(d+ l + l′)

in Weyl’s units. This expression agrees with the Newtonian value when l
and l′ are small when compared to d, as expected.

Despite its mathematical beauty, Weyl’s definition of the gravitational
pull for an axially symmetric, static two-body solution appears associated
without remedy to the adoption of the canonical coordinate system. It is
however possible to obtain through Weyl’s definition of F , given by (4.13),
a “quasi” four-vector fi. In fact that expression can be rewritten as

(4.20) F =

∫

Σ
T
l
1df

∗

0l ≡
1

2

∫

Σ
T l1ǫ0lmndf

mn,

where ǫklmn is Levi-Civita’s totally antisymmetric tensor and dfmn is the
element of the two-surface Σ generated by the curve C through rotation
around the symmetry axis. Since the metric that we are considering is
static in the strict sense it is possible to define a unique timelike, hyper-
surface orthogonal Killing vector ξk(t) that correspond, in Weyl’s canonical

coordinates, to a unit coordinate time translation. Therefore (4.20) can be
rewritten as

(4.21) F =
1

2

∫

Σ
ξk(t)T

l
1ǫklmndf

mn

by still using the canonical coordinates. Now the integrand is written as the
first component of the infinitesimal covariant four-vector

(4.22) ξk(t)T
l
i ǫklmndf

mn,

but of course in general the expression

(4.23) fi =
1

2

∫

Σ
ξk(t)T

l
i ǫklmndf

mn
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will not be a four-vector, because the integration over Σ spoils the covari-
ance. When evaluated in canonical coordinates, the nonvanishing compo-
nents of fi are f1 = F and

(4.24) f2 = 2π

∫

C
(T2

2dz − T
2
1dr) = 2π

∫

C
(γ∗r − γr)dz − (γ∗z − γz)dr,

that however must vanish too, if fi has to become a four-vector defined
on the symmetry axis. But, as one sees from Weyl’s analysis, we are at
freedom to choose T

k
i in L′ as nonvanishing only in a tube with a very

small, yet finite coordinate radius, that encloses in its interior the segment
of the symmetry axis lying between the bodies; moreover, we can freely
set γz = γ∗z within the tube. Under these conditions the second term of
the integral (4.24) just vanishes, while the first one shall be very small,
since the regularity of the surface Σ requires that the curve C approach
the symmetry axis at a right angle in canonical coordinates. By properly
choosing T

k
i we thus succeed in providing through equation (4.23) a quasi

four-vector fi whose components, written in Weyl’s canonical coordinates,
reduce in approximation to (F, 0, 0, 0).

Having defined, with the above caveats, the quasi four-vector fi along the
segment of the symmetry axis between the two bodies, we can use its “quasi”
norm to provide a measure of the force that opposes the gravitational pull.
In the case of Bach’s two-body solution, whose line element is defined in
canonical coordinates by (3.3) and (4.4), that quasi norm reads

(4.25) f ≡ (−f ifi)1/2 = 2π ln
(d+ l)(d+ l′)

d(d+ l + l′)
·
[

r1 − 2l

r1
· r4 − 2l′

r4

]1/2

when measured in Weyl’s units at a point of the symmetry axis for which
z3 < z < z2. At variance with the behaviour of F , the quasi norm f depends
on z, due to the term of (4.25) enclosed within the square brackets, that
comes from e2ψ. Let us evaluate this quasi norm divided by l′ when l′ → 0,
namely, the coefficient of the linear term in the McLaurin series expansion
of f with respect to l′. Since Γ∗, now defined by the right-hand side of (4.5),
tends to zero when l′ → 0, while performing this limit one can also send to
zero the radius of the very narrow tube considered in the previous section.
Therefore fi can become a true four-vector and f can become a true norm in
the above mentioned limit. With this proviso one finds the invariant, exact
result

(4.26) lim
l′→0

[

f

l′

]

=

[

∂f

∂l′

]

l′=0

=
2πl

d(d+ l)

(

r1 − 2l

r1

)1/2

.

When l′ → 0 the line element of Bach’s solution with two bodies tends to
the line element defined by (3.3) and (3.7) when k = 1, that is in one-to-one
correspondence with the line element of Schwarzschild’s original solution [1].
Therefore the scalar quantity [∂f/∂l′]l′=0 evaluated at P3 shall be the norm
of the force per unit mass exerted by Schwarzschild’s gravitational field on a
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test particle kept at rest at P3. Its value is obtained by substituting 2d+ 2l
for r1 in (4.26). One finds

(4.27)

(

lim
l′→0

[

f

l′

])

z=z3

=
8πl

(2d + 2l)3/2(2d)1/2
.

If one solves Schwarzschild’s problem in spherical polar coordinates r, ϑ,
ϕ, t with three unknown functions λ(r), µ(r), ν(r), i.e. without fixing the
radial coordinate, like Combridge and Janne did long ago [48],[49], one ends
up writing de Sitter’s line element [50]

(4.28) ds2 = − expλdr2 − expµ[r2(dϑ2 + sin2 ϑdϕ2)] + exp νdt2

in terms of one unknown function h(r). In fact λ, µ, ν are defined through
this arbitrary function h(r) and through its derivative h′(r) as follows:

expλ =
h′2

1 − 2m/h
,(4.29)

expµ =
h2

r2
,(4.30)

exp ν = 1 − 2m/h.(4.31)

Here m is the mass constant; of course the arbitrary function h must have
the appropriate behaviour as r → +∞. Schwarzschild’s original solution [1]
is eventually recovered [51],[2] by requiring that h be a monotonic function
of r and that h(0) = 2m. With our symmetry-adapted coordinates, the
unique worldline of absolute rest of a test body shall be invariantly specified
by requiring that the spatial coordinates r, ϑ, ϕ of the test body be constant
in time. If a = (−aiai)1/2 is the norm of the acceleration four-vector (3.15)
along the worldline of the test body, one finds

(4.32) a =
m

h3/2(h− 2m)1/2
,

in keeping with the expression (3.22), derived with a particular choice of
the radial coordinate. This norm was postulated by Whittaker [41] to be
equal to the norm of the force per unit mass needed for constraining the test
particle to follow a worldline of absolute rest despite the gravitational pull
of the Schwarzschild field. The consistency of the hypothesis with Einstein’s
theory requires that a be equal to the scalar quantity [∂f/∂l′]l′=0, z=z3 that
provides the norm of the force per unit mass for Bach’s solution in the test
particle limit l′ → 0.

This is indeed the case, since the functional dependence of (4.27) on the
mass parameter l and on the coordinate distance 2d + 2l is the same as
the functional dependence of (4.32) on the mass parameter m and on the
function h(r), for which h(0) = 2m, introduced above. The extra constant
8π appearing in (4.27) is just due to Weyl’s adoption of the definition (4.6)
of the energy tensor. For Schwarzschild’s field, the definition of the norm
of the gravitational force exerted on a test particle at rest obtained through
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the acceleration four-vector and the independent definition through the force
that, in Bach’s two-body solution, T

k
i must exert to keep the masses at rest

when l′ → 0 lead to one and the same result. In particular, both definitions
show that the norm of the force per unit mass grows without limit as the
test particle is kept at rest in a position closer and closer to Schwarzschild’s
two-surface. Therefore the singularity at the Schwarzschild surface, besides
being invariant, local and intrinsic, is also physical in character.

5. Conclusion

Several reasons for reinstating Schwarzschild’s original solution and mani-
fold [1] as the idealised model for the field of a “Massenpunkt” in the theory
of general relativity have been expounded in the previous sections. The
model happens to fall short of some of our expectations about the field of a
material particle. One still feels in want of something as simple and essential
as its Newtonian counterpart. Confronted with the singular surface of finite
area at the inner border of the manifold, one may well ask, with Marcel Bril-
louin [4], where the point particle has gone. However, given the astounding
achievements of just this model, one cannot help following Brillouin in his
resigned way of accepting the Schwarzschild manifold6. At last, one may
add in consolation, unlike the Hilbert manifold, it is endowed with a con-
sistent arrow of time. Moreover, unlike both the Hilbert manifold and its
Kruskal-Szekeres extension, it does not exhibit an invariant, local, intrinsic
singularity in its interior.

While studying Schwarzschild’s problem, some circumstances of a more
general theoretical character have been reconsidered, that are worth being
severally recalled here:

• Einstein’s equations do not generally fix the topology.
• When we accept that the topology of a space-time has physical con-

sequences, providing a solution to Einstein’s equations implies the
statement of the topology, and locally isometric solutions are differ-
ent when their topologies are.

• Locally isometric space-times change their topology when singular
coordinate transformations are applied.

• The invariants of the Riemann tensor indicate singularities. In the
generic case, they are always involved. In the algebraically special
space-times, there are instances where the Killing congruence may
exhibit singularities without involvement of the local Riemann ten-
sor. The Schwarzschild horizon is one example.

6In the quoted paper he wrote:

Toutefois, comme on ne peut rien trouver de plus ponctuel dans l’Univers
d’Einstein, et qu’il faut bien arriver a definir le corps d’épreuve matériel

élémentaire qui, d’après Einstein, suit une géodésique de l’Univers dont
il fait partie, je conserverai cette dénomination abrégée, point materiel,
sans oublier son imperfection.
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Appendix A. Translation of Schwarzschild’s

“Massenpunkt” paper

On the Gravitational Field of a Mass Point according to Einstein’s Theory7

K. Schwarzschild

§1. In his work on the motion of the perihelion of Mercury (see Sitzungs-
berichte of November 18, 1915) Mr. Einstein has posed the following prob-
lem:

Let a point move according to the prescription:

δ
∫

ds = 0,

where(A.1)

ds =
√

Σgµνdxµdxν µ, ν = 1, 2, 3, 4,

where the gµν stand for functions of the variables x, and in the variation the
variables x must be kept fixed at the beginning and at the end of the path
of integration. In short, the point shall move along a geodesic line in the
manifold characterised by the line element ds.

The execution of the variation yields the equations of motion of the point:

(A.2)
d2xα
ds2

=
∑

µ,ν

Γαµν
dxµ
ds

dxν
ds

, α, β = 1, 2, 3, 4,

where

(A.3) Γαµν = −1

2

∑

β

gαβ
(

∂gµβ
∂xν

+
∂gνβ
∂xµ

− ∂gµν
∂xβ

)

,

and the gαβ stand for the normalised minors associated to gαβ in the deter-
minant |gµν |.

According to Einstein’s theory, this is the motion of a massless point
in the gravitational field of a mass at the point x1 = x2 = x3 = 0, if
the “components of the gravitational field” Γ fulfill everywhere, with the
exception of the point x1 = x2 = x3 = 0, the “field equations”

(A.4)
∑

α

∂Γαµν
∂xα

+
∑

αβ

ΓαµβΓ
β
να = 0,

and if also the “equation of the determinant”

(A.5) |gµν | = −1

7Original title: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen
Theorie. Published in: Sitzungsberichte der Königlich Preussischen Akademie der Wis-
senschaften zu Berlin, Phys.-Math. Klasse 1916, 189-196. Submitted January 13, 1916.
Translation by S. Antoci, Dipartimento di Fisica “A. Volta”, Università di Pavia, and
A. Loinger, Dipartimento di Fisica, Università di Milano. The valuable advice of D.-E.
Liebscher is gratefully acknowledged.
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is satisfied.
The field equations together with the equation of the determinant have the

fundamental property that they preserve their form under the substitution of
other arbitrary variables in lieu of x1, x2, x3, x4, as long as the determinant
of the substitution is equal to 1.

Let x1, x2, x3 stand for rectangular co-ordinates, x4 for the time; further-
more, the mass at the origin shall not change with time, and the motion at
infinity shall be rectilinear and uniform. Then, according to Mr. Einstein’s
list, loc. cit. p. 833, the following conditions must be fulfilled too:

(1) All the components are independent of the time x4.
(2) The equations gρ4 = g4ρ = 0 hold exactly for ρ = 1, 2, 3.
(3) The solution is spatially symmetric with respect to the origin of the

co-ordinate system in the sense that one finds again the same solu-
tion when x1, x2, x3 are subjected to an orthogonal transformation
(rotation).

(4) The gµν vanish at infinity, with the exception of the following four
limit values different from zero:

g44 = 1, g11 = g22 = g33 = −1.

The problem is to find out a line element with coefficients such that the field

equations, the equation of the determinant and these four requirements are

satisfied.

§2. Mr. Einstein showed that this problem, in first approximation, leads
to Newton’s law and that the second approximation correctly reproduces the
known anomaly in the motion of the perihelion of Mercury. The following
calculation yields the exact solution of the problem. It is always pleasant
to avail of exact solutions of simple form. More importantly, the calcula-
tion proves also the uniqueness of the solution, about which Mr. Einstein’s
treatment still left doubt, and which could have been proved only with great
difficulty, in the way shown below, through such an approximation method.
The following lines therefore let Mr. Einstein’s result shine with increased
clearness.

§3. If one calls t the time, x, y, z the rectangular co-ordinates, the
most general line element that satisfies the conditions (1)-(3) is clearly the
following:

ds2 = Fdt2 −G(dx2 + dy2 + dz2) −H(xdx+ ydy + zdz)2

where F , G, H are functions of r =
√

x2 + y2 + z2.
The condition (4) requires: for r = ∞ : F = G = 1,H = 0.
When one goes over to polar co-ordinates according to x = r sinϑ cosφ,

y = r sinϑ sinφ, z = r cos ϑ, the same line element reads:

ds2 = Fdt2 −G(dr2 + r2dϑ2 + r2sin2ϑdφ2) −Hr2dr2(A.6)

= Fdt2 − (G+Hr2)dr2 −Gr2(dϑ2 + sin2ϑdφ2).
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Now the volume element in polar co-ordinates is equal to r2 sinϑdrdϑdφ,
the functional determinant r2 sinϑ of the old with respect to the new co-
ordinates is different from 1; then the field equations would not remain in
unaltered form if one would calculate with these polar co-ordinates, and one
would have to perform a cumbersome transformation. However there is an
easy trick to circumvent this difficulty. One puts:

(A.7) x1 =
r3

3
, x2 = − cos ϑ, x3 = φ.

Then we have for the volume element: r2dr sinϑdϑdφ = dx1dx2dx3. The
new variables are then polar co-ordinates with the determinant 1. They
have the evident advantages of polar co-ordinates for the treatment of the
problem, and at the same time, when one includes also t = x4, the field
equations and the determinant equation remain in unaltered form.

In the new polar co-ordinates the line element reads:

(A.8) ds2 = Fdx2
4 −

(

G

r4
+
H

r2

)

dx2
1 −Gr2

[

dx2
2

1 − x2
2

+ dx2
3(1 − x2

2)

]

,

for which we write:

(A.9) ds2 = f4dx
2
4 − f1dx

2
1 − f2

dx2
2

1 − x2
2

− f3dx
2
3(1 − x2

2).

Then f1, f2 = f3, f4 are three functions of x1 which have to fulfill the
following conditions:

(1) For x1 = ∞ : f1 = 1
r4

= (3x1)
−4/3, f2 = f3 = r2 = (3x1)

2/3, f4 = 1.
(2) The equation of the determinant: f1 · f2 · f3 · f4 = 1.
(3) The field equations.
(4) Continuity of the f , except for x1 = 0.

§4. In order to formulate the field equations one must first form the
components of the gravitational field corresponding to the line element (A.9).
This happens in the simplest way when one builds the differential equations
of the geodesic line by direct execution of the variation, and reads out the
components from these. The differential equations of the geodesic line for
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the line element (A.9) result from the variation immediately in the form:

0 = f1
d2x1

ds2
+

1

2

∂f4

∂x1

(

dx4

ds

)2

+
1

2

∂f1

∂x1

(

dx1

ds

)2

−1

2

∂f2

∂x1

[

1

1 − x2
2

(

dx2

ds

)2

+ (1 − x2
2)

(

dx3

ds

)2]

,

0 =
f2

1 − x2
2

d2x2

ds2
+
∂f2

∂x1

1

1 − x2
2

dx1

ds

dx2

ds

+
f2x2

(1 − x2
2)

2

(

dx2

ds

)2

+ f2x2

(

dx3

ds

)2

,

0 = f2(1 − x2
2)

d2x3

ds2
+
∂f2

∂x1
(1 − x2

2)
dx1

ds

dx3

ds
− 2f2x2

dx2

ds

dx3

ds
,

0 = f4
d2x4

ds2
+
∂f4

∂x1

dx1

ds

dx4

ds
.

The comparison with (A.2) gives the components of the gravitational field:

Γ1
11 = −1

2

1

f1

∂f1

∂x1
, Γ1

22 = +
1

2

1

f1

∂f2

∂x1

1

1 − x2
2

,

Γ1
33 = +

1

2

1

f1

∂f2

∂x1
(1 − x2

2), Γ1
44 = −1

2

1

f1

∂f4

∂x1
,

Γ2
21 = −1

2

1

f2

∂f2

∂x1
, Γ2

22 = − x2

1 − x2
2

, Γ2
33 = −x2(1 − x2

2),

Γ3
31 = −1

2

1

f2

∂f2

∂x1
, Γ3

32 = +
x2

1 − x2
2

,

Γ4
41 = −1

2

1

f4

∂f4

∂x1

(the remaining ones are zero).

Due to the rotational symmetry around the origin it is sufficient to write
the field equations only for the equator (x2 = 0); therefore, since they will
be differentiated only once, in the previous expressions it is possible to set
everywhere since the beginning 1 − x2

2 equal to 1. The calculation of the
field equations then gives

a)
∂

∂x1

(

1

f1

∂f1

∂x1

)

=
1

2

(

1

f1

∂f1

∂x1

)2

+

(

1

f2

∂f2

∂x1

)2

+
1

2

(

1

f4

∂f4

∂x1

)2

,

b)
∂

∂x1

(

1

f1

∂f2

∂x1

)

= 2 +
1

f1f2

(

∂f2

∂x1

)2

,

c)
∂

∂x1

(

1

f1

∂f4

∂x1

)

=
1

f1f4

(

∂f4

∂x1

)2

.



REINSTATING SCHWARZSCHILD’S ORIGINAL MANIFOLD 29

Besides these three equations the functions f1, f2, f4 must fulfill also the
equation of the determinant

d) f1f
2
2 f4 = 1, or :

1

f1

∂f1

∂x1
+

2

f2

∂f2

∂x1
+

1

f4

∂f4

∂x1
= 0.

For now I neglect (b) and determine the three functions f1, f2, f4 from (a),
(c), and (d). (c) can be transposed into the form

c′)
∂

∂x1

(

1

f4

∂f4

∂x1

)

=
1

f1f4

∂f1

∂x1

∂f4

∂x1
.

This can be directly integrated and gives

c′′)
1

f4

∂f4

∂x1
= αf1, (α integration constant)

the addition of (a) and (c′) gives

∂

∂x1

(

1

f1

∂f1

∂x1
+

1

f4

∂f4

∂x1

)

=

(

1

f2

∂f2

∂x1

)2

+
1

2

(

1

f1

∂f1

∂x1
+

1

f4

∂f4

∂x1

)2

.

By taking (d) into account it follows

−2
∂

∂x1

(

1

f2

∂f2

∂x1

)

= 3

(

1

f2

∂f2

∂x1

)2

.

By integrating

1
1
f2
∂f2
∂x1

=
3

2
x1 +

ρ

2
(ρ integration constant)

or
1

f2

∂f2

∂x1
=

2

3x1 + ρ
.

By integrating once more,

f2 = λ(3x1 + ρ)2/3. (λ integration constant)

The condition at infinity requires: λ = 1. Then

(A.10) f2 = (3x1 + ρ)2/3.

Hence it results further from (c′′) and (d)

∂f4

∂x1
= αf1f4 =

α

f2
2

=
α

(3x1 + ρ)4/3
.

By integrating while taking into account the condition at infinity

(A.11) f4 = 1 − α(3x1 + ρ)−1/3.

Hence from (d)

(A.12) f1 =
(3x1 + ρ)−4/3

1 − α(3x1 + ρ)−1/3
.

As can be easily verified, the equation (b) is automatically fulfilled by the
expressions that we found for f1 and f2.
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Therefore all the conditions are satisfied apart from the condition of

continuity. f1 will be discontinuous when

1 = α(3x1 + ρ)−1/3, 3x1 = α3 − ρ.

In order that this discontinuity coincides with the origin, it must be

(A.13) ρ = α3.

Therefore the condition of continuity relates in this way the two integration
constants ρ and α.

The complete solution of our problem reads now:

f1 =
1

R4

1

1 − α/R
, f2 = f3 = R2, f4 = 1 − α/R,

where the auxiliary quantity

R = (3x1 + ρ)1/3 = (r3 + α3)1/3

has been introduced.
When one introduces these values of the functions f in the expression

(A.9) of the line element and goes back to the usual polar co-ordinates one
gets the line element that forms the exact solution of Einstein’s problem:
(A.14)

ds2 = (1 − α/R) dt2 − dR2

1 − α/R
−R2(dϑ2 + sin2 ϑdφ2), R = (r3 + α3)1/3.

The latter contains only the constant α, that depends on the value of the
mass at the origin.

§5. The uniqueness of the solution resulted spontaneously through the
present calculation. From what follows we can see that it would have been
difficult to ascertain the uniqueness from an approximation procedure in the
manner of Mr. Einstein. Without the continuity condition it would have
resulted:

f1 =
(3x1 + ρ)−4/3

1 − α(3x1 + ρ)−1/3
=

(r3 + ρ)−4/3

1 − α(r3 + ρ)−1/3
.

When α and ρ are small, the series expansion up to quantities of second
order gives:

f1 =
1

r4

[

1 +
α

r
− 4

3

ρ

r3

]

.

This expression, together with the corresponding expansions of f2, f3, f4,
satisfies up to the same accuracy all the conditions of the problem. Within
this approximation the condition of continuity does not introduce anything
new, since discontinuities occur spontaneously only in the origin. Then
the two constants α and ρ appear to remain arbitrary, hence the problem
would be physically undetermined. The exact solution teaches that in reality,
by extending the approximations, the discontinuity does not occur at the
origin, but at r = (α3 − ρ)1/3, and that one must set just ρ = α3 for the
discontinuity to go in the origin. With the approximation in powers of α
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and ρ one should survey very closely the law of the coefficients in order to
recognise the necessity of this link between α and ρ.

§6. Finally, one has still to derive the motion of a point in the gravita-

tional field, the geodesic line corresponding to the line element (A.14). From
the three facts, that the line element is homogeneous in the differentials and
that its coefficients do not depend on t and on φ, with the variation we
get immediately three intermediate integrals. If one also restricts himself
to the motion in the equatorial plane (ϑ = 90o, dϑ = 0) these intermediate
integrals read:

(A.15) (1 − α/R)

(

dt

ds

)2

− 1

1 − α/R

(

dR

ds

)2

−R2

(

dφ

ds

)2

= const. = h,

(A.16) R2 dφ

ds
= const. = c,

(A.17) (1 − α/R)
dt

ds
= const. = 1 (determination of the time unit).

From here it follows
(

dR

dφ

)2

+R2(1 − α/R) =
R4

c2
[1 − h(1 − α/R)]

or with 1/R = x

(A.18)

(

dx

dφ

)2

=
1 − h

c2
+
hα

c2
x− x2 + αx3.

If one introduces the notations: c2/h = B, (1 − h)/h = 2A, this is identical
to Mr. Einstein’s equation (A.11), loc. cit. and gives the observed anomaly
of the perihelion of Mercury.

Actually Mr. Einstein’s approximation for the orbit goes into the exact
solution when one substitutes for r the quantity

R = (r3 + α3)1/3 = r

(

1 +
α3

r3

)1/3

.

Since α/r is nearly equal to twice the square of the velocity of the planet
(with the velocity of light as unit), for Mercury the parenthesis differs from 1
only for quantities of the order 10−12. Therefore r is virtually identical to R
and Mr. Einstein’s approximation is adequate to the strongest requirements
of the practice.

Finally, the exact form of the third Kepler’s law for circular orbits will
be derived. Owing to (A.16) and (A.17), when one sets x = 1/R, for the
angular velocity n = dφ/dt it holds

n = cx2(1 − αx).
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For circular orbits both dx/dφ and d2x/dφ2 must vanish. Due to (A.18)
this gives:

0 =
1 − h

c2
+
hα

c2
x− x2 + αx3, 0 =

hα

c2
− 2x+ 3αx2.

The elimination of h from these two equations yields

α = 2c2x(1 − αx)2.

Hence it follows

n2 =
α

2
x3 =

α

2R3
=

α

2(r3 + α3)
.

The deviation of this formula from the third Kepler’s law is totally negligible
down to the surface of the Sun. For an ideal mass point, however, it follows
that the angular velocity does not, as with Newton’s law, grow without limit
when the radius of the orbit gets smaller and smaller, but it approaches a
determined limit

n0 =
1

α
√

2
.

(For a point with the solar mass the limit frequency will be around 104 per
second). This circumstance could be of interest, if analogous laws would
rule the molecular forces.

Appendix B. From “Grundlagen der Physik”: translation of

Hilbert’s derivation of the field of a

“Massenpunkt”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The integration of the partial differential equations (36) is possible also in

another case, that for the first time has been dealt with by Einstein1 and by
Schwarzschild2. In the following I provide for this case a way of solution that
does not make any hypothesis on the gravitational potentials gµν at infinity,
and that moreover offers advantages also for my further investigations. The
hypotheses on the gµν are the following:

(1) The interval is referred to a Gaussian coordinate system - however
g44 will still be left arbitrary; i.e. it is

g14 = 0, g24 = 0, g34 = 0.

(2) The gµν are independent of the time coordinate x4.
(3) The gravitation gµν has central symmetry with respect to the origin

of the coordinates.

1Perihelbewegung des Merkur, Sitzungsber. d. Akad. zu Berlin. 1915, 831.
2Über das Gravitationsfeld eines Massenpunktes, Sitzunsber. d. Akad. zu Berlin.

1916, 189.
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According to Schwarzschild, if one poses

w1 = r cosϑ

w2 = r sinϑ cosϕ

w3 = r sinϑ sinϕ

w4 = l

the most general interval corresponding to these hypotheses is represented
in spatial polar coordinates by the expression

(B.42) F (r)dr2 +G(r)(dϑ2 + sin2 ϑdϕ2) +H(r)dl2,

where F (r), G(r), H(r) are still arbitrary functions of r. If we pose

r∗ =
√

G(r),

we are equally authorised to interpret r∗, ϑ, ϕ as spatial polar coordinates.
If we substitute in (B.42) r∗ for r and then drop the symbol ∗, it results the
expression

(B.43) M(r)dr2 + r2dϑ2 + r2 sin2 ϑdϕ2 +W (r)dl2,

where M(r), W (r) mean the two essentially arbitrary functions of r. The
question is how the latter shall be determined in the most general way, so
that the differential equations (36) happen to be satisfied.

To this end the known expressions Kµν , K, given in my first communica-
tion, shall be calculated. The first step of this task consists in writing the
differential equations of the geodesic line through variation of the integral

∫

(

M

(

dr

dp

)2

+ r2
(

dϑ

dp

)2

+ r2 sin2 ϑ

(

dϕ

dp

)2

+W (

(

dl

dp

)2
)

dp.

We get as Lagrange equations:

d2r

dp2
+
M ′

2M

(

dr

dp

)2

− r

M

[

(

dϑ

dp

)2

+ sin2 ϑ

(

dϕ

dp

)2
]

− W ′

2M

(

dl

dp

)2

= 0,

d2ϑ

dp2
+

2

r

dr

dp

dϑ

dp
− sinϑ cos ϑ

(

dϕ

dp

)2

= 0,

d2ϕ

dp2
+

2

r

dr

dp

dϕ

dp
+ 2cot ϑ

dϑ

dp

dϕ

dp
= 0,

d2l

dp2
+
W ′

W

dr

dp

dl

dp
= 0;

here and in the following calculation the symbol ′ means differentiation with
respect to r. By comparison with the general differential equations of the
geodesic line:

d2ws
dp2

+
∑

µν

{µ ν
s } dwµ

dp

dwν
dp

= 0
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we infer for the bracket symbols {µ ν
s } the following values (the vanishing

ones are omitted):

{

1 1
1

}

=
1

2

M ′

M
,
{

2 2
1

}

= − r

M
,
{

3 3
1

}

= − r

M
sin2 ϑ,

{

4 4
1

}

= −1

2

W ′

M
,
{

1 2
2

}

=
1

r
,
{

3 3
2

}

= − sinϑ cos ϑ,

{

1 3
3

}

=
1

r
,
{

2 3
3

}

= cotϑ,
{

1 4
4

}

=
1

2

W ′

W
.

With them we form:

K11 =
∂

∂r

({

1 1
1

}

+
{

1 2
2

}

+
{

1 3
3

}

+
{

1 4
4

})

− ∂

∂r

{

1 1
1

}

+
{

1 1
1

}{

1 1
1

}

+
{

1 2
2

}{

2 1
2

}

+
{

1 3
3

}{

3 1
3

}

+
{

1 4
4

}{

4 1
4

}

−
{

1 1
1

} ({

1 1
1

}

+
{

1 2
2

}

+
{

1 3
3

}

+
{

1 4
4

})

=
1

2

W ′′

W
+

1

4

W ′2

W 2
− M ′

rM
− 1

4

M ′W ′

MW

K22 =
∂

∂ϑ

{

2 3
3

}

− ∂

∂r

{

2 2
1

}

+
{

2 1
2

}{

2 2
1

}

+
{

2 2
1

} {

1 2
2

}

+
{

2 3
3

}{

3 2
3

}

−
{

2 2
1

} ({

1 1
1

}

+
{

1 2
2

}

+
{

1 3
3

}

+
{

1 4
4

})

= −1 − 1

2

rM ′

M2
+

1

M
+

1

2

rW ′

MW

K33 = − ∂

∂r

{

3 3
1

}

− ∂

∂ϑ

{

3 3
2

}

+
{

3 1
3

}{

3 3
1

}

+
{

3 2
3

}{

3 3
2

}

+
{

3 3
1

}{

1 3
3

}

+
{

3 3
2

}{

2 3
3

}

−
{

3 3
1

} ({

1 1
1

}

+
{

1 2
2

}

+
{

1 3
3

}

+
{

1 4
4

})

−
{

3 3
2

} {

2 3
3

}

= sin2 ϑ

(

−1 − 1

2

rM ′

M2
+

1

M
+

1

2

rW ′

MW

)

K44 = − ∂

∂r

{

4 4
1

}

+
{

4 1
4

}{

4 4
1

}

+
{

4 4
1

}{

4 1
4

}

−
{

4 4
1

} ({

1 1
1

}

+
{

1 2
2

}

+
{

1 3
3

}

+
{

1 4
4

})

=
1

2

W ′′

M
− 1

4

M ′W ′

M2
− 1

4

W ′2

MW
+
W ′

rM

K =
∑

s

gssKss =
W ′′

MW
− 1

2

W ′2

MW 2
−2

M ′

rM2
− 1

2

M ′W ′

M2W
− 2

r2
+

2

r2M
+2

W ′

rMW
.

Since √
g =

√
MWr2 sinϑ
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it is found

K
√
g =

{

(

r2W ′

√
MW

)′

− 2
rM ′

√
W

M
3

2

− 2
√
MW + 2

√

W

M

}

sinϑ

and, if we set

M =
r

r −m
, W = w2 r −m

r
,

where henceforthm and w become the unknown functions of r, we eventually
obtain

K
√
g =

{

(

r2W ′

√
MW

)′

− 2wm′

}

sinϑ.

Therefore the variation of the quadruple integral
∫ ∫ ∫ ∫

K
√
gdrdϑdϕdl

is equivalent to the variation of the single integral
∫

wm′dr

and leads to the Lagrange equations

m′ = 0,(B.44)

w′ = 0.

One easily satisfies oneself that these equations effectively entail the van-
ishing of all the Kµν ; they represent therefore essentially the most general
solution of the equations (36) under the hypotheses (1), (2), (3) previously
made. If we take as integrals of (B.44) m = α, where α is a constant, and
w = 1 (a choice that evidently does not entail any essential restriction) from
(B.43) with l = it it results the looked for interval in the form first found
by Schwarzschild

(B.45) G(dr,dϑ,dϕ,dl) =
r

r − α
dr2 + r2dϑ2 + r2 sin2 ϑdϕ2 − r − α

r
dt2.

The singularity of this interval for r = 0 vanishes only when it is assumed
α = 0, i.e.: under the hypotheses (1), (2), (3) the interval of the
pseudo-Euclidean geometry is the only regular interval that corre-
sponds to a world without electricity.

For α 6= 0, r = 0 and, with positive values of α, also r = α happen to be
such points that in them the interval is not regular. I call an interval or a
gravitational field gµν regular in a point if, through an invertible one-to-one
transformation, it is possible to introduce a coordinate system such that for
it the corresponding functions g′µν are regular in that point, i.e. in it and in
its neighbourhood they are continuous and differentiable at will, and have
a determinant g′ different from zero.
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Although in my opinion only regular solutions of the fundamental equa-
tions of physics immediately represent the reality, nevertheless just the so-
lutions with non regular points are an important mathematical tool for ap-
proximating characteristic regular solutions - and in this sense, according to
the procedure of Einstein and Schwarzschild, the interval (B.45), not regular
for r = 0 and for r = α, must be considered as expression of the gravita-
tion of a mass distributed with central symmetry in the surroundings of the
origin1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1Transforming to the origin the position r = α, like Schwarzschild did, is in my opin-
ion not advisable; moreover Schwarzschild’s transformation is not the simplest one, that
reaches this scope.
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