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Abstract

In the year 1957, when interest in Einstein’s unified field theory
was fading away for lack of understanding of its physical content,
Treder performed a momentous critical analysis of the possible defi-
nitions of the electric four-current in the theory. As an outcome of
this scrutiny he was able to prove by the E.I.H. method that prop-
erly defined point charges, appended at the right-hand side of the field
equation R[µν

v

, λ] = 0, interact mutually with Coulomb-like forces, pro-

vided that a mutual force independent of distance is present too. This
unwanted, but unavoidable addition, could not but lay further disbelief
on the efforts initiated by Einstein and Schrödinger one decade earlier.
However in 1980 Treder himself recalled that the potential ϕ = a/r+cr,
found by him in 1957, was the one used by particle physicists to ac-
count phenomenologically for the spectrum of bound quark systems
like mesons. Exact solutions have later confirmed beyond any doubt
that Einstein’s unified field theory does account in a simple way, al-
ready in classical form, for the confinement of pole charges defined by
the four-current first availed of by Treder.

In the present paper it is proposed, ad memoriam, a thorough recol-
lection of the article published by Treder in 1957, showing the way kept
by him to find what would have been later recognized as confinement
in Einstein’s unified field theory.

1 Introduction

In the year 1957, one decade had elapsed since Einstein had resumed his
attempt[1], first formulated already in 1925, to encompass both gravitation
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and electromagnetism in a generalization of his theory of 1915 based on a
nonsymmetric fundamental tensor gµν , and on a nonsymmetric affine con-
nection Γλ

µν . One decade too had gone by after Schrödinger, by starting
from a purely affine approach, had come to announce[2] to have eventually
reached “the final affine field laws”, that would encompass too both electro-
magnetism and gravitation in a geometric formulation, very similar to the
one proposed by Einstein.

However, despite the intense work done by many relativists and geome-
ters to understand both the mathematical structure and the physical content
of what was appropriately called the Einstein-Schrödinger theory, the per-
spective for this sort of endeavour was not, in 1957, as promising as it had
appeared one decade earlier. The formal simplicity of the sets of equations
proposed both by Einstein and by Schrödinger had not yet found a counter-
part in an equally simple and satisfactory physical interpretation. Already
in the 1954/55 report to the Dublin Institute for Advanced Studies, a disap-
pointed Erwin Schrödinger had written: “It is a disconcerting situation that
ten years endeavour of competent theorists has not yielded even a plausible
glimpse of Coulomb’s law.”[3].

In the very year 1957 H. Treder, a collaborator of A. Papapetrou in
Berlin, published in Annalen der Physik a paper, where a critical scrutiny of
the definitions of the electric charge-current density admissible in Einstein’s
unified field theory is performed[4] for the first time. As a consequence of his
analysis of this crucial issue, Treder could show that the negative outcome
for the electric force, found both by Infeld[5] and by Callaway[6], by availing
of the weak field approximation for solving the equations of motion by the
E.I.H. method[7, 8], depended on the choice of the definition of the electric
four-current done by those authors. If a different choice is made, allowed
for too according to Treder’s analysis, the equations of motion stemming
from the weak field approximation prove that Einstein’s unified field theory
does admit of non gravitational forces between charged point particles. But
a surprising result is found with Treder’s choice of the electric four-current
too, for Einstein’s theory does not provide in this way a pure Coulomb force
between two point charges. A force independent of distance is also present,
that cannot be made to vanish by any choice of the constants, because
the presence of the latter force is mandatory for the very existence of the
Coulomb term.

Already in his paper of 1957, Treder expressed some doubt about the
electromagnetic meaning of his finding. Indeed, when the two charged par-
ticles are sufficiently far away from each other, the component of the force
that is independent of distance will inescapably become the prevailing one,
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no matter how weak it may be chosen to be.
Scope of the present paper is to reconsider Treder’s finding of 1957, based

on approximate calculations, in full detail. It will be reminded too that in
1980 Treder himself[9] interpreted his earlier finding as proving that, in the
Hermitian version[10] of Einstein’s theory, pole point charges of unlike sign,
provided by the four-current first considered by him[4], attract mutually
with a force independent of distance, hence they are permanently confined
entities, like the quarks of chromodynamics are presumed to be.

It will be reminded eventually that exact solutions to the field equations
of Einstein’s unified field theory belonging to a class found[11] in 1987 con-
firm with exact arguments [12, 13] the existence of confinement in Einstein’s
unified field theory.

2 Treder’s definition of the charge-current in Ein-

stein’s unified field theory

It is quite interesting to examine the logical thread followed by Treder in
choosing his definition of the “electric” 4-current density. It is evident that in
1957, given the problematic condition of the theory, he feels the need to con-
front the issue afresh, without being encumbered by prejudices, in particular
by the authoritative a priori stipulation, upheld both by Einstein[15] and
by Schrödinger[2], according to which, since the new theory did represent
the field-theoretical completion of the theory of 1915, no phenomenological
sources had to be appended at the right-hand sides of its field equations.
For Treder, it is the so-called +− relation that plays a crucial guiding rôle.
According to him, it is evident that, since the equation gµν

+−

; λ = 0 provides

the definition of the affine connection Γλ
µν in terms of the fundamental tensor

gµν , it needs to be satisfied everywhere.
As a consequence of this stipulation, also the electromagnetic looking

equation g
µν
v ,ν = 0, that stems[2] from the previous defining equation for

Γλ
µν , needs to be satisfied everywhere. Therefore it is impossible to interpret

the latter equation as representing, in Einstein’s unified field theory, the
first group of Maxwell’s equations. In Einstein’s theory, g

στ
v “must be the

antisymmetric tensor density dual to the electromagnetic field strength”.
But this momentous recognition is of scarce help in deciding what 4-vector
represents the electric four-current, “ because in the unified field theory field
strength and induction are not necessarily connected through the relation
which we know from Maxwell’s theory”.
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In order to confront the issue, Treder carefully examines, in part II of
his paper, what suggestions come from the solutions of the weak field, first
order approximation of the field equation R[µν

v

, λ] = 0, because, “when the

unified field theory is expected to have also a macroscopic meaning, it must
be required that it allows to describe the existence of pointlike charges in
the classical vacuum in the lowest approximation at least, for weak fields”.
According to Treder, in order to solve the issue of the definition of the
electric four-current, there is therefore merit in studying the spherically
symmetric, static solution of the weak field approximation of R[µν

v

, λ] = 0.

Since, g
µν
v ,ν = 0 must be fulfilled everywhere, the first order approximation

of gµν
v

must be the dual of the curl of a four-vector:

g
1
µν
v

=
1

2
εµνστ

(

ϕτ ,σ − ϕσ,τ

)

,

and in the Lorentz gauge R
1
[µν
v

, λ] = 0 specialises to

2
2 ϕσ = 0.

In the static case ϕλ = (0, 0, 0, ϕ), and the latter equation specialises further
to

∆∆ϕ = 0,

whose general, spherically symmetric solution reads1

ϕ =
a

r
+ b + cr + dr2.

After dropping the term dr2, that leads to the divergent behaviour of g
1
µν

for r = ∞, and the unessential constant b, ϕ takes the paradigmatic form

ϕ =
a

r
+ cr.

Treder then looks for the charge density definitions that are compatible with
this form of ϕ in the previously specified sense, namely, he looks for the δ
functions that can be generated through either single or double application

1Biharmonic equations are to be expected in theories with quadratic Lagrangians. It is
remarkable that the same weak field expression of a potential is found too, under suitable
conditions, in the framework of Poincaré gauge field theory. For instance, with the purpose
and interpretation of confinement this was considered in the paper “Short-range confining
component in a quadratic Poincaré gauge theory of gravitation”[14].
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of the Laplace operator ∆ to ϕ, and seeks to what exact charge-current
density definitions they shall correspond as particular approximate, weak
field cases. He notices that by applying the Laplace operator once to the
first term of ϕ one gets

∆

(

a

r

)

= −4πaδ(r)

i.e. a δ source that is a particular static, first order approximation of the
source term sµνλ occurring in the general four-current definition

g[µν
v

, λ] ≡ −sµνλ.

Against this option, however, Treder raises the objection that it does not
allow for a free choice of the charge-current density, like it happens instead
in Maxwell’s theory, because, due to the field equation R[µν

v

, λ] = 0, the

charge-current density defined in this way is constrained to fulfill, in the
weak field approximation, a differential, d’Alembert equation:

2s
1
µνλ = 0.

By applying twice the Laplace operator to the second term of ϕ one gets
again a δ function:

∆∆(cr) = −8πcδ(r).

Treder notices that this particular δ charge density is a weak field, static
instance of a charge-current density sµνλ defined by

R[µν
v

, λ] ≡
1

2
sµνλ,

i.e. of a charge-current density appended in a phenomenological way at
the right-hand side of the field equation R[µν

v

, λ] = 0. As such, this four-

current density can be assigned at will (subject to the conservation law)
like it occurs in Maxwell’s theory. When both terms of ϕ are considered,
the double application of the Laplacian leads instead to the point source
expression

∆∆ϕ = −4π (a∆δ(r) + 2cδ(r)) .

This is the structure of each of the n point charges that Treder introduces
in his derivation of the equations of motion in the weak field, first order
approximation of the E.I.H. method performed in III, after having assumed
that, for any charge I, the ratio cI/aI is a universal constant τ .
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3 Treder’s discovery of confinement in Einstein’s

unified field theory

After the momentous assumptions done in II, deriving in III, by the E.I.H.
method, the equations of motion for n charged particles in the weak field,
slow motion approximation is for Treder a straightforward, routine move,
done in the footsteps of Infeld[5]. It leads however to a highly perplexing
end result. Like Treder, let us consider for simplicity the case n = 2, when
the static potential ϕ comes to read

ϕ = ϕI + ϕII =
aI

rI
+ cIrI +

aII

rII
+ cIIrII

and, to the required order of approximation, although with some inappro-
priateness in the language, one may assert that the Cartesian components of
the “electric” force that the field of a pointlike charge II exerts on a pointlike
charged particle I is given by

I
L
4
i ≡

1

4π

0
∮

I

2 L
4
ik

I
n

k

d
I
S

= 2cIaII
ξi

̺3
+ 2aIcII

ξi

̺3
− 2cIcII

ξi

̺

ξi = xi
I − xi

II and ̺2 = ξsξs,

when the integral is extended to a closed surface surrounding only particle I.
When this expression, found by Treder as a direct outcome of his pondered
choice of the definition of the four-current in Einstein’s unified field theory,
appeared in print[4], it was not new. It had been written already by V. V.
Narlikar and B. R. Rao in their paper of 1956, entitled “The equations of
motion of particles in the unified field theory of Einstein (1953)”[16]. How-
ever we feel entitled to attribute only to Treder the correct interpretation
of this surprising result, and to continue its analysis along the line drawn
in his article of 1957, because the interpretation considered by Narlikar and
Rao is instead based on an untenable assumption. For these authors, the
four-current responsible for the above written force is proportional to g[µν

v

, λ],

hence the corresponding charges are by no means pointlike, but diffused in
the whole space and overlapping. It is obvious that point particles are in-
stead needed to make sense of an E.I.H. calculation.

However, although Treder’s choice of the four-current leads in the present
case to pointlike charges, i.e. his E.I.H. calculation is conceptually faultless,
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the “electric” interpretation of the resulting force soon arose perplexity.
F.A.E. Pirani, when commenting[17] Treder’s paper for the “Mathematical
Reviews”, wrote:

The author proposes a new definition of charge-current in
Einstein’s “weak” non-symmetric unified theory [The meaning
of relativity, 3rd ed., revised, Princeton, 1950, Appendix II]. In
the lowest approximation he obtains the Coulomb force between
point charges, but also, unfortunately, an additional force inde-
pendent of distance.

As noted by Treder, only if one makes the additional assumption that the
ratio cI/aI, i = 1, · · ·, n is a universal constant τ does one get a law of force
that approximates the ordinary Coulomb law, as long as the inequality

τ ≪ 1

̺2

is satisfied. But of course, the force independent of distance cannot be
hidden out: it will always become the prevailing one when the charged
particles are posited farther and farther away from each other. Therefore,
the “electric” interpretation of the result, although it found its adherents,
e.g. in[18, 19], was never considered to be a satisfactory one, not even by
Treder himself at the very moment of its finding, as it transpires from the
concluding remarks in V.

It is evident that in 1957 a force independent of distance between point
charges could not be thought to be of much use in theoretical physics. There-
fore the very existence of such a force in Einstein’s unified field theory, so
keenly brought into evidence by Treder, could not but help laying further dis-
credit on the theoretical endeavour inaugurated by Einstein and Schrödinger
one decade earlier.

However, what ideas are of interest to theoreticians change with the lapse
of time and, as mentioned in the Introduction, in 1980 Treder[9] might well
wonder whether his early finding could not be reinterpreted as the evidence
that Einstein’s theory allows, already in classical form, for the confinement of
quarks, i.e. it can account for both the strong and the gravitational force in a
unified way. Phenomenological potential models introduced at the time[20,
21] used in fact a linear combination of a Coulomb and of a linear radial
potential, just like the one found by Treder in 1957, to account satisfactorily
for the spectroscopy of hadrons. But, one should ask: if Einstein’s theory
allows for a unified description of both the strong and the gravitational
interaction, where must one look for electromagnetism in the theory? What
entity represents, in the theory, the long sought for electric four-current?
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4 What the exact solutions have to say

After the finding, in 1987, of a class of exact solutions of the Einstein-
Schrödinger equations intrinsically depending on three coordinates[11] it was
noticed, from the study of particular solutions, that perhaps Treder’s injunc-
tion, that both the equations gµν

+−

;λ = 0 and g
µν
v ,ν = 0 have to be satisfied

everywhere, is too restrictive, thereby leading to a loss of valuable physical
content of the theory. In 1978 Borchsenius[22] had shown how to obtain
that a phenomenological four-current may appear at the right-hand sides of
the two equations just mentioned above without destroying the invariance
of the theory under transposition. Therefore, in the footsteps of the suc-
cessful phenomenological completion of the general relativity of 1915, the
way was open for interpreting Einstein’s theory of the nonsymmetric field
as a theory admitting both a symmetric energy tensor Tµν and two distinct,
conserved four-currents j̺ and Kµνλ like phenomenological sources[23]. Its
field equations, that reduce to the original ones wherever sources are absent,
then read:

g
µν
,λ + gσνΓµ

σλ + gµσΓν
λσ − gµνΓτ

λτ =
4π

3
(jµδν

λ − jνδµ
λ),

g
̺σ
v ,σ = 4πj̺,

R̄µν(Γ) = 8π(Tµν − 1

2
sµνs

̺σT̺σ),

R̄[µν
v

, λ] = 8πKµνλ,

where, like in Treder’s paper[4], sµν is the metric tensor defined by Kurşu-
noğlu[24] and Hély[25] as

sµν =

√

g

s
gµν , sστsµτ = δµ

σ .

R̄µν is the symmetrised Ricci tensor of Borchsenius:

R̄µν(Γ) = Γ̺
µν,̺ −

1

2

(

Γ̺
µ̺,ν + Γ̺

ν̺,µ

)

− Γα
µ̺Γ

̺
αν + Γα

µνΓ̺
α̺,

that reduces to the plain one wherever j̺ vanishes. With these definitions,
and with the semicolon “;” standing for the covariant differentiation per-
formed with the Christoffel symbols built with sµν , the contracted Bianchi
identities of the theory come to read

Tλσ
;σ =

1

2
sλ̺

(

jτ R̺̄τ
v

(Γ) + Kτ̺σg
στ
v

)

, Tµν =
√
−ssµ̺sνσT̺σ ,
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a perspicuous enough writing.
To the previously mentioned class of solutions belongs a particular exact

solution that is static and endowed with pole charges built with the current
Kτ̺σ . Its details are given elsewhere[12, 13] and will not be repeated here.
Suffice it to say that the solution confirms beyond any possible doubt what
the approximate result found by Treder in 1957 already said, i.e. that Ein-
stein’s unified field theory, when complemented with the phenomenological
four-current Kτ̺σ, allows describing point charges interacting mutually with
forces independent of distance. In the Hermitian version of the theory two
charges of unlike sign mutually attract, hence are permanently confined en-
tities. As far as exact solutions are concerned, the theory therefore provides
examples both of gravitating bodies[26] and of bodies interacting like quarks
are expected to do.

But to the same class belongs another exact solution[27], that is static

too, and whose field g
µν
v is associated with charge density built with the

other four-current, j̺. Since, outside the charges, the field fulfils the field
equation g

µν
v ,ν = 0, while the unsolicited equation

g[µν
v

, λ] = 0

is satisfied everywhere, one cannot help recognizing in this solution the gen-
eral electrostatic solution of Einstein’s unified field theory. Moreover if, in
the adopted representative space, one puts the charge distribution on n lo-
calized, closed two-surfaces, it is possible[27] to generate, in the metric sense,
the charge distribution of n pointlike, spherically symmetric charges. This
occurrence only happens when the charges occupy mutual positions that
correspond, with all the accuracy needed to meet with the most stringent
empirical results, to the mutual positions dictated by Coulomb’s law for the
equilibrium condition of n pointlike charges.

As far as the evidence associated with a particular exact solution can go,
this result constitutes a partial, but hopefully enlightening answer to the two
questions raised at the end of the previous section, about the presence of
electromagnetism in Einstein’s theory, and about the identification of the
electric four-current.

9



References

[1] Einstein, A. (1925). S. B. Preuss. Akad. Wiss., 22, 414.

[2] Schrödinger, E. (1947). Proc. R. I. Acad., 51A, 163, 205.

[3] Hittmair, O. (1987). Schrödinger’s unified field theory seen 40 years later,
in: Kilmister, C. W. (ed.), Schrödinger. Centenary celebration of a poly-
math, Cambridge University Press, p. 173.

[4] Treder, H.-J. (1957). Ann. Phys. (Leipzig), 19, 369.

[5] Infeld, L. (1950). Acta Physica Polonica, 10, 284.

[6] Callaway, J. (1953). Phys. Rev., 92, 1567.

[7] Einstein, A., Infeld, L., and Hoffmann, B. (1938), Ann. Math. 39, 66.

[8] Einstein, A., and Infeld, L. (1949). Canad. J. Math. 1, 209.

[9] Treder, H.-J., (1980). Ann. Phys. (Leipzig), 37, 250.

[10] Einstein, A. (1948). Rev. Mod. Phys., 20, 35.

[11] Antoci, S. (1987). Ann. Phys. (Leipzig), 44, 297;

http://arXiv.org/abs/gr-qc/0108042.

[12] Antoci, S., (1984). Ann. Phys. (Leipzig), 41, 419.

[13] Antoci, S., Liebscher, D.-E. and Mihich, L. (2006);

http://arxiv.org/abs/gr-qc/0604003.

[14] Hehl, F.W., Ne’eman, Y., Nitsch, J., and von der Heyde, P., (1978).
Physics Letters B, 78, 102.

[15] Einstein, A. (1949). Autobiographisches in: Albert Einstein: Philoso-
pher - Scientist, P.A. Schilpp, ed., Tudor, Evanston, Illinois.

[16] Narlikar, V.V., and Rao, B.R. (1956). Proc. Nat. Inst. Sci. India 21A,
409.

[17] Pirani, F.A.E. (1957). Mathematical Reviews: MR0090449 (19, 816f).

[18] Clauser, E. (1958). Nuovo Cimento 7, 764.

[19] Johnson, C. R. (1972). Nuovo Cimento 8 B, 391.

10



[20] Eichten, E., Gottfried, K., Kinoshita, T., Lane, K.D., and Yan, T.M.,
(1978). Phys. Rev. D 17, 3090.

[21] Eichten, E., Gottfried, K., Kinoshita, T., Lane, K.D., and Yan, T.M.,
(1980). Phys. Rev. D 21, 203.

[22] Borchsenius, K. (1978). Nuovo Cimento, 46A, 403.

[23] Antoci, S. (1991). Gen. Rel. Grav., 23, 47;

http://arxiv.org/abs/gr-qc/0108052.
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