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EINSTEIN’S UNIFIED FIELD THEORY PREDICTS THE

EQUILIBRIUM POSITIONS OF N WIRES RUN BY

STEADY ELECTRIC CURRENTS

SALVATORE ANTOCI

Abstract. A particular exact solution of Einstein’s Hermitian theory
of relativity is examined, after recalling that there is merit in adding
phenomenological sources to the theory, and in choosing the metric like
it was done long ago by Kurşunoğlu and Hély. It is shown by intrin-
sic arguments, relying on the properties of the chosen metric manifold,
that the solution describes in Einstein’s theory the field of n thin parallel
wires at rest, run by steady electric currents, and predicts their equi-
librium positions through the injunction that the metric must display
cylindrical symmetry in the infinitesimal neighbourhood of each wire.
In the weak field limit the equilibrium positions coincide with the ones
prescribed by Maxwell’s electrodynamics.

1. Introduction

The theory of the nonsymmetric field, after an early attempt by Einstein
[1], was separately developed in the same years, but starting from different
viewpoints, both by Einstein [2, 3, 4] and by Schrödinger [5, 6, 7, 8]. Both of
them thought that the theory had to be some natural generalization of a suc-
cessful predecessor, the general theory of relativity of 1915. But, while Ein-
stein decided to deal with the nonsymmetric fundamental tensor and with
the nonsymmetric affine connection as independent entities, Schrödinger’s
preference was for the purely affine approach. Remarkably enough, they
ended up with what soon appeared, from a pragmatic standpoint, like two
versions of one and the same theory, because Schrödinger’s “final affine field
laws” just look like the laws of Einstein’s “generalized theory of gravitation”,
to which a cosmological term is appended.

It was a conviction both by Einstein and by Schrödinger that, since the
theories had to be the completion of the theory of 1915, neither a phe-
nomenological energy tensor nor phenomenological currents had to be added
at the right-hand sides of the field equations. However, exact solutions com-
plying with this injunction were never found: exact spherically symmetric
solutions displayed singularities [9, 10], i.e. were useless for the envisaged
program. Approximate calculations by Callaway [11], although later shown
to be incomplete by Narlikar and Rao [12] and by Treder [13], spread the
conviction that the theory did not contain the electromagnetic interaction;
moreover, they too allowed for singularities. In any case, the formal simplic-
ity of the sets of equations proposed both by Einstein and by Schrödinger
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did not find a counterpart in an equally simple and satisfactory physical
interpretation, and the interest aroused by their endeavour began to fade.
Already in the 1954/55 report to the Dublin Institute for Advanced Studies,
a disappointed Erwin Schrödinger wrote: “It is a disconcerting situation that
ten years endeavour of competent theorists has not yielded even a plausible
glimpse of Coulomb’s law.”[14].

An alternative viewpoint on those equations was however possible, in some
way bolstered by the ubiquitous presence of singularities in the solutions
found, by the very form of the contracted Bianchi identities, and by the
strict similarity of the new equations to the field equations of 1915. It was
expressed [15, 16] in 1954 by Hély, who could avail in his attempt of previous
findings by Kurşunoğlu [17, 18] and by Lichnerowicz [19] on the choice of the
metric. According to Hély, in the new theory of Einstein phenomenological
sources, in the form of a symmetric energy tensor and of a conserved four-
current, had to be appended respectively at the right-hand sides of the field
equations (A.4) and (A.5), given in Appendix (A). By pursuing further
Hély’s proposal, and by relying on a precious finding by Borchsenius [20],
the way for appending sources to all the field equations while keeping the
choice of the metric done by Hély was later investigated [21], and is the
subject of the next Section.

2. Appending sources to Einstein’s unified field theory

On a four-dimensional manifold, let gik be a contravariant tensor density
with an even part g(ik) and an alternating one g[ik]:

(2.1) gik = g(ik) + g[ik],

and W i
kl be a general affine connection

(2.2) W i
kl = W i

(kl) + W i
[kl].

The Riemann curvature tensor built from W i
kl:

(2.3) Ri
klm(W ) = W i

kl,m − W i
km,l − W i

alW
a
km + W i

amW a
kl,

has two distinct contractions, Rik(W ) = Rp
ikp(W ) and Aik(W ) = Rp

pik(W )

[22]. But the transposed affine connection W̃ i
kl = W i

lk must be considered

too: from it, the Riemann curvature tensor Ri
klm(W̃ ) and its two contrac-

tions Rik(W̃ ) and Aik(W̃ ) can be formed as well. We aim at following the
pattern of general relativity, which is built from the Lagrangian density
gikRik, but now any linear combination R̄ik of the four above-mentioned
contractions is possible. A good choice [20], for physical reasons that will
become apparent later, is

(2.4) R̄ik(W ) = Rik(W ) +
1

2
Aik(W̃ ).

Let us provisionally endow the theory with sources in the form of a non-
symmetric tensor Pik and of a current density ji, coupled to gik and to the
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vector Wi = W l
[il] respectively. The Lagrangian density

(2.5) L = gikR̄ik(W ) − 8πgikPik +
8π

3
Wij

i

is thus arrived at. By performing independent variations of the action
∫

LdΩ

with respect to W p
qr and to gik with suitable boundary conditions we obtain

the field equations

− gqr
,p + δr

pg
(sq)
,s − gsrW q

sp − gqsW r
ps(2.6)

+δr
pg

stW q
st + gqrW t

pt =
4π

3
(jrδq

p − jqδr
p)

and

(2.7) R̄ik(W ) = 8πPik.

By contracting eq. (2.6) with respect to q and p we get

(2.8) g[is]
,s = 4πji.

The very finding of this physically welcome equation entails however that we
cannot determine the affine connection W i

kl uniquely in terms of gik: (2.6)

is invariant under the projective transformation W ′i
kl = W i

kl + δi
kλl, where

λl is an arbitrary vector field. Moreover eq. (2.7) is invariant under the
transformation

(2.9) W ′i
kl = W i

kl + δi
kµ,l

where µ is an arbitrary scalar. By following Schrödinger [7, 22], we write

(2.10) W i
kl = Γi

kl −
2

3
δi
kWl,

where Γi
kl is another affine connection, by definition constrained to yield

Γl
[il]=0. Then eq. (2.6) becomes

(2.11) gqr
,p + gsrΓq

sp + gqsΓr
ps − gqrΓt

(pt) =
4π

3
(jqδr

p − jrδq
p)

that allows one to determine Γi
kl uniquely, under very general conditions

[23], in terms of gik. When eq. (2.10) is substituted in eq. (2.7), the latter
comes to read

R̄(ik)(Γ) = 8πP(ik)(2.12)

R̄[ik](Γ) = 8πP[ik] −
1

3
(Wi,k − Wk,i)(2.13)

after splitting the even and the alternating parts. Wherever the source term
is nonvanishing, a field equation loses its rôle, and becomes a definition of
some property of matter in terms of geometrical entities; it is quite obvious
that such a definition must be unique. This occurs with eqs. (2.8), (2.11) and
(2.12), but it does not happen for eq. (2.13). This equation only prescribes
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that R̄[ik](Γ)−8πP[ik] is the curl of the arbitrary vector Wi/3; it is therefore
equivalent to the four equations

(2.14) R̄[ik],l(Γ) + R̄[kl],i(Γ) + R̄[li],k(Γ) = 8π{P[ik],l + P[kl],i + P[li],k},
that cannot specify P[ik] uniquely. We therefore scrap the redundant tensor

P[ik], like we scrapped the redundant affine connection W i
kl of eq. (2.6),

and assume that matter is described by the symmetric tensor P(ik), by the

conserved current density ji and by the conserved current

(2.15) Kikl =
1

8π
{R̄[ik],l + R̄[kl],i + R̄[li],k}.

The general relativity of 1915, to which the present theory reduces when
g[ik] = 0, suggests rewriting eq. (2.12) as

(2.16) R̄(ik)(Γ) = 8π(Tik − 1

2
siks

pqTpq)

where sik = ski is the still unchosen metric tensor of the theory, silskl = δi
k,

and the symmetric tensor Tik will act as energy tensor.
When sources are vanishing, equations (2.11), (2.16), (2.8) and (2.15)

reduce to the original equations of Einstein’s unified field theory, reported
in Appendix (A), because then R̄ik(Γ)=Rik(Γ); moreover they enjoy the
property of transposition invariance also when the sources are nonvanishing.
If gik, Γi

kl, R̄ik(Γ) represent a solution with the sources Tik, ji and Kikl, the

transposed quantities g̃ik = gki, Γ̃i
kl = Γi

lk and R̄ik(Γ̃)= R̄ki(Γ) represent

another solution, endowed with the sources T̃ik = Tik, j̃
i = −ji and K̃ikl =

−Kikl. Such a physically desirable outcome is a consequence of the choice
made [20] for R̄ik. These equations intimate that Einstein’s unified field
theory with sources should be interpreted like a gravoelectrodynamics in
a polarizable continuum, allowing for both electric and magnetic currents.
The study of the conservation identities confirms the idea [21] and provides
at the same time the identification of the metric tensor sik. Let us consider
the invariant integral

(2.17) I =

∫
[

gikR̄ik(W ) +
8π

3
Wij

i

]

dΩ.

From it, when eq. (2.6) is assumed to hold, by means of an infinitesimal
coordinate transformation we get the four identities

− (gisR̄ik(W ) + gsiR̄ki(W )),s + gpqR̄pq,k(W )(2.18)

+
8π

3
ji(Wi,k − Wk,i) = 0.

This equation can be rewritten as

− 2(g(is)R̄(ik)(Γ)),s + g(pq)R̄(pq),k(Γ)(2.19)

= 2g[is]
,s R̄[ik](Γ) + g[is]

{

R̄[ik],s(Γ) + R̄[ks],i(Γ) + R̄[si],k(Γ)
}
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where the redundant variable W i
kl no longer appears. We remind of eq.

(2.16) and, by following Kurşunoğlu [17, 18] and Hély [15, 16], we assume
that the metric tensor is defined by the equation

(2.20)
√
−ssik = g(ik),

where s = det (sik); we shall use henceforth sik and sik to raise and lower
indices,

√−s to produce tensor densities out of tensors. We define then

(2.21) Tik =
√
−ssipskqTpq

and the weak identities (2.19), when all the field equations hold, will take
the form

(2.22) Tls
;s =

1

2
slk(jiR̄[ki](Γ) + Kiksg

[si]),

where the semicolon means covariant derivative with respect to the Christof-
fel affine connection

(2.23)
{

i
k l

}

=
1

2
sim(smk,l + sml,k − skl,m)

built with sik. The previous impression is strengthened by eq. (2.22): the
theory, built in terms of a non-Riemannian geometry, appears to entail a
gravoelectrodynamics in a dynamically polarized Riemannian spacetime, for
which sik is the metric, where the two conserved currents ji and Kiks are
coupled à la Lorentz to R̄[ki] and to g[si] respectively. Two versions of

this gravoelectrodynamics are possible, according to whether gik is chosen
to be either a real nonsymmetric or a complex Hermitian tensor density.
The constitutive relation between electromagnetic inductions and fields is
governed by the field equations in a quite novel and subtle way: the link
between g[ik] and R̄[ik] is not the simple algebraic one usually attributed
to the vacuum, with some metric that raises or lowers indices, and builds
densities from tensors. It is a differential one, and a glance to the field
equations suffices to become convinced that understanding its properties
is impossible without first finding and perusing the exact solutions of the
theory.

This may seem a hopeless endeavour. However, a class of exact solutions
intrinsically depending on three coordinates has been found; the method
for obtaining them from vacuum solutions of the general relativity of 1915
is described in Appendix (B). Some of these solutions happen to assume
physical meaning when source terms are appended to the field equations in
the way described in this Section. In particular, two static solutions built in
this way has been interpreted. One of them happens to describe the general
electrostatic field of n localised charges ([24]) built by the four-current den-
sity ji defined by equation (2.8). As expected [25], the nonlinearity of the
theory rules the singular behaviour of the metric field sik in the proximity
of each charge. It rules it in such a way that, with all the approxima-
tion needed to comply with the experimental facts, the charges happen to
be pointlike in the metric sense and endowed with spherically symmetric
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neighbourhoods only when they occupy mutual positions that correspond
to the ones dictated by Coulomb’s law.

Another static, axially symmetric solution [26, 27] displays instead n
aligned pole sources built with the four-current Kikl defined by equation
(2.15). The differential constitutive relation between g[ik] and R̄[ik], how-
ever, avoids the unphysical result that these charges behave like magnetic
monopoles would do, if they were allowed for in the so-called Einstein-
Maxwell theory. In fact, the study of a particular solution endowed with
three such aligned charges shows that these pointlike charges interact with
forces not depending on their mutual distance. In the Hermitian version of
the theory, charges with opposite signs happen to mutually attract, hence
they are permanently confined entities, like it was already shown by Treder
[13] with approximate calculations based both on the E.I.H. [28, 25] and on
the Papapetrou [29] method.

In the present paper the behaviour of a solution displaying n steady cur-
rents built with ji and running on parallel wires is instead investigated, by
using sik as metric tensor.

3. The equilibrium conditions of steady electric currents

running on n parallel wires

This solution belongs to the class described in Appendix (B); in it, only
one of equations (2.8) is not trivially satisfied, and reads

(3.1) g[3s]
,s = i

(√
−hh̺σξ,σ

)

,̺
= 4πj3(xλ).

Like the electrostatic solution, this one too is obtained by assuming that hik

has the Minkowski form

(3.2) hik = diag(−1,−1,−1, 1),

with respect to the coordinates x1 = x, x2 = y, x3 = z, x4 = t. In these
coordinates its fundamental form gik, defined by (B.2), reads:

(3.3) gik =









−1 0 e 0
0 −1 f 0

−e −f v c
0 0 −c 1









,

with

(3.4) v = −1 − c2 + e2 + f2

and

(3.5) e = iξ,x, f = iξ,y, c = −iξ,t, i =
√
−1, ξ,xx + ξ,yy − ξ,tt = 0.

Let us consider the particular, static solution for which

(3.6) ξ =
n

∑

k=1

lk ln qk
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where

(3.7) qk =
[

(x − xk)
2 + (y − yk)

2
]1/2

,

and lk, xk, yk are arbitrary real constants. Then one finds

e = i

n
∑

k=1

lk
x − xk

q2
k

, f = i

n
∑

k=1

lk
y − yk

q2
k

, c = 0,(3.8)

v = −1 −
n

∑

k=1

l2k
q2
k

(3.9)

−





n
∑

k,k′=1

lklk′

(x − xk)(x − xk′) + (y − yk)(y − yk′)

q2
kq

2
k′





k 6=k′

.

We note in passing that, despite its rôle as component of the fundamental
tensor, v = −1 + 1

2g[ik]g
[ik] is an invariant quantity.

In this solution the vacuum field equation g
[is]
,s = 0 is satisfied everywhere,

with the exception of the positions x = xk, y = yk, k = 1, .., n, of the wires
in the representative space, while, due to the additional conditions (B.3),
the additional invariant equation

(3.10) g[ik],l + g[kl],i + g[li],k = 0,

is fulfilled everywhere. As far as the skew fields are concerned, we are there-
fore inclined to interpret physically this solution as the field produced by
n steady electric currents running along thin wires drawn parallel to the z
coordinate axis. But in order to do so, we need the proof, coming from the
symmetric field sik, that the wires are indeed thin in the metric sense, and
that the metric is endowed with cylindrical symmetry in the infinitesimal
neighbourhood of each wire. The latter property is required for the wires to
be in static equilibrium, in keeping with a deep intuition present in [25]. To
provide this proof, we shall examine the square ds2 of the interval, defined
by (B.13), that in the present case happens to read

(3.11) ds2 =
√
−v(dt2 − dx2 − dy2 − dz2) +

(dξ)2√
−v

.

The first term of the interval is conformally flat. Due to the existence of
two Killing vectors, respectively along t and along z, and both orthogonal to
each x, y two-surface, it suffices that we examine the problem on a given x, y
two-surface of the manifold. We shall prove that the sections of the wires by
the given two-surface are pointlike in the metrical sense, and we shall require
that sik, in the infinitesimal neighbourhood of each point x = xk, y = yk

of that two-surface, is endowed with invariance under rotation around these
points.

The first question is soon answered. In fact, from the behaviour of v,
defined by (3.9), in an infinitesimal neighbourhood (in the “Bildraum” sense)
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of x = xk, y = yk, one gathers that the first term

(3.12) ds2
1 =

√
−v(dt2 − dx2 − dy2 − dz2)

will vanish like qk when qk → 0. The second term

(3.13) ds2
2 =

(dξ)2√
−v

is now examined in the chosen neighbourhood. Due to the definition (3.6) of
ξ, the numerator (dξ)2 will keep there a finite value, while the denominator√−v diverges like q−1

k when qk → 0. Therefore the term (3.13) too shall
vanish like qk in the considered, infinitesimal neighbourhood. One concludes
that, when sik is the metric tensor, the n parallel wires of this solution will
be infinitely thin in the metric sense for any physically reasonable choice of
their mutual positions.

We examine now the second question, whether and under what conditions
the metric field sik will exhibit rotational symmetry in the infinitesimal
neighbourhood of each point x = xk, y = yk of the considered two-surface.
Let us imagine approaching the k-th wire along the line defined by

(3.14) x − xk = nxqk, y − yk = nyqk,

where nx and ny are constants for which n2
x+n2

y = 1, but otherwise arbitrary.

To study ds2
1 we need evaluating

√
−v in the infinitesimal neighbourhood

of x = xk, y = yk. Let us call this quantity
{√

−v
}

(k)
. One first extracts

from the root the common factor lk/qk, and then subjects the other factor
to a Taylor’s expansion truncated to terms that vanish like qk when qk → 0.
Higher order terms will not influence the final result. One then writes:

(3.15)
{√

−v
}

(k)
≃ lk

qk



1 +
qk

2lk

n
∑

k′ 6=k

lk′

nx(xk − xk′) + ny(yk − yk′)

d2
kk′



 ,

where

(3.16) d2
kk′ = (xk − xk′)2 + (yk − yk′)2.

If the term with the summation symbol were lacking,
{√−v

}

(k)
would dis-

play rotational symmetry, in the “Bildraum” sense, in the infinitesimal
neighbourhood of x = xk, y = yk. Since nx, ny fulfill n2

x + n2
y = 1, but

are otherwise arbitrary, the mentioned symmetry only occurs when the con-
ditions

(3.17)
n

∑

k′ 6=k

lk′

xk − xk′

d2
kk′

= 0,
n

∑

k′ 6=k

lk′

yk − yk′

d2
kk′

= 0,

are severally satisfied. When this occurs the interval ds2
1, given by (3.12),

will be endowed with rotational symmetry in an infinitesimal neighbourhood
surrounding x = xk, y = yk in an intrinsic, geometric sense.
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We examine now ds2
2, defined by (3.13), in the infinitesimal neighbour-

hood of x = xk, y = yk of the considered x, y two-surface. Since ξ is defined
by (3.6), one can write

{dξ}(k) = {ξ,xdx + ξ,ydy}(k)(3.18)

≃





lknx

qk
+

n
∑

k′ 6=k

lk′

xk − xk′

d2
kk′



 dx +





lkny

qk
+

n
∑

k′ 6=k

lk′

yk − yk′

d2
kk′



 dy,

by neglecting all the terms that vanish when qk → 0, because they will not
influence the final result. To calculate

{

(
√
−v)−1

}

(k)
, let us extract from

(
√
−v)−1 the factor qk/lk, and then expand the other factor in Taylor’s series

around x = xk, y = yk. We truncate the expansion at the term linear in qk,
because higher order terms do not influence the final outcome. Therefore
we write

(3.19)
{

(
√
−v)−1

}

(k)
≃ qk

lk



1 − qk

2lk

n
∑

k′ 6=k

lk′

nx(xk − xk′) + ny(yk − yk′)

d2
kk′



 ,

and calculate
{

(dξ)2/
√−v

}

(k)
from (3.18) and (3.19). One finds that ds2

2

in general does not exhibit rotational symmetry in the infinitesimal neigh-
bourhood of x = xk, y = yk. Only if the conditions (3.17) are imposed,
{

(dξ)2/
√−v

}

(k)
comes to read

(3.20)
{

(dξ)2/
√
−v

}

(k)
≃ lk

qk

(

n2
xdx2 + n2

ydy2 + 2nxnydxdy
)

,

i.e. it defines a two-dimensional interval endowed with rotational symmetry
in the intrinsic, geometric sense. Therefore, only if the conditions (3.17) are
imposed, both ds2

1 and ds2
2 become endowed with rotational symmetry, in an

intrinsic, geometric sense, in the infinitesimal neighbourhoods around each
one of the points x = xk, y = yk, and the same property will be exhibited
by the interval ds2, defined by (3.11).

4. Conclusion

The equations (3.1) together with (3.8), and (3.10), as well as the general
formulation of Section (2), already led to think that the present solution
physically describes, in Einstein’s unified field theory, the field originated
by steady electric currents running on n parallel wires. The scrutiny of the
interval (3.11) confirms this interpretation. In fact, when the metric is sik,
the parallel wires of the “Bildraum” turn out to be infinitely thin parallel
wires in the metric sense. Moreover, the infinitesimal neighbourhood of each
of these wires happens to be endowed with cylindrical symmetry only when
the conditions (3.17), with their distinct flavour of dèjá vu, are satisfied.
The equilibrium conditions for n parallel wires run by steady currents in
Maxwell’s electrodynamics are just written in that way. It is true that we
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shall not be deceived by retrieving their exact replica in Einstein’s unified
field theory with sources, because this is just an accidental occurrence due to
the particular coordinates adopted when solving the field equations. When
measured along geodesics built with the metric sik, distances and angles are
different from the ones that would prevail if the conditions (3.17) were read
as if they would hold in a Minkowski metric. But there is no doubt that in
the weak field limit the particular exact solutions of both theories describe
one and the same physical reality.

As stressed long ago by Einstein in the Introduction of both ([28]) and
([25]), there is one distinct advantage in working with such nonlinear the-
ories as the general relativity of 1915, or its nonsymmetric generalization.
While in the linear physics of, say, Maxwell’s electrodynamics, the field
equations and the equations of motion need to be separately postulated,
this is no longer the case in, e.g., the Hermitian theory with sources. In the
latter theory, all what is needed is solving the field equations. From the very
solution one learns the equations of motion, by just imposing symmetry con-
ditions on the metric around the singularities that are used to represent the
physical objects. In the case of a static manifold, one learns the equilibrium
conditions of such objects, like it has been shown, once more, through the
exact solution of the previous Section.

Appendix A. Hermitian field equations without sources

We consider here Einstein’s unified field theory in the Hermitian version
([3]). A given geometric quantity [30] will be called hereafter Hermitian
with respect to the indices i and k, both either covariant or contravariant,
if the part of the quantity that is symmetric with respect to i and k is real,
while the part that is antisymmetric is purely imaginary. Let us consider
the Hermitian fundamental form gik = g(ik) + g[ik] and the affine connection

Γi
kl = Γi

(kl) +Γi
[kl], Hermitian with respect to the lower indices; both entities

depend on the real coordinates xi, with i running from 1 to 4. We define
also the Hermitian contravariant tensor gik by the relation

(A.1) gilgkl = δi
k,

and the contravariant tensor density gik = (−g)1/2gik, where g ≡ det(gik)
is a real quantity. Then the field equations of Einstein’s unified field theory
in the complex Hermitian form [3] read

gik,l − gnkΓ
n
il − ginΓn

lk = 0,(A.2)

g[is]
,s = 0,(A.3)

R(ik)(Γ) = 0,(A.4)

R[ik],l(Γ) + R[kl],i(Γ) + R[li],k(Γ) = 0;(A.5)

Rik(Γ) is the Hermitian Ricci tensor

(A.6) Rik(Γ) = Γa
ik,a − Γa

ia,k − Γa
ibΓ

b
ak + Γa

ikΓ
b
ab.
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Appendix B. Solutions depending on three coordinates [31]

We assume that Greek indices take the values 1,2 and 4, while Latin
indices run from 1 to 4. Let the real symmetric tensor hik be the metric for
a vacuum solution to the field equations of the general relativity of 1915,
which depends on the three co-ordinates xλ, not necessarily all spatial in
character, and for which hλ3 = 0. We consider also an antisymmetric purely
imaginary tensor aik, which depends too only on the co-ordinates xλ, and
we assume that its only nonvanishing components are aµ3 = −a3µ. Then we
form the mixed tensor

(B.1) α k
i = ailh

kl = −αk
i,

where hik is the inverse of hik, and we define the Hermitian fundamental
form gik as follows:

gλµ = hλµ,

g3µ = α ν
3 hµν ,(B.2)

g33 = h33 − α µ
3 α ν

3 hµν .

When the three additional conditions

(B.3) α3
µ,λ − α3

λ,µ = 0

are fulfilled, the affine connection Γi
kl which solves eqs. (A.2) has the non-

vanishing components

Γλ
(µν) =

{

λ
µ ν

}

(h)
,(B.4)

Γλ
[3ν] = α λ

3 ,ν −
{

3
3 ν

}

(h)
α λ

3 +
{

λ
ρ ν

}

(h)
α ρ

3 ,

Γ3
(3ν) =

{

3
3 ν

}

(h)
,

Γλ
33 =

{

λ
3 3

}

(h)
− α ν

3

(

Γλ
[3ν] − α λ

3 Γ3
(3ν)

)

;

we indicate with
{

i
k l

}

(h)
the Christoffel connection built with hik. We form

now the Ricci tensor (A.6). When eqs. (A.3), i.e., in our case, the single
equation

(B.5) (
√
−h α λ

3 h33),λ = 0,

and the additional conditions, expressed by eqs. (B.3), are satisfied, the
components of Rik(Γ) can be written as

Rλµ = Hλµ,

R3µ = α ν
3 Hµν +

(

α ν
3

{

3
3 ν

}

(h)

)

,µ
,(B.6)

R33 = H33 − α µ
3 α ν

3 Hµν ,

where Hik is the Ricci tensor built with
{

i
k l

}

(h)
. Hik is zero when hik is

a vacuum solution of the field equations of general relativity, as supposed;
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therefore, when eqs. (B.3) and (B.5) hold, the Ricci tensor, defined by eqs.
(B.6), satisfies eqs. (A.4) and (A.5) of the Hermitian theory of relativity.

The task of solving equations (A.2)-(A.5) reduces, under the circum-
stances considered here, to the simpler task of solving eqs. (B.3) and (B.5)
for a given hik.

1

Let us assume, like in Section (2), that the metric tensor is defined by the
equation

(B.7)
√
−ssik = g(ik),

where silskl = δi
k and s = det (sik). When the fundamental tensor gik has

the form (B.2) it is

(B.8)
√−g =

√
−h,

where h ≡ det(hik), and

(B.9) det
(

g(ik)
)

=
1 − g3τg3τ

h
.

Therefore

(B.10)
√
−s =

√
−h

(

1 − g3τg3τ

)1/2
,

hence

(B.11) sik = g(ik)
(

1 − g3τg3τ

)−1/2
.

The nonvanishing components of sik then read

sλµ =
(

1 − g3τg3τ

)1/2
hλµ +

(

1 − g3τg3τ

)−1/2
h33α

3
λα3

µ,

s33 =
(

1 − g3τg3τ

)1/2
h33,(B.12)

and the square of the interval ds2 = sikdxidxk eventually comes to read

(B.13) ds2 =
(

1 − g3τg3τ

)1/2
hikdxidxk −

(

1 − g3τg3τ

)−1/2
h33 (dξ)2 .

In keeping with (B.3), we have defined α3
µ as

(B.14) α3
µ = iξ,µ,

in terms of the real function ξ(xλ).

1This method of solution obviously applies to Schrödinger’s purely affine theory [8] too.
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17. Kurşunoğlu, B. (1952). Proc. Phys. Soc. A, 65, 81.
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20. Borchsenius, K. (1978). Nuovo Cimento, 46A, 403.
21. Antoci, S. (1991). Gen. Rel. Grav., 23, 47. Also: http://arxiv.org/abs/gr-qc/0108052.
22. Schrödinger, E. (1950). Space-Time Structure, (Cambridge University Press, Cam-

bridge).
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