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THE PROPAGATION OF WAVES IN EINSTEIN’S UNIFIED

FIELD THEORY AS SHOWN BY TWO EXACT

SOLUTIONS

SALVATORE ANTOCI

Abstract. The propagation of waves in two space dimensions exhibited
by two exact solutions to the field equations of Einstein’s unified field
theory is investigated under the assumption that the metric sik is the one
already chosen by Kurşunoğlu and by Hély in the years 1952-1954. It is
shown that, for both exact solutions, with this choice of the metric the
propagation of the waves occurs in the wave zone with the fundamental
velocity (ds2 = 0).

1. Introduction

As soon as the independent, but concurrent efforts by Einstein and by
Schrödinger eventually led to the final mathematical formulation of what
may be respectively called the metric-affine [1, 2, 3, 4] and the purely affine
[5, 6, 7, 8] versions for the nonsymmetric generalization of Einstein’s theory
of 1915, skilled theoreticians and geometers 1 undertook the difficult task of
understanding the physical meaning of the theory through the investigation
of its mathematical structure and the search for the solutions, both exact
and approximate, to its field equations.

However, progress towards the accomplishment of this task was very slow,
if in 1954 Schrödinger still wrote [21] about the very identification of the met-
ric tensor of the theory as an open question 2. A quite relevant contribution
to the identification of the metric tensor in Einstein-Schrödinger unified field
theory came from the study of the Cauchy problem done by Lichnerowicz
[13, 16]. He succeeded in thorougly analysing the Cauchy problem without
solving the unwieldy equation (A.2) explicitly, and proved that the answer
to the Cauchy problem is in general unique, unless the surface S, on which
the Cauchy data are given, is a characteristic surface, i.e. unless locally

1Without pretense of completeness, let us here recall the remarkable achievements by
Papapetrou [9], Wyman [10], Kurşunoğlu [11, 12], Lichnerowicz [13, 16], Hély [14, 15],
Tonnelat [17], V.V. Narlikar and B.R. Rao [18], Treder [19], Hlavatý [20].

2In the last pages of the cited book, he wrote in fact: “We cannot even feel sure whether
in the nonsymmetric case the g(ik) or the g(ik) (or, less likely, the g(ik) or the g(ik)) play the
part of the corresponding tensorial entities describing the gravitational field in Einstein’s
theory”. For the definitions of the quoted quantities, see appendix (A) of the present
paper.
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S = f(xi), where f fullfils the so-called eikonal equation

(1.1) g(ik)f,if,k = 0.

Although, from a purely mathematical perspective, the function f satisfying
(1.1) only defines a surface that is unsuitable as a startpoint for the solution
of the Cauchy problem, the very fact that (1.1) has just the form of the
eikonal equation, i.e. of the equation that stems from d’Alembert equation in
the high frequency limit, naturally led to read in it a law of wave propagation,
sometimes of a shock wave propagation, ruled by a metric, in the present
case by g(ik), or, more precisely, by any tensor conformally related to it.
Indeed g(ik), one of the four candidates considered by Schrödinger [21] for
producing a metric, through the stipulation

(1.2)
√
−ssik = g(ik),

where s = det (sik), allows defining a metric tensor sik that is conformally

related to g(ik). Why, among all the tensors that are conformally related to
g(ik), just sik should be chosen as metric, turns out from the quoted results
found by Kurşunoğlu [11, 12] and by Hély [14]: with that choice the four
identities, that render the field equations (A.2) - (A.5) compatible, assume
a very simple and allusive writing. So allusive that, on this basis, Hély
[15] decided to disobey the injunction both by Einstein and by Schrödinger,
according to which no phenomenological source terms should be appended
at the right-hand sides of the field equations (A.2) - (A.5). In that way the
conservation identities, that are otherwise empty, appear to assume physical
meaning. More recently, while retaining Hély’s choice of the metric tensor
sik, and by availing of a crucial finding by Borchsenius [22], Hély’s approach
was extended [23], by adding phenomenological sources at the right-hand
sides of all the field equations, in the form of a symmetric energy-momentum
tensor, and of two conserved four-current densities. The way for achieving
this result, for the reader’s convenience, is recalled in appendix (B).

It is clear, however, that the assumption that sik, as defined by (1.2), can
be the metric of Einstein-Schrödinger theory, is an hypothesis that needs
further confirmation. Just the retrieval and the study of exact solutions of
(A.2) - (A.5) displaying a wavy behaviour can either confirm or disprove the
hypothesis 3. Happily enough, two such solutions do exist. They belong to
the class of exact solutions intrinsically depending on three coordinates [24],
whose structure is recalled in appendix (C).

2. Wave propagation in two exact solutions

An exact solution allowing for wave propagation in two space and one
time dimensions is easily built by the method of appendix (C), provided

3Needless to say, while a confirmation would be always provisional, a disproval would
be a definitive one.
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that one chooses

(2.1) hik = ηik ≡ diag(−1,−1,−1, 1)

as seed metric for the Hermitian solution, defined with respect to the coordi-
nates x1 = x, x2 = y, x3 = z, x4 = t. In these coordinates the fundamental
form gik of the mentioned solution reads:

(2.2) gik =









−1 0 e 0
0 −1 f 0

−e −f v c
0 0 −c 1









,

with

(2.3) v = −1 − c2 + e2 + f2

and

(2.4) e = iξ,x, f = iξ,y, c = −iξ,t, i =
√
−1,

where the function ξ = ξ(x, y, t) fullfils, in the chosen representative space,
the d’Alembert equation

(2.5) ξ,xx + ξ,yy − ξ,tt = 0

with respect to the three coordinates x, y, t. When ξ is defined by (2.4),
besides the field equation (A.3), also the unsolicited, invariant equation

(2.6) g[ik],l + g[kl],i + g[li],k = 0

is satisfied, i.e. the antisymmetric field g[ik] appears to be endowed with

electromagnetic meaning 4.
If the metric sik, defined by eq. (1.1), were equal to the seed metric

hik defined by (2.1), the solution would represent electromagnetic waves
that propagate with the fundamental velocity (ds2 = 0). The interval of
the chosen metric sik, however, differs from the Minkowski interval. It is
defined by equation (C.13) that, in the case of the particular solution defined
by (2.2) - (2.4), reads

(2.7) ds2 = sikdx
idxk =

√
−v(dt2 − dx2 − dy2 − dz2) +

(dξ)2√
−v .

If the second term at the right hand side of (2.7) were absent, the propaga-
tion of the electromagnetic waves would occur with the fundamental velocity
also with respect to the chosen metric sik, because the first term at the right
hand side is just conformally related to the square of the Minkowski interval.
But a moment’s reflection shows that, when ξ has, in the “Bildraum”, a truly
wave zone behaviour, hence a “Bildraum” wavevector can be locally defined,
dξ, when taken along the direction of that wavevector, necessarily vanishes.

4Other solutions fulfilling (2.6), and representing the general electrostatic solution [25]
and the magnetic field generated by constant electric currents running on n parallel wires
[26] have been previously investigated by using sik as metric.
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As a consequence ds2, as defined by (2.7), shall vanish in the direction of
the “Bildraum” wavevector. One concludes that, with respect to the chosen
metric sik, in the considered electromagnetic solution the electromagnetic
waves in the wave zone do propagate with the fundamental velocity5 in the
metric sense (ds2 = 0).

Another exact solution, endowed with axial symmetry, and allowing too
for wave propagation in two space and one time dimensions, is built by the
same method of appendix (C), provided that one now chooses

(2.8) hik = diag(−1,−1,−r2, 1),
defined with respect to polar cylindrical coordinates x1 = r, x2 = z, x3 = ϕ,
x4 = t, as seed metric for the Hermitian solution. Its fundamental tensor
gik reads:

(2.9) gik =









−1 0 δ 0
0 −1 ε 0

−δ −ε ζ τ
0 0 −τ 1









,

with

(2.10) ζ = −r2 + δ2 + ε2 − τ2,

and

(2.11) δ = ir2ψ,r, ε = ir2ψ,z, τ = −ir2ψ,t,

where ψ(r, z, t) now fullfils d’Alembert equation in cylindrical coordinates,
namely:

(2.12) ψ,rr +
ψ,r

r
+ ψ,zz − ψ,tt = 0.

5The proof, that in the wave zone of the considered electromagnetic solution the electro-
magnetic waves do propagate with the fundamental velocity in the metric sense (ds2 = 0),
is briefly outlined here, by availing of the very well known properties of D’Alembert’s
equation in the chosen “Bildraum”. In a small neighbourhood of the wave zone, by suit-
able choice of the coordinates (otherwise, by suitable choice of the particular solution)
equation (2.5) can be reduced to

ξ,xx − ξ,tt = 0.

In that small neighbourhood of the wave zone, a particular solution reads, say

ξ = ξ(x − t),

for which

dξ = 0

when

dx = dt,

as needed. Therefore, since dy = dz = 0, the interval ds2 defined by (2.7) vanishes locally
in the wave zone.
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The metric sik of this solution can be written as

sik =

√
−ζ
r









−1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 1









(2.13)

+
r3√
−ζ









ψ,rψ,r ψ,rψ,z 0 ψ,rψ,t

ψ,rψ,z ψ,zψ,z 0 ψ,zψ,t

0 0 0 0
ψ,rψ,t ψ,zψ,t 0 ψ,tψ,t









,

hence the square of the line element, in the adopted coordinates, comes to
read

(2.14) ds2 = sikdx
idxk =

√−ζ
r

(

−dr2 − dz2 − r2dϕ2 + dt2
)

+
r3√
−ζ (dψ)2.

This solution has nothing to do with Maxwell’s equations, because with the
seed metric (2.8) the additional conditions (C.3) no longer have any relation
to the electromagnetic looking equation (2.6).

A particular, time independent solution, obtained too from the same seed
(2.8), for which

(2.15) ψ = −
n

∑

q=1

Kq ln
pq + z − zq

r
,

where

(2.16) pq = [r2 + (z − zq)
2]1/2,

while Kq and zq are constants, has been investigated [27] some time ago.
In keeping with an earlier approximate calculation done by Treder [19], it
proves that pole sources at rest, defined by eq. (B.15), interact with forces
not depending on their mutual distance, like the quarks of chromodynamics
are supposed to do. The axially symmetric waves that we are presently
considering should be therefore emitted and absorbed by such pole sources.

Whatever their physical meaning, the velocity with which these waves
propagate is easily ascertained, like it occurred with the electromagnetic
example considered previously. In fact, if the second term at the right hand
side of (2.14) were absent, i.e. when dψ is vanishing, the squared interval
ds2, referred to cylindrical coordinates, would be conformally Minkowskian,
and the speed of propagation of a wave with respect to the metric sik should
be equal to the fundamental velocity that prevails with respect to the seed
metric (2.8). But, again, a moment’s reflection shows that, when ψ has,
in the “Bildraum”, a truly wave zone behaviour, hence when a “Bildraum”
wavevector can be locally defined, dψ necessarily vanishes, when taken along
the direction of that wavevector. As a consequence ds2, as defined by (2.14),
shall vanish in the direction of the “Bildraum” wavevector. Therefore, with
the chosen metric sik, in the considered solution the waves of g[ik], whatever
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their physical meaning, do propagate in the wave zone with the fundamental
velocity6 in the metric sense (ds2 = 0).

In both the considered examples, the choice of the metric sik done by
Kurşunoğlu [11, 12] and by Hély [14, 15] happens therefore to be compatible
with the wavy behaviour exhibited by the exact solutions.

Appendix A. Einstein’s unified field theory; Hermitian version

We consider here the Hermitian version [3] for Einstein’s nonsymmetric
generalization of the theory of 1915. A given geometric quantity [28] is
called Hermitian with respect to the indices i and k, both either covariant
or contravariant, if the part of the quantity that is symmetric with respect
to i and k is real, while the part that is antisymmetric is purely imaginary.
We contemplate the Hermitian fundamental form gik = g(ik) + g[ik], and the

affine connection Γi
kl = Γi

(kl) + Γi
[kl], Hermitian with respect to the lower

indices; both entities depend on the real coordinates xi, while i runs from
1 to 4. We define also the Hermitian contravariant tensor gik through the
relation

(A.1) gilgkl ≡ gliglk = δi
k,

and the contravariant tensor density gik = (−g)1/2gik; g ≡ det (gik) is a real
quantity. Then the field equations of Einstein’s unified field theory in the
complex Hermitian form [3] come to read:

gik,l − gnkΓ
n
il − ginΓn

lk = 0,(A.2)

g[is]
,s = 0,(A.3)

R(ik)(Γ) = 0,(A.4)

R[ik],l(Γ) +R[kl],i(Γ) +R[li],k(Γ) = 0;(A.5)

Rik(Γ) is the Hermitian Ricci tensor

(A.6) Rik(Γ) = Γa
ik,a − Γa

ia,k − Γa
ibΓ

b
ak + Γa

ikΓ
b
ab.

Appendix B. Adding phenomenological sources to all the

Hermitian field equations of Einstein

In a four-dimensional manifold, let gik be a contravariant tensor density
with an even part g(ik) and an alternating one g[ik]:

(B.1) gik = g(ik) + g[ik],

and W i
kl be a general affine connection

(B.2) W i
kl = W i

(kl) +W i
[kl].

For the Riemann curvature tensor built from W i
kl:

(B.3) Ri
klm(W ) = W i

kl,m −W i
km,l −W i

alW
a
km +W i

amW
a
kl,

6A proof closely similar to the one given in the previous footnote applies here, and is
left to the ingenuity of the reader.
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two distinct contractions exist, Rik(W ) = Rp
ikp(W ) andAik(W ) = Rp

pik(W )

[21]. But the transposed affine connection W̃ i
kl = W i

lk must be considered

too: from it, the Riemann curvature tensor Ri
klm(W̃ ) and its two contrac-

tions Rik(W̃ ) and Aik(W̃ ) can be formed as well. We aim at following the
pattern of the general relativity of 1915, which is built by the variational
method from the Lagrangian density gikRik, but now any linear combina-
tion R̄ik of the four above-mentioned contractions is possible. A good choice
[22], for physical reasons that will become apparent later, is

(B.4) R̄ik(W ) = Rik(W ) +
1

2
Aik(W̃ ).

Let us provisionally endow the theory with sources in the form of a non-
symmetric tensor Pik and of a current density ji, coupled to gik and to the
vector Wi = W l

[il] respectively. The Lagrangian density

(B.5) L = gikR̄ik(W ) − 8πgikPik +
8π

3
Wij

i

is thus arrived at. By performing independent variations of the action
∫

LdΩ

with respect to W p
qr and to gik with suitable boundary conditions we obtain

the field equations

− gqr
,p + δr

pg
(sq)
,s − gsrW q

sp − gqsW r
ps(B.6)

+δr
pg

stW q
st + gqrW t

pt =
4π

3
(jrδq

p − jqδr
p)

and

(B.7) R̄ik(W ) = 8πPik.

By contracting eq. (B.6) with respect to q and p we get

(B.8) g[is]
,s = 4πji.

The very finding of this physically welcome equation entails however that we
cannot determine the affine connection W i

kl uniquely in terms of gik: (B.6)

is invariant under the projective transformation W ′i
kl = W i

kl + δi
kλl, where

λl is an arbitrary vector field. Moreover eq. (B.7) is invariant under the
transformation

(B.9) W ′i
kl = W i

kl + δi
kµ,l

where µ is an arbitrary scalar. By following Schrödinger [7, 21], we write

(B.10) W i
kl = Γi

kl −
2

3
δi
kWl,

where Γi
kl is another affine connection, by definition constrained to yield

Γl
[il]=0. Then eq. (B.6) becomes

(B.11) gqr
,p + gsrΓq

sp + gqsΓr
ps − gqrΓt

(pt) =
4π

3
(jqδr

p − jrδq
p)
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that allows one to determine Γi
kl uniquely, under very general conditions

[17, 20], in terms of gik. When eq. (B.10) is substituted in eq. (B.7), the
latter comes to read

R̄(ik)(Γ) = 8πP(ik)(B.12)

R̄[ik](Γ) = 8πP[ik] −
1

3
(Wi,k −Wk,i)(B.13)

after splitting the even and the alternating parts. Wherever the source term
is nonvanishing, a field equation loses its rôle, and becomes a definition of
some property of matter in terms of geometrical entities; it is quite obvious
that such a definition must be unique. This occurs with eqs. (B.8), (B.11)
and (B.12), but it does not happen for eq. (B.13). This equation only
prescribes that R̄[ik](Γ)− 8πP[ik] is the curl of the arbitrary vector Wi/3; it
is therefore equivalent to the four equations

(B.14) R̄[ik],l(Γ) + R̄[kl],i(Γ) + R̄[li],k(Γ) = 8π{P[ik],l + P[kl],i + P[li],k},
that cannot specify P[ik] uniquely. We therefore scrap the redundant tensor

P[ik], like we scrapped the redundant affine connection W i
kl of eq. (B.6),

and assume that matter is described by the symmetric tensor P(ik), by the

conserved current density ji and by the conserved current

(B.15) Kikl =
1

8π
{R̄[ik],l + R̄[kl],i + R̄[li],k}.

The general relativity of 1915, to which the present theory reduces when
g[ik] = 0, suggests rewriting eq. (B.12) as

(B.16) R̄(ik)(Γ) = 8π(Tik − 1

2
siks

pqTpq)

where sik = ski is the still unchosen metric tensor of the theory, silskl = δi
k,

and the symmetric tensor Tik will act as energy tensor. If, in keeping with
the choice done by Kurşunoğlu and by Hély, sik is defined like in equation
(1.2), equation (B.16) is readily seen to stem directly from the variation of
the Lagrangian (B.5), with a slightly reworked matter term, with respect to
the chosen metric sik.

When sources are vanishing, equations (B.11), (B.16), (B.8) and (B.15)
reduce to the original equations of Einstein’s unified field theory, reported
in appendix (A), because then R̄ik(Γ)=Rik(Γ); moreover they enjoy the
property of transposition invariance also when the sources are nonvanishing.
If gik, Γi

kl, R̄ik(Γ) represent a solution with the sources Tik, ji and Kikl, the

transposed quantities g̃ik = gki, Γ̃i
kl = Γi

lk and R̄ik(Γ̃)= R̄ki(Γ) represent

another solution, endowed with the sources T̃ik = Tik, j̃
i = −ji and K̃ikl =

−Kikl. Such a physically desirable outcome is a consequence of the choice
made [22] for R̄ik. These equations intimate that Einstein’s unified field
theory with sources should be interpreted like a gravoelectrodynamics in a
polarizable continuum, allowing for both electric and magnetic currents. The
study of the conservation identities confirms this idea [23] and strengthens at
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the same time the identification of the metric tensor sik done by Kurşunoğlu
and by Hély. Let us consider the invariant integral

(B.17) I =

∫ [

gikR̄ik(W ) +
8π

3
Wij

i

]

dΩ.

From it, when eq. (B.6) is assumed to hold, by means of an infinitesimal
coordinate transformation we get the four identities

− (gisR̄ik(W ) + gsiR̄ki(W )),s + gpqR̄pq,k(W )(B.18)

+
8π

3
ji(Wi,k −Wk,i) = 0.

This equation can be rewritten as

− 2(g(is)R̄(ik)(Γ)),s + g(pq)R̄(pq),k(Γ)(B.19)

= 2g[is]
,s R̄[ik](Γ) + g[is]

{

R̄[ik],s(Γ) + R̄[ks],i(Γ) + R̄[si],k(Γ)
}

where the redundant variable W i
kl no longer appears. The metric tensor

sik is defined by equation (1.2), and just for the tensor Tik we shall make
an exception to the general rule that prevails in the Einstein-Schrödinger
theory, and use sik and sik to raise and lower indices,

√
−s to produce

tensor densities out of tensors. We define then

(B.20) Tik =
√
−ssipskqTpq

and the weak identities (B.19), when all the field equations hold, will take
the form

(B.21) Tls
;s =

1

2
slk(jiR̄[ki](Γ) +Kiksg

[si]),

where the semicolon means covariant derivative with respect to the Christof-
fel affine connection

(B.22)
{

i
k l

}

=
1

2
sim(smk,l + sml,k − skl,m)

built with sik. As far as one knows, only the choice (1.2) of the metric and
the way of appending sources adopted in eqs. (B.11), (B.8), (B.15) and
(B.16) allows rewriting the identities (B.19) in so simple and so physically
suggestive a way. The previous impression is strengthened by eq. (B.21):
the theory, built in terms of a non-Riemannian geometry, appears to entail
a gravoelectrodynamics in a dynamically polarized Riemannian spacetime,
for which sik is the metric, where the two conserved currents ji and Kiks are
coupled à la Lorentz to R̄[ki] and to g[si] respectively. Two versions of this

gravoelectrodynamics are possible, according to whether gik is chosen to be
either a real nonsymmetric or a complex Hermitian tensor density, like we
presently do. The constitutive relation between electromagnetic inductions
and fields is governed by the field equations in a quite novel and subtle
way: the link between g[ik] and R̄[ik] is not the simple algebraic one usually
attributed to the vacuum, with some metric that raises or lowers indices,
and builds densities from tensors. It is a differential one, and a glance
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to the field equations suffices to become convinced that understanding its
properties is impossible without first finding and perusing the exact solutions
of the theory.

Appendix C. Solutions of the Hermitian theory that depend on

three coordinates

We assume that Greek indices take the values 1,2 and 4, while Latin
indices run from 1 to 4. Let the real symmetric tensor hik be the metric for
a vacuum solution to the field equations of the general relativity of 1915,
which depends on the three co-ordinates xλ, not necessarily all spatial in
character, and for which hλ3 = 0. We consider also an antisymmetric purely
imaginary tensor aik, which depends too only on the co-ordinates xλ, and
we assume that its only nonvanishing components are aµ3 = −a3µ. Then we
form the mixed tensor

(C.1) α k
i = ailh

kl = −αk
i,

where hik is the inverse of hik, and we define the Hermitian fundamental
form gik as follows:

gλµ = hλµ,

g3µ = α ν
3 hµν ,(C.2)

g33 = h33 − α µ
3 α

ν
3 hµν .

When the three additional conditions

(C.3) α3
µ,λ − α3

λ,µ = 0

are fulfilled, the affine connection Γi
kl which solves eqs. (A.2) has the non-

vanishing components

Γλ
(µν) =

{

λ
µ ν

}

(h)
,(C.4)

Γλ
[3ν] = α λ

3 ,ν −
{

3
3 ν

}

(h)
α λ

3 +
{

λ
ρ ν

}

(h)
α ρ

3 ,

Γ3
(3ν) =

{

3
3 ν

}

(h)
,

Γλ
33 =

{

λ
3 3

}

(h)
− α ν

3

(

Γλ
[3ν] − α λ

3 Γ3
(3ν)

)

;

we indicate with
{

i
k l

}

(h)
the Christoffel connection built with hik. We form

now the Ricci tensor (A.6). When eqs. (A.3), i.e., in our case, the single
equation

(C.5) (
√
−h α λ

3 h
33),λ = 0,
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and the additional conditions, expressed by eqs. (C.3), are satisfied, the
components of Rik(Γ) can be written as

Rλµ = Hλµ,

R3µ = α ν
3 Hµν +

(

α ν
3

{

3
3 ν

}

(h)

)

,µ
,(C.6)

R33 = H33 − α µ
3 α

ν
3 Hµν ,

where Hik is the Ricci tensor built with
{

i
k l

}

(h)
. Hik is zero when the seed

metric hik is a vacuum solution of the field equations of general relativity,
as supposed; therefore, when eqs. (C.3) and (C.5) hold, the Ricci tensor,
defined by eqs. (C.6), satisfies eqs. (A.4) and (A.5) of the Hermitian theory
of relativity.

The task of solving equations (A.2)-(A.5) reduces, under the circum-
stances considered here, to the simpler task of solving eqs. (C.3) and (C.5)
for a given hik.

7

Let us suppose that the metric tensor is defined by the equation (1.2),
namely

(C.7)
√
−ssik = g(ik),

where silskl = δi
k and s = det (sik). When the fundamental tensor gik has

the form (C.2) it is

(C.8)
√−g =

√
−h,

where h ≡ det(hik), and

(C.9) det
(

g(ik)
)

=
1 − g3τg3τ

h
.

Therefore

(C.10)
√
−s =

√
−h

(

1 − g3τg3τ

)1/2
,

hence

(C.11) sik = g(ik)
(

1 − g3τg3τ

)

−1/2
.

The nonvanishing components of sik then read

sλµ =
(

1 − g3τg3τ

)1/2
hλµ +

(

1 − g3τg3τ

)

−1/2
h33α

3
λα

3
µ,

s33 =
(

1 − g3τg3τ

)1/2
h33,(C.12)

and the square of the interval ds2 = sikdx
idxk eventually comes to read

(C.13) ds2 =
(

1 − g3τg3τ

)1/2
hikdx

idxk −
(

1 − g3τg3τ

)

−1/2
h33 (dξ)2 .

In keeping with (C.3), we have defined α3
µ as

(C.14) α3
µ = iξ,µ,

in terms of the real function ξ(xλ).

7This method of solution obviously applies to Schrödinger’s purely affine theory [7] too.
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