1343
Progress of Theoretical Physics, Vol. 87, No. 6, June 1992

The Electromagnetic Properties of Material Media
and Einstein’s Unified Field Theory

S. ANTOCI

Dipartimento di Fisica “A. Volta”, Via Bassi, 6 Pavia

(Received March 2, 1992)

The issue of the form that the microscopic constitutive relation between electromagnetic induc- .
tions and fields should take in a dynamic spacetime is examined, and an answer that can be provided
through the geometric objects of Einstein’s unified field theory is considered. It is shown that the
microscopic constitutive relation implied by these geometric objects allows to produce dynamically,
by availing of fluctuations of the metric field with an appropriate behaviour, both the macroscopic
relation between weak inductions and fields prevailing in vacuo and the one that occurs in nondisper-
sive, nonconducting material media. The possible relevance of these results for a theory of matter
in a dynamic spacetime that does not rely on the quantum framework is intimated, and conceptual
reasons why it may be worth exploring such an alternative are outlined.

§1. Introduction

The essence of macroscopic electromagnetism is embodied by Maxwell’s equa-
tions. Although they were originally conceived as pertaining to the flat space and to
the absolute time of Newtonian heritage, the subsequent developments in the geometri-
cal conception of spacetime have revealed how deep a position these equations occupy
in the structure of physics. The notion of affine connection and the notion of metric
are unnecessary for their existence; they can be written as soon as the primitive
concept of unconnected four-dimensional manifold is introduced.” For, then, a
contravariant skew tensor density a® and a covariant skew tensor b: can be deﬁned,
and we can write the tensor equations

a“,s=47zji s b[ik,l]=0 s . : (1)

where j is the conserved electric four-current density, the comma represents ordinary
differentiation, -and where we have assumed b, 3=1/3)(bin, i+ brritbun). OF
course, the spacetime description of physics requires that we supplement the primitive
unconnected manifold with both an affine connection I'% and with a metric sz it is
then natural to wonder how these new elements should enter the needed relation
between a”* and b: in order to best help the momentous task of accounting for the
extremely varied phenomena displayed by electromagnetism in the material media.
The current answer to this fundamental question has its remote origin in the electron
theory developed by Lorentz when a dynamic conception of spacetime, involving a
link between matter and geometry, still was a hope for the future. It supposes that
the rich variety of behaviour that the relation between a* and 6: displays in matter
is a macroscopic deception. The truly important relation is the microscopic one; as
such, it is unaccessible to our experience, but Nature has been so benign to provide us
with a faithful replica in that special kind of macroscopic medium that we call
vacuum. In that case, a quite simple relation between a** and b can be assumed to



1344 . S. Antoct

hold; it involves the metric in algebraic form and reads
bir=aun=(—s)"smpsrea’ (2)

where s=det (s). . Why not attempt to transfer this simple relation as it stands in the
microscopic domain? While doing so, a further, substantial simplification can be
introduced: We can totally disregard the dynamic character of spacetime and choose
the coordinates so that sxz=7z=diag (—1, —1, —1,1). Once the laws that rule
"electromagnetism on a small scale are supposed known, and the dynamical laws
obeyed by the elementary charges and currents that feel and produce the microscopic
field are assigned, we can try to retrieve the whole richness of macroscopic electro-
magnetism in matter via statistical methods.

It is universally known that this program has met with an outstanding success,
but only after it was recognized that Nature is not so unimaginative that we can
simultaneously model the behaviour of electromagnetism on a small scale after
macroscopic electromagnetism in vacuo, and borrow for the microscopic dynamics
the very laws and concepts that hold on a large scale. In order to meet with the
observed facts about macroscopic electromagnetism in matter, a new, intrinsically
probabilistic méchanics is in fact adopted, and the goal of a thorough spacetime
~ description of reality is thereby renounced, if we insist in attributing to microscopic -
electromagnetism the simple structure given by (1) and (2), with sw=7:. But also the
direct physical meaning of this simple structure has to be renounced at last, for, in
order to agree with experience, again with outstanding success, the method of field
quantization has to be applied to the field equations (1) with the constitutive relation
(2).

In writing these equations, curvilinear coordinates were here used, as it is
required for evidencing the positions that they occupy in the structure of spacetime
physics. Yet, the method of quantization can be confidently applied only when
spacetime is assumed to be flat and Cartesian coordinates are adopted; as a long story
of attempts intimates, quantum methods and concepts do not seem exactly in their
own when confronted with the dynamic structure of spacetime. Therefore, despite
the evident success of the current approach to electromagnetism in matter, it does not
seem a complete waste of time if we reconsider the fundamental choice of (2) as
constitutive relation for microscopic electromagnetism, which has determined all the

“subsequent developments. Equation (2) is extremely simple, but this simplicity
means also that all the richness of structure that a dynamic spacetime can be con-
ceived to exhibit on a microscopic scale is irrelevant to it. Due to this irrelevance,
"the whole burden of accounting for the manifold aspects of electromagnetism in
matter is commited to the dynamics of elementary charges and currents. Now, we
know from general relativity that the dynamical structure of spacetime actually rules
essential properties of matter since, via the Ricci tensor, a dependence of the stress-
momentum-energy tensor on the metric is established. Why should that structure be
so 1dle with respect to another essential feature of matter, like the relation between
electromagnetic inductions and fields?
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§2. A constitutive relation for electromagnetism from
Einstein’s unified field theory

An alternative to the constitutive relation (2) is suggested by the later works of
Einstein and of Schridinger, devoted®® to the search of an extension of the general
relativity of 1915 that could provide a dynamical description of spacetime encompass-
ing both gravitation and electromagnetism. We aim at expressing the properties of
the material continuum by means of the geometric objects of the non-Riemannian
structure considered by Einstein. The four-dimensional manifold with real coordi-
nates z’ is therefore endowed with a nonsymmetric tensor density g* and with a
nonsymmetric affine connection I, and the following definitions of the material
properties are introduced:®

97 o+ g T+ g% s — g Ton=4n/3)(76,"—j"6,7), (3)
g\ s=4nj?, (4)
Buw(I)=87(Tin—(1/2)s5"" Tpa) 5)
Buia,o(I)=(87/3)Ki: . o (6)

~ The affine connection I, by definition constrained to yield I%;=0, is used to build the
symmetrized Ricci tensor”

Bu(D)=T#%o— /2Tt T ) — T8 o+ TEIS (7
while the role of metric is attributed® to the symmetric tensor s, defined by
st=g*  gh=(—3s)2s" s, =04, s=det(s). _ (8)
The contracted Bianchi identities®* read
i =1/2)(7*Bira+ Kinig™) : (9)

» where the semicolon denotes covariant differentiation with respect to the Christoffel
affine connection

'Elglz(1/2)sim(smk,l+sml,k_Slzl,m); (10)

here and in the following indices are raised and lowered with s* and s:, tensor
densities are built with (—s)"?, etc. We interpret T:. as the energy tensor, j° as the
electric current density, Ku: as the magnetic current; Eqs. (3)~(6) then define the
material properties of an electromagnetic mediim, in which g™ represents the
electric induction and the magnetic field, while Bz (I") represents the electric field
and the magnetic induction. Through these definitions the constitutive relation
between inductions and fields is made akin to the relation between the metric and the
energy tensor, and is inextricably entwined with it: For a given g*, both are produced
in one go by solving (3) for I and by substituting the latter in B:x(I"). The essential
role played by the Riemannian structure entailed by the metric ss on the ‘non-
Riemannian continuum that we are considering is evident from (9), for only when that
structure is introduced the form of the contracted Bianchi identities becomes clear
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and physically transparent. Equation (9) asserts that the force density of electro-
magnetic nature due to the Lorentz coupling of j*'to Bpx(I") and of K to g™
defined in the non-Riemannian manifold under consideration, is found responsible for
the nonconservation of the energy tensor 7 of matter defined by (5) as soon as the
manifold is further equipped with the metric s:» according to the choice expressed by
(8), and with the Riemannian spacetime structure engendered by it.

§ 3. The constitutive relation for weak inductions and fields
and the small scale behaviour of the metric

We have drawn from Einstein’s later work a set of definitions for the properties
of the material continuum in terms of geometrical objects that implies inter alia a
completely new form of the constitutive relation of the electromagnetic medium, since
the expression of By, that represents the electric field and the magnetic induction,
when written in terms of g, is homogeneous of degree two with respect to
differentiation,” i.e., it consists of an aggregate of terms, which are either linear in the
second derivatives of g** or quadratic in the first derivatives of g%, as it occurs for the
expression of the energy tensor. Exhibiting the opportunities offered by this new
form is an extremely demanding task: The preliminary move of solving (3) for the
affine connection®? already leads to unsurveyable expressions. Let us set

) g[iklzaik, aikz(_s)”zaik, aikzsipskqam: : (11)

and assume that, while s* is arbitrary, a® and its derivatives are so small that can
be treated as first order infinitesimal quantities. The linear approximation to B
then reads”

B[ik]:(27f/3)(ji,k_jk,i)+(1/2)(din5nk_danni'*‘Clpquqik‘l_aikég) y - (12)
where
Siklmzzlgl,m_zgm,l_zélzgm+Zz§mzl?l (13)

is the-Riemann tensor of s, S#z=S%us is its Ricci tensor and the “contravariant
derivative” notation @u’'=s"am;n is used. Equation (12) says that the relation
between inductions and fields depends on the short range behaviour of s* and of a®*
in an essential way. Let us concentrate at present on the small scale features of s¥.
What do we know about the short range behaviour of the metric? We know, of
course, that if we probe the metric with macroscopic devices that surely do not convey
information about a single event x’, but provide us with a sort of average information
about a sizable spacetime region £, a suitable coordinate system exists, with respect to
which the probed entity, let us call it §i, is extremely close to the Minkowski metric
7, and its derivatives are extremely small. One may well hope that the very concept
of a metric field s, a mathematical abstraction from the macroscopic experience,
may survive the transition from the large to the small scale, but we should not be so
exacting as to require that all the properties of the macroscopically probed metric 5
belong also to Si.

We can for instance assume that everywhere sz departs very slightly from its
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macroscopic average §:, and that it does so through fluctuations'® whose character-
istic length is very short when compared with the spacetime extension of the devices
that probe 3, so that its derivative s:,: is by no means small. To proceed further,
we need to formalize the notion of macroscopic spacetime average in a covariant
theory.!? Let us assume that Of%:(x?) is a geometric object whose components
exhibit a fluctuating behaviour in the coordinate system x°. We endow a generic
eyvent xo’ with a spacetime neighbourhood £2(x0?) that includes a very large number of
ripples of O%:(z?). We indicate the spacetime average of O (x?) associated to the
neighbourhood 2(x0%) as OfZ:(x%)> e or simply as Ofz:(z'), and we pose

Opz:(xo")= f  Ofg(xH)dQ/ ds . (14)
2( zo?) 2 xo?) .
In the coordinate system x°, a prescription can be given for attributing a neighbour-
hood 2(z?) to each event within a given spacetime region by assuming that, if 2(x0%)
is the neighbourhood pertaining to xo’, the neighbourhood associated with xo’+ 6z’
contains the points whose coordinates are obtained by giving to the coordinates of the
points in £2(x0?) the increment dx’. The average field O/%:(x?) can thus be defined in
the given spacetime region, and with respect to the coordinate system x?; the definition
is such that '
OB > a@n= O (x") . (15)

Of course, the average field Of2:(x?) does not transform as a geometrical object with
respect to an arbitrary coordinate transformation x’*=f*(x*), and the prescription for
associating neighbourhoods to events is not retained in the primed coordinate system.
However, a subset of coordinate transformations x"*="#%(x*) can be considered, such
that, if the functions %4’ and their derivatives are expanded in Taylor’s series around
a generic event xo’:

2 =1 (x") (B m)o(x™ — 2™) +(1/2) (B mm)o 2™ — 2" W x" = 2"+,
x'i,m=(hi,m)o+(hi,m,n)o(x”—xo”?+-" , ' (16)

etc., the leading term of each expansion is much larger than the subsequent ones for
all the events x* within the neighbourhood £2(x’). With respect to this subset of
transformations O}%:(x") behaves, with the approximation deriving from the above
hypotheses, as a geometric object endowed with the same transformation law as the
one possessed by Of:(x?) with respect to the general transformations. This subset
-is sufficient for reckoning with the changes of reference frame that can be set up in the
world of macroscopic experience, to which the averages refer. We call henceforth’
macroscopic a transformation of coordinates belonging to the subset defined above,
and macroscopic will also be called a coordinate system x”* reachable from x’ through
a macroscopic coordinate transformation. We find that the prescription for defining
adjacent neighbourhoods 2(x?) and 2(x*+ dx?), as well as (15), hold with the previous-
ly mentioned approximation in all the macroscopic coordinate systems.
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§4. Fluctuations of the metric that produce the constitutive
relation for the macroscopic vacuum

Having shown how spacetime averages can be defined in a generally covariant
theory, a statistical approach to the constitutive relation for macroscopic electromag-
netism becomes possible. Equation (12) holds when a™ is small and slowly varying,
while s™ is arbitrary. As suggested by Lanczos, we assume that s: exhibits fluctua-
tions of a very small amplitude with a very short characteristic length around its
average value i, and look for the average field By that, in the linear approxima-

_tion of (12), corresponds to the weak and slowly varying a®.. Equation (12) can be
expressed as the sum of several addenda, singly written as the product of either a®
or ‘a*,, or else a”*, ., times other factors, each one individually given by s, s,
(—s)™2 and by the ordinary derivatives of sz up to second order. In the addenda
where sz is differentiated twice no other derivatives appear. We can write those
addenda as the overall derivative of a product that contains only one first derivative
of s, minus the sum of terms in which the product of two first derivatives of s may
occur. Due to (15), the whole averaging of B reduces thus to the averaging of
individual terms that contain only products, and in which the derivatives of s do not
exceed the first degree of differentiation. While averaging the individual term, we
shall look at the number of factors su,; appearing in it. . Due to the assumed smallness
of the fluctuations, we can set <sSim>= 55 m and {SuSum,»>= S Smn. Therefore the
average of a term in which s«,: does hot appear, or appears once, is equal to the
product of the averages of the single factors. The remaining terms contain the
product Siz,Smn,p, Whose average of course is not equal to Si,:Smnp. Since the
fluctuations have very small amplitude, the quantity Fieimms=<Su.Smn.p>~— §ir.1S mn.p

. behaves as a tensor with respect to the macroscopic coordinate transformations; it

encodes the statistical information about the. ﬂuctuatmg sir needed to complete the
evaluation of Bux).

Let us consider the form taken by Fizmnp When the fluctuations are such that s
is conformally related to its average:

Sik:€6§ik, |é|<<1; 7 (17)

we get
Firtmns= S i S un<€?°0,10,0>= S it S mnCup , . (18)

where ci»=cp behaves as a tensor under the macroscopic transformations. We note
that (12) can be rewritten as

Brin=Cnr/3)Gip—jr:) F(1/2)(@ Coain+(1/3)Sair+ a's) , (19)
where S=s%?S;, and _ _
Ciimi=Sin— (1/2)(SJkSzl+SJkSzl Sisin—$50Sm) +(S/6)(sikSi1— S55iz) (20)

is Weyl’s conformal curvature tensor; due to (17), we have that Cukl(Sab) e%Cini( S av).
The calculation of B is outlined in Appendix I; in it the notation “I” for the
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covariant differentiation with respect to 2i (Sa) has been introduced. The result
reads

<B[ik](8ab, aab)>:B[ik]( Sap, Tas) T D i, (21)

where the function Bwi(Ses, @as) is defined by (19), and D=—(3/2)5cps. We see
that B is constituted by two terms; the first one displays on the average fields S
and Z: the same dependence that By has on the unaveraged ones s:x and @, while
the second one is just given by & times a factor D that behaves as a scalar under
macroscopic coordinate transformations. The sign and the value of D are ruled by
the conformal fluctuations of the metric in the way shown by (18). Let us assume that
in a given region of spacetime D is constant, and that the fluctuations of s:x have S
short a characteristic length that the first term on the right-hand side of (21) is totally
negligible with respect to the second cne. In that region the macroscopic constitutive
relation for electromagnetism, i.e., the relation between average inductions and
average fields, will take the form of Eq. (2), that experience says to apply to the
macroscopic vacuum, although the microscopic relation entailed by (12) has an
entirely different character. If the average magnetic current Kin is supposed to
vanish, as one requires in macroscopic electromagnetism, we find from (6) and (21),
thanks to (15): '

{Bytinn, 0> = Bia,u=Bu, ol S av, @as) T (D& 1ix),n=0; (22)

within the considered region the fields a®*, B will just behave as expected to occur

to macroscopic inductions and fields in vacuo. Moreover, since both j* and g'* were
assumed to be slowly varying, we have
FiBiri+ King"™>=j 'Biusy + Kireg"" , : (23)

and the average of the right-hand side of the conservation identity (9) acquires the
form appropriate to the force density exerted on a macroscopic electric four-current
in vacuo.

Let us consider a macroscopic coordinate system for which at a given event §:
=7nm, as well as the coordinate systems that can be reached from this through a
Lorentz transformation. It is remarkable that the dynamical structure that we have
attributed to the metric sz provides us, when D is constant, with a Lorentz invariant
vacuum as far as the propagation of macroscopic electromagnetic fields is con-
cerned, despite the fact that in the coordinate systems considered above Fiumnp
= 5§ SmnCip does not behave, at the chosen event, as a Lorentz invariant quantity,
unless cp»=K73;», where K is a constant. This noninvariance is apparent also in the
macroscopic background energy density produced by the conformally fluctuating
metric. When a¢”*=0 we find in fact

8n<d kl> = <8il[Sik($ab) - (I/Z)SikS(Sab)]>
=(=5)?5[Su(5as)—(1/2) §S(5as)]
+(3/2)(— 5)?[ 5% ca—(1/2)84' 5 Cpal ; (24)
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the average density <J:" is constituted by the sum of two terms: The first one
represents the energy tensor density that is prescribed by the macroscopic metric § i,
while the second one contains the contribution coming from the fluctuations. Like
Finimnp, also this second term, when considered in the coordinate systems for which
locally S:i=7:%, is not a Lorentz invariant quantity unless ci»=KSx. When the
latter occurrence is verified, in a generic macroscopic coordinate system we have

81<YI kl(sab»:an H(Sa)—(3/2)K(— 5)V28:t, ‘ (25)

and the term due to the fluctuations takes the qualitative form appropriate to account
for the vacuum energy and pressure content of the continuum intimated by quantum
field theory considerations,'® while the macroscopic metric 5 can still display a
nearly Minkowskian behaviour, in agreement with macroscopic experience. Accord--
ing to (18) the condition ci»=K 7§, where K is real, requires for its fulfillment a metric
field s: that exhibits complex fluctuations around its real average 5:. In Einstein’s
unified field theory s* was assumed real, while a” can be chosen to be either real or
pure imaginary according to whether the real nonsymmetric or the complex Her-
mitian version of the theory is adopted.? From the mathematical standpoint it is
however conceivable that both s* and a™ assume complex values, and the macro-
scopic physical interpretation is not spoiled if the macroscopic averages turn out with
the appropriate reality properties; this fact occurs in the case under consideration if
the constant K is real valued, as assumed. We note that a result closely similar to
the one displayed by (21) and (25) is achieved' if one considers nonconformal
complex fluctuations of s such that ' ‘

Famnp=K 50p(SimSmn+ SinSsm), . ' (26)

where K’ is a real constant; also in this case the continuum allows for the propagation
of macroscopic electromagnetic fields as it occurs in a Lorentz invariant vacuum, and
exhibits a background energy and pressure content like the one suggested for vacuum
by quantum field theory. The case of the conformal fluctuations considered here
seems interesting, since it shows that the Lorentz invariance of Fiumnr and of the
background energy tensor density when 35x=7a locally is not a prerequisite for
producing a dynamical vacuum in which macroscopic electromagnetic fields propa-
gate in a Lorentz invariant manner. One should not forget that while the constancy
of the velocity of electromagnetic disturbances in vacuo is a cogent experimental fact,
the Lorentz invariance of the energy and pressure content of vacuum is a more formal
assumption, whose necessity within a given theory can be proved only indirectly,
through the agreement with observed facts of the physical behaviour that the said
theory attributes to “real”, nonvacuum matter.

§ 5. Fluctuations of the metric and the constitutive relation
of material nonconducting media

The introduction of a metric field that fluctuates in the manners considered above
allows to produce, by starting from the microscopic relation (12), a constitutive
relation for macroscopic electromagnetism appropriate to the vacuum in the case of
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weak inductions and fields. The way kept in achieving this result naturally suggests
exploring how the constitutive relation comes out if we introduce fluctuations of the
metric which exhibit a lesser degree of symmetry. Can we avail of such fluctuations
for reproducing the wide variety of behaviour that the macroscopic constitutive
relation exhibits in material nonconducting media? Let us try to get a first answer
through a simple example, and consider a region of spacetime for which, in a given
coordinate system, the average metric §: is everywhere equal to the Minkowski
metric 7., and the metric s is such that su=1, s:4=s$4,=0, while its spatial part s
exhibits small conformal fluctuations around 7. with short characteristic length:

sw=emu, |olK1. 27

Greek letters henceforth denote the spatial coordinates; the function ¢ is assumed to
. depend on the four coordinates x*; from (27) it follows that the nonvanishing compo--
nents of Fiumnp read

Firvaoor = auffos< 6260‘,a(7,'b> = 7aplocCab . : (28)

Let us look for the average field B that, again in the linear approximation of (12),
-corresponds to a weak and slowly varying a®. The calculation is outlined in
Appendix II; we find

Bum=Qr/3)(7 an— 7 ) +(1/2) @1l
H(1/B) @i Cue— T Cie— @i Cust T crs—5 Tt Coa]
Bun=Q/3) Fau— T ) +(1/2) G
+(1/8) @ cse—3 a5 cue— @su(99Cra+127*" cua)] . (29) .

Again, we can assume that the fluctuations of the metric have so short a characteristic
length that the terms on the right-hand sides of (29) where cs does not appear are
negligible with respect to the remaining ones. In that case (29) expresses a con-
stitutive relation for electromagnetism as it is appropriate to a linear, nondissipative,
spatially anisotropic, nonreciprocal, nonuniform, nondispersive and nonconducting
medium.’® Let us restrict the coefficients c: defined in (28) by assuming that, in the
chosen coordinate system

Cap=0Qqlap , ca=0 y C44=ﬂ . (30)
Then (29) reduces to
B[Aulzf(l/s)(13a+5ﬁ)ﬁxﬂ, Bum=—1/8)(30a+128) @ss, -(31)

if the terms on the right-hand sides of (29) where c:x does not appear are omitted as
negligible. If @ and 8 do not depend on the coordinates x?, (31) provides the con-
stitutive relation for a linear, nondissipative, isotropic, reciprocal, uniform, nondisper-
sive and nonconducting medium. Through the identification

(Bua, Biea, Bsa)=E , (Bups, Bisu, Bun)=8B,
(G, G2s, Gz0)=D (@2, @a1, G12)=H , (32)
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we can rewrite (31) as
B=—(1/8)(13a+58)H, E=-—(1/8)(30a+128)D . (33)

The velocity v for the propagation of macroscopic electromagnetic disturbances in
this medium is given by

~( a+126)"

132456 (34)

Let us assume ¢<0, 8>>0, a choice that corresponds to real fluctuations of the metric.
Then the velocity v turns out to be real and less than unity if

28/5< —a<7B/17 . A (35) |

What is the average tensor density <J »*> associated with the media for which (29) or
(31) hold? Since a™ is small and slowly varying, let us calculate it for the case a
=0. For the anisotropic, nonreciprocal medium the components of 8x< I D
=L(—= )5S —(1/2)8:'S] are

87<I W>=(1/2) 7" can—(1/4) 8" (9% Cas+37* Cas)
B8l I >=3/2)n*" Car, 87<ID=(1/2)7"Cus, v
87<I =—(1/0)7%car+(3/4) 7% Cus . (36)

If the medium is made isotropic and reciprocal through the additional positions (30),
the nonvanishing components of 87<J . reduce to

87<I >=—=(1/4)6(a+3B), 8a<IH=(3/4)B—a). (37)

When <0, £>0 and the inequalities (35), ensuring that the velocity v of the electro-
magnetic disturbances is real and less than unity, are satisfied, the nonvanishing
components of <J "> happen to occur with the form appropriate to a medium en-
dowed with positive energy density and with positive isotropic pressure,'® if the
dimensional constant needed for translating J ' from the geometrical units to the
physical ones is assumed positive. AS regards the sign and the value of this dimen-
sional constant, we emphasize that there is no compelling reason, in the present
context, for adhering to the choice that is done in general relativity, a choice essen-
tially dictated by the desire to impress a neo-Newtonian interpretation on that theory.

§6. Perspectives

The results of the previous section raise delicate questions of concept and of-
method. Can we really conceive building a macroscopic body out of a fluctuating s
or, more generally, out of a fluctuating g”*? This proposal closely adheres to the
original program of general relativity, that aims at an objective description of reality
in space and time in terms of geometric entities, and that today is usually dismissed
as unrealistic. The main reason for this pessimistic attitude is to be searched in the
position that quantum theory has come to occupy in the conceptual structure of

physics: Originally born as a set of rules for a new microscopic description of charged
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particles that could account for the observed facts while preserving the assumptions
for microscopic electromagnetism done by Lorentz, it has developed into an overall
framework that is confidently used for the description of all microscopic processes,
whatever their nature, and for predicting the macroscopic properties of matter in
terms of its microscopic behaviour. This framework consists in a system of concepts
and rules of a general, abstract character; as such, it does not constitute a physical
theory per se, but it can generate a physical theory for a given class of phenomena
through a two-steps procedure. First a theory, possibly a field theory, is formulated
for giving abstract mathematical representation to the microscopic entities that one
aims at describing and to their interactions; although this theory is either borrowed
from classical physics or modeled after its pattern, it is not intended as possessing a
direct physical meaning, but as a preliminary input structure on which the quantum
theoretical rules operate to provide the final, physically relevant theory. It has thus
become customary to assess the value of a given field theory according to its useful-
ness as input structure for the quantization process.

When considered from this standpoint, general relativity appears in' an odd
position, for it looks both useless and a challenging issue at the same time. It seems
useless because, according to estimates that view it as the field theory of gravitation
that has replaced Newton’s theory and contains the latter in a certain limit, it looks
quantitatively irrelevant to the description of atomic phenomena, at least in ordinary
circumstances: Why worry about the quantization of gravitation, if the Newtonian
attraction between two charged elementary particles, according to the naive extrapo-
lation to a microscopic scale of macroscopic concepts and laws, is so exceedingly
small when compared to their Coulomb interaction? Yet, despite this hint of quanti-
tative irrelevance, if we do not find the way for applying the axiomatic structure of
quantum field theory to general relativity, the very role of quantum concepts and
methods as the overall framework within which physical theories have to be formulat-
ed remains in doubt. Therefore, and although no experimental evidence imposes
confronting this challenge, strong reasons of principle have given origin to a long and
up to now unsuccessful struggle for bridging the gap between quantum theory and
general relativity. A significant evolution of mood has accompanied this struggle; it
can be described in retrospect as a progressive retreat from a bold faith in the
applicability of the concepts and of the axiomatic structure of the former theory to the
latter towards a more thoughtful attitude, imposed by the ever growing consciousness -
of the formidable difficulties and of the intricate conceptual problems that such a
presumption of applicability brings with itself.'® With the lapse of time a notion
deeply felt in the early days of general relativity and subsequently obscured to a
certain degree is reinstating itself with great strength: General relativity is not just a
field theory for the gravitational interaction, as such on an equal footing with other
theories describing other fields; it is primarily a dynamical theory of spacetime itself.
The postulates of quantum theory have been originally chosen for providing a
description of microscopic phenomena in the,absolute space and with respect to the
absolute time of Newton, and have been subsequently adapted to deal with the rigid
Minkowski background of special relativity; if spacetime has a dynamic character, as
general relativity forcefully intimates, we cannot limit ourselves to reconsidering the
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validity of these postulates for the description of gravity on a microscopic scale: They
need to be reexamined also in the context of atomic and subatomic physics, where
they have met with such an unconditional success as to efface, in the minds of most
physicists, many conceptual problems posed by their introduction. We shall inquire
whether we have been forced to the adoption of such postulates because we have
failed to appreciate the influences that a dynamic structure of spacetime can have on
the microscopic behaviour of matter; and we shall try to develop a theory of matter
in which the dynamic character of spacetime is kept into account since the very
beginning. The resolution to develop such a theory without the help of the quantum
theoretical framework may seem odd and unreasonable, in view of many successes
reported by the quantum methods in the description of matter, but it may well happen
that this will prove to be the only viable alternative in the long run, if the attempts to.
encompass general relativity within the quantum framework do not eventually bring
to concrete results. The geometrical objects of Einstein’s unified field theory offer a
possible startpoint for pursuing this alternative; of course, one -cannot know in
advance whether they are really adequate to such a task, although the versatility
displayed by the new constitutive relation for microscopic electromagnetism, as well
as the close connection posed between this relation and the one prevailing between the
metric and the energy tensor seem promising features of immediate physical interest.
In the present work some statistical properties of the small scale behaviour of the
metric field sz have been prescribed a priori, and some macroscopic consequences of
these assumptions have been looked for, in the case when a®* is weak and slowly
varying. Through this approach it is not possible to go beyond the constatation that
" a microscopic wavy behaviour of the metric can produce a macroscopic energy tensor
density like the one occurring in a material medium and simultaneously account for
the macroscopic electromagnetic properties of that medium, provided that it is
nonconducting and nondispersive. In order to reproduce the conducting, absorptive
and dispersive properties of real media, as well as for obtaining truly realistic energy
tensor densities, thus coming significantly in contact with the enormous body of
experimental knowledge 'concerning the structure of matter, we are in patent need of
field laws ruling the microscopic behaviour of g**. It can be hoped that through such
laws one may succeed in providing an objective description in space and time of the
elementary processes of emission and absorption of radiation as resonance phenom-
ena between waves,'® since the nonlinear way through which g* enters the conserva-
tion identities (9) is in principle apt to achieve this result. The modest goal of the
present paper has been to outline, through particular examples, some theoretical
opportunities offered by the geometrical objects introduced long ago by Einstein and
by Schrédinger; these opportunities may become of interest if the conceptual and
technical difficulties that the program of quantization encounters when confronted
with the dynamic structure of spacetime do not find a satisfactory solution. '

Appendix I

Since the metrics s and 5 are conformally related:
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Si(500) = Si 5 )+ (12084004 80— TS0 m) (A1)

Sit(sab)=Sir( Sas)— 0,06+ (1/2)[0,:0,6— §ix 5 ™ (C.atm+ G.a0.m)] , (A-2)

S(sap)=e"°[S(5as)—357(0,01a+(1/2)0,50,0)] . (A-3)
We get ,

o= = J op= J n (A-4)
and

(S(sap)air>=S(Sas) @ir—(9/2) @n 5 Cpq . _ » (A-5)
In order to evaluate <a!%> we note that :

i 8=(— 5) "5 T has "% i | (A-6)
Due to (A-1) we write

a”..=a",—a*o.+(1/2)0(a™8 — a5, )0,

—(1/2)(@™ s —a™5"™) S nOm (A-7)
and we find
s™ar s> =ai+<a?, 50+ (1/2) (a5 —a®;:57) 0., (A-8)
where |
a?,,570,s0=—a5cys (A-9)
and
(", 570,0=(1/2(a" ST~ a s P — a5 e . (A-10)

The overall result for B is
Brn=Qx/3)(J 1.6— 7 1,)F+ (U2 @ Coain( 5 )+ (1/3)S(5 05) @ir+ @ 1sl2]
—(3/2)5%Cre@sn - (A-11)

Appendix II

In this case the nonvanishing components of 3% read
Sh=01/2)(840.,+ 8, 0u— 7" 9m0,0) ,
Zh=—Q1/2Dnmn"e%4, Zh=(1/2)0/04; (A-12)
Greek indices run from 1 to 3. The components of Sz are
Sin==(1/2D0an=(1/2)040,i+ 1367(0,08+ (1/2)00,)
+ mun*e’(0.44+(3/2)040.4)], .
Sip=—0,0p, Su=—(3/2)(04:+(1/2)0404), (A-13)
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while the nonvanishing components of Spq read
Sisor =(1/2)e[7120(0,0,c —(1/2)0.00,) = 11(0,2.,e — (1/2) 0,20,
~ 1ac(O00 = (1/2)0.40.0) + 1c(0.00 = (1/2)6,16.0)]
+ (/)P0 — 12100 9*€%6,00,5+ 7*€*°6.40.4) ,
Sauor =(1/2)€°(7uc0,0.4— N10,2.4) ,
Suusr =(1/2) 916 (0,4a+(1/2)404) . (A-14)
Equation (A-4) holds again. Let us evaluate
aSu>=a?<e *"?spSns> ; (A-15)
its components of use in the sequel are
a:"Snw>=—(1/2)(@au™ Coa+ @i Car)
a4"Sn>=— Gap)*"Cpa—(1/2) @s*Cpe ,
ad"Sn>=(3/2) @aurp™ cu—(1/2) @i Cae . ' - (A-16)
The components of {a??Spq:x> read
@ Sparn> = 2)(@rut)* Cpa+ T Can— @u'car)
aP?Spqany=—(1/2) @ Cae+ Tapn™ Caa . (A-17)

In order to calculate <a.}s> we first find the expression of a*?;,, whose components
read.

a”,=a”,+(1/2)[a* 6/ — a8, — pr(a®n* — a”7*)0,.— a®o,,
+ (aa4é\7ﬂ - aﬁ467a)6,4] 5
a""’; 4= a“",4— (1/2)&‘!30‘,4 s

y=a*,—a*0,+(1/2)[(a**8/ — a*®1,0%)0,c + a” ™ ec4] ,

a4ﬂ

a’.=a*,—a"c,. (A-18)
Since

aik§2=(—s)‘”zsipskqs’sa"q; 7S, (A'19)
we write

HE7 - ¥8 —0/2 aﬁ 44 0‘/2 a,B
Qirl 6= aanue(n™e st 434)

a4# (1 774477#19(7776‘ -~30/2 4,@ + 7744 —0‘/2a4ﬁ 43 4) . (A,ZO)
We find, after a straightforward calculation
aani® = @as— /D3 @aun® Cog— GiSCre+ TCre+ @' Ca— Tu'Cad) ,

Caapi8>=Tape— (U D @059 Cra+ 69 Can) + s Cre— @ x°Cuel , (A-21)



where @

1
2)
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a_ 7S =
ikia— 1 " Qir,r,s-
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