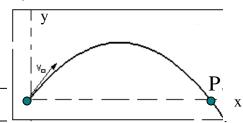
	2014	simulazione	1		FISICA
Cognome	nome	matricola	a.a. immatric.	firma	N

harrare


Evidenziare le risposte esatte

$\overline{}$	Darrare.					
sore	Maggiore di T0	Uguale a T0	Minore di T0			
.).						

Una sferetta è appesa con una cordicella al soffitto di un ascensore fermo. In questo caso la tensione è T0. Poi l'ascensore viene lasciato cadere in caduta libera (si trascuri la presenza dell'aria). In questo caso la tensione della cordicella è

motivando brevemente il perché della Vostra scelta

Una pallina di massa m è lanciata con velocità iniziale v_0 (componenti: $v_{0x} = 25$ m/s; $v_{0y} = 100$ m/s) e descrive la traiettoria mostrata in figura. Si supponga la resistenza dell'aria trascurabile.

$$m = 0.5 \text{ kg}; g = 9.81 \text{ m/s}^2$$

Determinare (commentando sinteticamente il procedimento)
il tempo T impiegato per raggiungere il punto di atterraggio P.

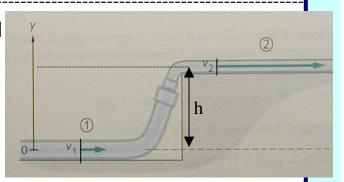
1 Discutere il seguente argomento:
La forza peso: definizione, proprietà e origine fisica, applicazioni ed
esempi.

/ [2014	simulazione	2		FISICA
	Cognome	nome	matricola	a.a. immatric.	firma	N
	Evidenz	ziare le risp	oste esatte	barra	re!	
ell'aria iù gran	l'aereo è in vo rispetto all'ala de che sotto l'a	a dell'aereo so ala. Ciò compo	pra l'ala è sia i orta che pres	ressione sopra l'ala inferiore alla issione sotto l'ala	l'aereo incontr una minor resistenza dell'aria	la pressione sopi l'ala sia superior alla pressione sotto l'ala
noti	vando brev	emente il	perché della	Vostra scelta	1	I
 In cili	ndro di ohia	ccio di altez	za L e raggio I	R è immerso in		
	•		come in figura		h	
	-	4.00	-		V	
	0.00 cm; R =			_		
lensit	à ghiaccio =	917 kg/m^3	densità acqua	$= 1025 \text{ kg/m}^3$]		
eteri	minare (co	mmentand	lo sinteticam	ente il procedii	nento) di qua	anti centimetri
	emerge (la	a quota h)	dalla superfi	cie dell'acqua.		
	-					
	-					
					h =	
					11 —	

2 Discutere il seguente argomento:
La legge di stevino: enunciato, derivazione, applicazioni ed esempi.

	2014	simulazione	3		FISICA
Cognome	nome	matricola	a.a. immatric.	firma	N

Evidenziare la risposta esatta


barrare!

Due sferette metalliche di uguale massa, una di piombo $(d = 11300 \text{ kg/m}^3)$ prima quella di quella di piombo di acqua. Sul fondo arriva prima quella di piombo alluminio

motivando brevemente il perché della Vostra scelta

Si supponga che l'acqua [$\rho_{acqua} = 1000 \text{ kg/m}^3$] che scorre nel condotto in figura sia un liquido ideale. La pressione dell'acqua nella parte inferiore del condotto (1) è $P_1 = 300 \text{ kPa}$, la sezione $S_1 = 30 \text{ cm}^2$ e la velocità $v_1 = 1.20 \text{ m/s}$.

Sapendo che il gradino è alto h = 20 m e la sezione S_2 in (2) è 1/3 della sezione S_1 in (1)

Determinare (commentando sinteticamente il procedimento) la pressione P_2 in (2)

 $P_2 = \dots$

3 Discutere il seguente argomento:
La viscosità dei fluidi: proprietà e origine fisica, leggi empiriche,
applicazioni ed esempi.
applicazioni cu escilipi.

	1. 7	Г	•		A
('orso	d1	Laurea	1 n	FARMACIA	4
COLOC	$\mathbf{u}_{\mathbf{I}}$	Laurea			

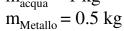
	2014	simulazione	4		FISICA
Cognome	nome	matricola	a.a. immatric.	firma	N

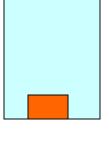
Evidenziare le risposte esatte

barrare!

Un gas è contenuto in un recipiente isolante con coperchio
mobile e viene fatto espandere senza scambiare calore con
l'ambiente. La sua temperatura finale è certamente

Più grande di
quella iniziale


Uguale a
quella iniziale


Più piccola di quella iniziale

motivando brevemente il perché della Vostra scelta

Un blocchetto di metallo alla temperatura T = 80 °C è immerso nell'acqua (inizialmente a $T_0 = 20$ °C) di un calorimetro. Dopo un poco di tempo la temperatura finale dell'acqua risulta $T_f = 23$ °C.

$$c_{acqua} = 4186 \text{ Joule/(kg K)}$$

 $m_{acqua} = 1 \text{ kg}$

Determinare (commentando sinteticamente il procedimento) il calore specifico CM del metallo.

CM =

4 Discutere il seguente argomento:
La dilatazione termica: definizione, leggi empiriche, applicazioni ed
esempi.
T T T T T T T T T T T T T T T T T T T

	1.	T .		
Corco	\mathcal{A}_1	Laurea in	H A R N I A	('I A
C0150	uі	Laurea in		Γ

carico s	Cognome	nome	+					FISICA
arico s			matricol	a	a.a. imn	natric.	firma	N
arico s								
arico s	Eviden	ziare la ris	posta esa	ıtta		barrare		
	Se fra le armature di un condensatore piano carico si inserisce un dielettrico, il campo elettrico fra le armature						diminuisce	
moti	ivando bre	vemente il	perché d	lella V	/ostra s	celta		
Ne	el modello	o di Bohr	per des	crive	re l'ate	omo di	idrogen	o, si immagina
							-	attorno a un
_								e dell'elettrone
	a forza el					_		
	$= 1.6 \cdot 10^{-1}$:g; r =	5.29 10) ⁻¹¹ m;	
	$\varepsilon_0 = 8.85$							
					_		nto) il mo	odulo della veloc
	dell'elettro	one previsi	a dai mo	aeno	ai Boni	[
							. v –	

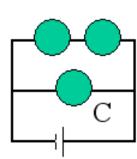
5 Discutere il seguente argomento:	
Propietà elettrostatiche di conduttori e isolanti.	

	2014	simulazione	6		FISICA
Cognome	nome	matricola	a.a. immatric.	firma	N

- • •		1	•		
H3710	00710r0	I٩	110	nacta	Acotto
12010	lenziare	14	112	DOSLA	CSalla
				Poster	- 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

barrare!

Due lampadine identiche sono collegate prima in	maggiore quando	maggiore quando	Identica nelle
serie e poi in parallelo ad una batteria. La	sono collegate in	sono collegate in	due
luminosità delle lampadine è:	serie	parallelo	configurazioni


tre lampadine sono collegate ad una batteria come in

motivando brevemente il perché della Vostra scelta

Le loro resistenze sono: $Ra = 20 \Omega$; $Rb = 80 \Omega$; $Rc = 40 \Omega$ e la forza elettromotrice della batteria è fem = 24 volt.

figura.

Determinare (commentando sinteticamente il procedimento) la potenza elettrica P dissipata nel circuito.

P =

6 Discutere il seguente argomento:
L'effetto termico della corrente elettrica.