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Photonic crystals are materials in which the dielectric 
constant is periodic in 1D, 2D or 3D…



A full photonic band gap in 3D may allow to achieve
• suppression of spontaneous emission (E. Yablonovitch, 1987)
• localization of light by disorder (S. John, 1987)

… leading to the formation of photonic bands and gaps.

Books:

Joannopoulos JD, Meade RD and Winn JN, Photonic Crystals – Molding 
the Flow of Light (Princeton University Press, Princeton, 1995).

Johnson SG and Joannopoulos JD, Photonic Crystals: the Road from 
Theory to Practice (Kluwer Academic Publishers, Boston, 2001).

Sakoda K: Optical Properties of Photonic Crystals, Springer Series in 
Optical Sciences, Vol. 80. (Springer, Berlin, 2001).

Busch K, Lölkes S, Wehrspohn RB, Föll H: Photonic Crystals – Advances 
in Design, Fabrication and Characterization (Wiley-VCH, Weinheim, 2004).

Lourtioz JM, Benisty H, Berger V, Gérard JM, Maystre D, Tchelnokov A: 
Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, Berlin, 
2005).



Maxwell equations in matter
no sources, unit magnetic permebility

First-order, time-dependent: Second-order, harmonic time 
dependence                        :
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If the photonic lattice is invariant under translations by the vectors R of 
a Bravais lattice,

then Bloch-Floquet theorem holds for any component of the fields:

The frequencies are grouped into photonic bands:

N.b. the system is assumed to be infinitely extended along the 
directions of periodicity the Bloch vector k is real.

It is usually chosen to lie in the first Brillouin zone (band folding).



Eigenvalue problem & scale invariance
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Hermitian 
operator

Hermitian eigenvalue problem (like for electron states in quantum 
mechanism)
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Scale invariance: photonic band structure is unique when expressed 
in dimensionless units ωa/(2πc) versus ka (a=lattice constant) 
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Plane-wave expansion in 3D

∑ ++= ⋅+
λ λελ,

)i(e),(),()( G
rGk

k GkGkrH )
nn c

),()','(
2

2

'' ','';, λωλλ λλ GkGkG GkGk +=∑ +++ nn c
c

cH

⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅−
⋅−⋅

++= −
++ 'ˆˆ'ˆˆ

'ˆˆ'ˆˆ
)',(|'|||

1121

12221
',';, εεεε

εεεε
ελλ GGGkGkGkGkH

Expansion of the magnetic field in plane waves with reciprocal 
lattice vectors G:

2,1,ˆ),(ˆ =≡+ λελε λGkwhere                                        are two orthogonal unit vectors 
perpendicular to k+G. The second-order equation for H becomes:

with the inverse dielectric matrix being defined as (v=unit cell volume)
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Choice of plane waves

Λ<|| G

The infinite sum over G is truncated to a finite number N of reciprocal 
lattice vectors, usually chosen by introducing a wavevector cutoff:

The dimension of the linear eigenvalue problem is (2N)x(2N). The 
matrix H is

* real symmetric if ε(r) has a center of inversion (taken to be the origin)

* complex hermitian if ε(r) has no center of inversion

N.b. The cut-off condition restricts the numbers N to be used: e.g., for 
the fcc lattice, N=1,9,15, … If other values of N are chosen, unphysical 
splittings at k=0 may arise



Direct and inverse dielectric matrix
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In the limit N ∞, it is equivalent to evaluate                       from (2) 
or as a numerical inversion of the direct dieletric matrix (1):

However, the two procedures have different convergence 
properties for finite N. 

The procedure by Ho, Chan and Soukoulis generally yields much 
faster convergence as a function of N.

)',(1 GG−ε

11 )]',([)',( −− = GGGG εε Ho, Chan and Soukoulis, 
PRL 65, 3152 (1990)

(1)

(2)

Fourier factorization rules
Consider the Fourier transform A of a product of functions B and C:
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When the sum is truncated to a finite number N of harmonics, the above 
expression does not converge uniformly if both B and C are 
discontinuous at the same point while A=BC remains continuous. In this 
case the inverse rule yields uniform convergence and should be used:
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In the presence of a sharp discontinuity of ε(r), expressions like εE
should be treated according to the direct (inverse) rule when the 
continuous (discontinuous) component E|| (E⊥) of the field is involved.

L.F. Li, JOSA A 13, 1870 (1996); P. Lalanne, PRB 58, 9801 (1998); 
S.G. Johnson and J.D. Joannopoulos, Opt. Expr. 8, 173 (2001); 
A. David et al., PRB 73, 075107 (2006)



Complete photonic band gap in 3D:
the diamond lattice of dielectric spheres

K.M. Ho, C.T. Chan and C.M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990)

2D photonic crystals: parity separation

x

y

Specular reflection in the xy plane is 
a symmetry operation of the system, 
which we denote by         .

Thus for in-plane propagation we
can distinguish

xyσ̂

Even, σxy=+1 modes (TE, H modes): 
components Ex, Ey, Hz

Odd,  σxy=−1 modes (TM, E modes): 
components Hx, Hy, Ez

E

x

y
H

H

x

y
E



Plane-wave expansion in 2D
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The expansion of the field contains 2D vectors k and G:
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The polarization vectors can be chosen as:

Thus the (2N)x(2N) matrix of the eigenvalue problem decouples as:

where the upper (lower) block corresponds to H (E) modes. 

N.b. off-plane propagation, kz≠0: no parity separation, 3D PWE

Polarization-dependent gap in 2D: 
the square lattice

Gap for H (TE) modes favoured by connected dielectric lattice (veins)

Gap for E (TM) modes favoured by dielectric columns (pillars)

dielectric pillars dielectric veins

TE or H modes: Hz, Ex, Ey
TM or E modes: Ez, Hx,Hy



Complete photonic gap in 2D

Triangular lattice of holes, r/a=0.45 Graphite lattice of pillars, r/a=0.18

triangular (holes) graphite (pillars)

Gap for H (TE) modes favoured by connected dielectric lattice (holes)

Gap for E (TM) modes favoured by dielectric columns

Gap maps of triangular and graphite lattices
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Books

Yariv A., Quantum Electronics (Wiley, New York, 1989).

Yariv A. and Yeh P., Optical Waves in Crystals (Wiley, New York, 1984).
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Dielectric slab waveguide
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leaky modes

qcore real, qclad imag. 
guided modes

qcore,qclad imaginary 
no solutions
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ω>ckx/n ⇒ q2>0 , propagating field

ω<ckx/n ⇒ q2<0 , exponentially damped

Guided modes exist when εcore>εclad
(confinement by total internal reflection)

Leaky vs. guided modes
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No total internal 
reflection, leaky mode. 
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Total internal reflection, 
guided mode. e.m. energy 
flux only in xy plane



Dielectric slab waveguide: polarizations
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Taking the in-plane wavevector              , 
the xz plane is a mirror plane and 
specular reflection           is a symmetry 
operation (even if the slab is asymmetric
in the vertical direction). Thus all modes 
(leaky and guided) separate into

xkx ˆ=k

xzσ̂

TE modes: Ey, Hx, Hz

(odd under       )

TM modes: Hy, Ex, Ez

(even under       )

y

x

z H

E

E

H

xzσ̂ xzσ̂

TE guided modes
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The transverse field component Ey, 
assuming                                          , 
is found as 
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Continuity of Ey, Hx, Hz leads to the implicit equation

Relation between coefficients: transfer-matrix method
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TM guided modes
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The transverse field component Hy, 
assuming                                          , 
is found as 
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General features of waveguide dispersion

•TM modes have higher frequencies than TE modes of the same order

•Symmetric waveguide: no cutoff for lowest-order TE and TM modes
(⇒ there is at least one confined photonic state at each frequency and 
for each polarization)

•Asymmetric waveguide: finite cutoffs even for lowest-order TE and TM 
modes, all cutoffs are polarization-dependent

•Effective mode index increases smoothly from cladding refractive 
index (close to cutoff, guided mode extends into claddings) to core 
refractive index (at large wavevectors, guided mode is well confined)

1. Required notions

•Basic properties of photonic band structure

•Plane-wave expansion

•Dielectric slab waveguide

•Waveguide-embedded photonic crystals

2. Guided-mode expansion method 

•Photonic mode dispersion

•Intrinsic diffraction losses

•Convergence tests, comparison with other methods

•Examples of applications



GaAs/AlGaAs PhC slab with internal source
H. Benisty et al, IEEE J. Lightwave Technol. 
17, 2063 (1999)

GaAs membrane (air bridge)
Chow et al., Nature 407, 983 (2000)

2D photonic crystals embedded in planar waveguides
(photonic crystal slabs)

W1 waveguide 
in Si membrane 
S.J. McNab et al, 
Opt. Expr. 11, 
2923 (2003)

Air bridge GaAs/AlGaAs Silicon-on-Insulator (SOI)

Photonic crystal slabs: structures



Photonic crystal slabs: the light-line issue

• Only modes that lie below the light line of 
the cladding material are guided with no 
intrinsic losses truly guided modes.

• Modes that lie above the light line have an 
intrinsic loss mechanism due to out-of-
plane diffraction quasi-guided modes. 

• The issue of losses (intrinsic vs. extrinsic) 
is a crucial one for prospective applications 
of PhC slabs to integrated optics.
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Basic idea of guided-mode expansion

Photonic crystal slabs combine the features of

2D photonic crystals: 
control of light 
propagation in the xy 
plane by Bragg 
diffraction

Slab waveguides: control 
of light propagation in the 
vertical (z) direction by
total internal reflection

⇒ represent the electromagnetic field as a combination of 2D 
plane waves in xy and guided modes along z

x

y

z

General eigenvalue problem

• Equation for the magnetic field: 

with the transversality condition                     

• Expand magnetic field in a set of basis states as

orthonormal according to 

• We obtain a linear eigenvalue problem with a “Hamiltonian” matrix,

whose eigenvalues and eigenvectors give the photonic band dispersion 
and magnetic field, respectively.
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Electric field and normalization

Once the magnetic field is obtained, the electric field is calculated as 

The eigenmodes En(r), Hn(r) of the electromagnetic field are 
orthonormal according to

Physical meaning: the e.m. field energy of an eigenmode is equally 
shared between the electric and magnetic fields.

The same relations can be used for second quantization of the fields: 
see C.K. Carniglia and L. Mandel, Phys. Rev. D 3, 280 (1971).
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We consider a PhC slab with semi-infinite claddings. For the basis 
states Hµ(r), we choose the guided modes of an effective homogeneous 
waveguide with an average dielectric constant    in each layer j=1,2,3.

jεWe usually take     to be the spatial average of εj(xy)≡εj(ρ) in each layer:

jε

,)(
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cell j∫= ρρ d
Aj εε A=unit cell area

The average dielectric constants must fulfill ., 312 εεε >



Expansion in the basis of guided modes

k =  Bloch vector, chosen to be in the first Brillouin zone

G = reciprocal lattice vectors of the 2D Bravais lattice

α = index of guided mode

= guided modes of effective waveguide at k+G

Dimension of linear eigenvalue problem is (NPW Nα)×(NPW Nα). 

Since the guided modes are simple trigonometric functions, the
matrix elements can be calculated analytically.

Both TE and TM guided modes appear in the expansion of a PhC 
slab mode. The index α includes mode order and polarization.
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)(guided
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Matrix elements: the dielectric tensor

The matrix elements between guided modes depend on the inverse 
dielectric matrices in the three layers,
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Like in 2D plane-wave expansion, they are evaluated from 
numerical inversion of the direct dielectric matrices:
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Convergence properties, possible optimization beyond the Ho-Chan-
Soukoulis procedure are similar to 2D plane-wave expansion.

The off-diagonal components of ηj(G,G’) are responsible for the 
folding of photonic bands in the first BZ, gap formation, splittings etc.

mat. el.



Discussion of GME method (dispersion)

Main drawback: the basis set of guided modes of the effective 
waveguide is not complete, since leaky modes are not included

Main advantage: folded photonic modes in the first Brillouin zone 
may fall above the light line ⇒ guided and quasi-guided photonic 
modes are obtained, without the need of introducing any artificial 
layers (PML…) in the vertical direction. 

When a few guided modes are sufficient, as it often happens, the
numerical effort is comparable to that of a 2D plane-wave 
calculation. Very suited for parameter optimization, design…

The dispersion of photonic bands in a PhC slab can be compared 
with that of the ideal 2D system and with the dispersion of free 
waveguide modes. Multimode slabs are naturally treated.

⇒the GME method is an APPROXIMATE one

Symmetry properties, TE/TM mixing
When the PhC slab is symmetric under reflection in the xy plane: 
separation of even (σxy=+1) and odd (σxy=+1) modes

Low-lying photonic modes are dominated by lowest-order modes of the 
effective waveguide:

σxy=+1 modes are dominated by TE waveguide modes quasi-TE

σxy=−1 modes are dominated by TM waveguide modes quasi-TM

However, in general, any PhC mode contains both TE and TM waveguide 
modes only the symmetry labels σxy=±1 have a rigorous meaning.

xkˆ=k
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Diffraction losses: the photonic Golden Rule
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Modes above the light line are coupled to radiative PhC slab modes. 
Time-dependent perturbation theory, like in Fermi’s golden rule for
quantum mechanics, yields an imaginary part of the frequency

The sum is over 
G’ reciprocal lattice vectors (out-of-plane diffraction channels)
λ=TE, TM polarization of radiative PhC slab modes
j=1,3 radiative modes that are outgoing in medium 1,3

rrHrH
r Gkkk dH jλ ))(())((

)(

1 rad
,,'

*
rad, +∫ ×∇⋅×∇=

ε

The matrix element between a quasi-guided and a radiative mode is

Main approximation: radiative PhC slab modes are replaced with 
those of the effective waveguide.



Photonic DOS and scattering states
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The 1D photonic density of states at fixed in-plane wavevector is
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It depends only on the asymptotic form of the fields, for scattering 
states with a single outgoing component:

j=1 j=3

Coupling matrix element

Using the guided-mode expansion for the magnetic field of a PhC slab
mode, the matrix element with a radiative mode is
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where

are matrix elements between guided and radiation modes of the 
effective waveguide, which are calculated analytically. 

Both guided and radiation modes are normalized according to 

(within a large box for radiation modes).

µννµ δ=⋅∫ rrHrH d)()(*

mat. el.



Quality factor and propagation loss

Spatial attenuation is described by an imaginary part of the wavevector:

,
)Im(
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k ω=
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dvg
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).Im(234.4Loss k⋅=

The quality factor of a photonic mode is defined as

.
)Im(2 ω

ω=Q

where

is the mode group velocity. Propagation losses in decibels are obtained as

To treat line and point defects (linear waveguides and nanocavities): 

use a supercell

Discussion of GME method (losses)

Main drawback: radiative PhC slab modes are replaced with those 
of the effective homogeneous waveguide

Main advantage: diffraction losses are calculated by perturbation 
theory the procedure is numerically very efficient (little additional 
effort beyond photonic mode dispersion).

Calculated values are more accurate when diffraction losses are 
small good for line defects and for high-Q nanocavities.

The method can be extended to disorder-induced losses of truly-
guided modes below the light line.

⇒the calculation of losses is an APPROXIMATE one



1. Required notions

•Basic properties of photonic band structure

•Plane-wave expansion

•Dielectric slab waveguide

•Waveguide-embedded photonic crystals

2. Guided-mode expansion method 

•Photonic mode dispersion

•Intrinsic diffraction losses

•Convergence tests, comparison with other methods

•Examples of applications

Convergence tests
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sufficient for convergence

Use of average ε is justified

Triangular lattice on membrane, ε=12.11, d/a=0.5, r/a=0.3



Comparison with MIT code
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Guided-mode expansion

Comparison with FDTD*
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Comparison with Fourier-modal method
(scattering-matrix)

Triangular lattice on membrane, ε=12, d/a=0.3, r/a=0.24

N.b. Along main symmetry directions: vertical parity symmetry σkz

σkz=+1
σkz=−1

IEEE-JQE 38, 891 (2002)

Losses in W1 waveguide: a comparison
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1. Required notions

•Basic properties of photonic band structure

•Plane-wave expansion

•Dielectric slab waveguide

•Waveguide-embedded photonic crystals

2. Guided-mode expansion method 

•Photonic mode dispersion

•Intrinsic diffraction losses

•Convergence tests, comparison with other methods

•Examples of applications

Applications of GME method

•Photonic band dispersion and gap maps: 1D and 2D lattices

•Linear waveguides: propagation losses

•Photonic crystal nanocavities: Q-factors

•Geometry optimization, design, comparison with expts…

•Radiation-matter interaction: exciton-polaritons, strong coupling

•Extrinsic losses: effects of disorder

Main reference on the method:

L.C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (15 June 2006)



Triangular lattice with triangular holes

0.0

0.1

0.2

0.3

0.4

0.5

 

 

 

F
re

qu
en

cy
  ω

a/
(2

πc
)

σ
xy

=+1

Γ M K Γ M K Γ

 

 

σ
xy

= -1

0.24

0.26

0.28

0.30

0.32

0.34

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

ΓΓ M K

 

 

F
re

qu
en

cy
  ω

a/
(2

πc
)

even (σ
xy

=+1) gap

Γ M K Γ

 

 

odd (σ
xy

=-1) gap

a L

d/a=0.68, L/a=0.85: no 
complete photonic gap

d/a=0.5, L/a=0.8: even gap 
at ω, odd gap at 2ω

Phys. Rev. B 73, 235114 (2006)

Dielectric mirror in a membrane: 1D PhC slab
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Complete band gap

• Very different behavior as compared to the reference ideal 1D system: 
no complete band gap, TE/TM splitting

• Gap maps for PhC slabs must consider both the modes below and above
the light line. Important for the design of structures with defect modes

d/a=0.4 d/a=0.4

Gap maps in 1D PhC slabs

D. Gerace and LCA, Phys. Rev. E  69, 056603 (2004)

SOI photonic crystal slabs: fabrication procedure

Patterning

Resist 
development

Metal 
deposition 

Resist removal

Reactive-ion 
etching

e-beam lithography 
system

(50keV JEOL 5D2U )

PMMA

SILICON

SILICON DIOXIDE

METAL MASK 

Lift-off 
(metal mask)

Ni 30nm

e-

Si

SiO2

Sample L4

(D. Peyrade, M. Belotti and Y. Chen, LPN Marcoussis)



Reflectance and ATR on 1D SOI PhC slabs

In-plane wavevector k||=n(ω/c)sinθ +G photonic bands

M. Patrini et al, IEEE-JQE 38, 885 (2002); M. Galli et al, IEEE-JSAC 23, 1402 (2005)
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Dotted lines dispersion of light in the effective core material and in air.
Notice the vertical confinement effect, which increases with decreasing core thickness.
Below the light line, good agreement with S.G. Johnson et al., PRB 60, 5751 (1999).

Triangular lattice, hole radius r=0.24a, different core thicknesses d



Gap maps: triangular lattice in air bridge

Notice the confinement effect of the even gap with respect to the ideal 2D case 
and the absence of a full photonic band gap in a waveguide.
For d/a=0.6 the cutoff energy of a second-order mode is plotted.

L.C. Andreani and M. Agio, IEEE-JQE 38, 891 (2002)
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2D triangular lattice: complex energies (3D plot)
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The radiative width of quasi-
guided modes increases for
some modes close to the light 
line, due to the 1D DOS.

At the Γ point, only the dipole-
allowed mode has nonzero
radiative width.

Phys. Status Solidi (b) 234, 139 (2002)



Complex energies vs. reflectivity
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Air bridge d=0.3a, triangular lattice of holes r=0.3a, ΓK, TM polarization.
Positions and linewidths of spectral structures real and imaginary parts of energy.

Synt. Met. 139, 695 (2003)

Trends: losses as a function of ...

Radiative width of dipole-allowed mode at the Γ point.
The losses increase with the dielectric contrast between core and cladding and
with the air fraction of the 2D lattice.
Agreement with the model of H. Benisty et al, APL 76, 532 (2000).

… waveguide dielectric contrast
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Linear waveguides in 2D PhC slabs
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Single missing row of holes in 
triangular lattice, channel thickness
(W1 waveguide):

ε=12,      d/a=0.5,   r/a=0.28,   a=400 nm

aww 30≡=

Propagation losses of truly 
guided modes in Si 
membranes (extrinsic):

~ 0.6 dB/mm 

(Notomi et al., Vlasov et al.)
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Mode dispersion on increasing channel width
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M. Galli et al., PRB 72, 125322 (2005)

Photonic crystal nanocavities
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Point defects in PC slabs behave as
0D cavities with full photonic 
confinement in very small volumes. 
The Q-factor can be increased by 
shifting the positions of nearby holes. 
Q=45’000 has been measured:
T. Akahane, T. Asane, B.S. Song,  
and S. Noda, Nature 425, 944 (2003).



Q-factor of photonic crystal cavities
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Supercell in two directions + Golden Rule
Im(ω) and Q=ω/2Im(ω)

LCA, D. Gerace and M. Agio, Photonics and Nanostruc. 2, 103 (2004)

A model of disorder: size variations
Random distribution of hole radii within a large supercell:

Dielectric perturbation                                   couples guided modes to 
leaky waveguide modes losses by perturbation theory:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−=
2

2

2

)(
exp)(

σ
rrrP

)()()( dis rrr εεε −=∆

σ≡∆r= r.m.s. deviation

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×∇⋅∫ ×∇=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

2

22

guided
*
leaky

dis
2

2
;d

)(

1
Im

cc
k ωρ

ε
πω krHH

r

Propagation loss:

,
)Im(

2)Im(2
gv

k kω= k
v k

d

d
g

ω=



Dependence on disorder parameter
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The losses show a quadratic behavior as a function of the 
disorder parameter…typical of Rayleigh scattering

D. Gerace and L.C. Andreani, Opt. Lett. 29, 1897 (2004)

Comparison with experimental results[1]
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Large single-mode 
frequency window with
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Line-defects with increased channel width

Conclusions
The GME method is APPROXIMATE for both the photonic mode 

dispersion (as the basis set does not contain radiative modes of the 
effective waveguide) and for the losses (because radiative PhC 
modes are replaced with those of the effective waveguide).

The results are close to those of “exact” methods in many common 
situation. The GME method is most reliable for high index-contrast 
PhC slabs (membranes, SOI) and for not too high air fractions.

Main advantages: computational efficiency (especially in the case of 
low losses: high-Q nanocavities…) and physical insight when 
comparing with ideal 2D and homogeneous waveguide systems.

Possible extensions (some underway):
• Improve upon the approximations
• PhC slabs with more than three layers
• Radiation-matter interaction
• Disorder-induced losses…



Appendix: matrix elements etc.

Basis set for guided-mode expansion
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Guided mode profile: TE

Guided mode profile: TM



Matrix elements between guided modes

diel. tensor

Radiative mode profiles

TE modes. Normalization:                                 or                            111 /1,0 ε== XW .0,/1 333 == XW ε

TM modes. Normalization:                                 or                            1,0 11 == ZY .0,1 33 == ZY

gz ˆˆˆ ×=gε

N.b. when qj is imaginary, the mode does not contribute to losses.



Matrix elements guided ↔ radiative

coupling


