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Intrinsic diffraction losses in photonic crystal waveguides with line defects
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Intrinsic diffraction losses of linear defect modes in photonic crystal slabs are calculated for
membrane-type waveguides with strong refractive index contrast. In the frequency region of high
group velocity of the defect mode, the radiative losses increase with the air fraction of the lattice and
decrease on increasing the channel width or the slab thickness. Close to a mini-gap in the mode
dispersion, a complex frequency dependence of the losses is found. The calculated losses agree well
with those measured in a Si slébl. Loncar et al,, Appl. Phys. Lett.80, 1689(2002]. © 2003
American Institute of Physics[DOI: 10.1063/1.1564295

Planar photonic crystalPC) waveguides, or PC slabs, of the effective waveguide is here taken into account by Fer-
are extensively investigated in view of the realization of in-mi’s golden rule. The present method goes beyond the nearly
tegrated optical interconnectst® In these systems, a few free photon approximation of Ref. 11 since the dielectric
photonic modes lie below the light line of the cladding ma-patterning is treated in a nonperturbative way. Results for the
terial and are truly guided, whereas those lying above thémaginary part of the frequency of photonic modes are found
light line are subject to intrinsic radiation losses due to outto agree with those calculated by finite-difference time-
of-plane diffraction. In addition, extrinsic factors like insuf- domain simulations in three dimensioHfs.
ficient etch depth, roughness or nonvertical shape of the In Fig. 1 we show the dispersion of photonic modes for
holes, and disorder may contribute to radiative losses. Whila W1 waveguide in an air bridge with dielectric constant
the extrinsic factors may be controlled by improving the fab-=12 and core thicknes$= 0.3a, patterned with a triangular
rication procedures, the light line problem represents an inkattice of holes with radius=0.36, wherea is the lattice
trinsic limit for the application of PC slabs to integrated pho-constant’ Only modes which are even with respect to re-
tonics. It is therefore important to quantify the level of flection in the horizontal midplanes{,= + 1) and odd with
intrinsic losses and to know their dependence on the struaespect to reflection in the vertical midplane of the channel
ture parameters. (oy,=—1) are showr:"** The gap of the triangular lattice

In this work we present theoretical results for intrinsic forms between 0.33 and 0.4ih terms of the dimensionless
diffraction losses in PC waveguides containing line defectsfrequencywa/(2wc)=al/\) and the modes in the gap asso-
We focus on the most common structure, namely the trianeiated with the linear defect can be recognized: they are
gular lattice of air rods with a missing row of holes in the marked as« for the index-confined mode, an@é for the
I'-K direction or “W1 waveguide”(see inset in Fig. 1 We
assume a typical system with strong refractive index con-
trast, namely the self-standing membrane or “air
bridge.” *57913The frequencyor wave vector dependence
of the losses and the trends as a function of hole radius, 0.5
channel width, and membrane thickness are quantitatively
addressed. 0.4

We consider a slab waveguide with core thickndss ’ o
the vertical ¢) direction and a periodic patterning in tig i

0.6

plane: each layey is characterized by a dielectric constant ﬁ 0.3
€j(X,y). The theoretical method relies on an expansion of ‘gf

the magnetic field on the basis of guided modes of an effec-
tive waveguide, where each layer is taken to have a homo-
geneous dielectric constant given by the spatial average of
€(x,y).* The free waveguide modes are folded in the first 0.1

Brillouin zone and are coupled by the off-diagonal compo- " tieseseis b
nents of the inverse dielectric tensor. Results for the fre- 0.0 A P s e
guency dispersion of photonic modes and for the gap maps 0.0 0.2 0.4 0.6 0.8 1.0
of two-dimensional(2D) PC slab structures are shown in

Ref. 14. In order to calculate diffraction losses, coupling of

guasiguided modes above the light line with radiative modes§IG. 1. Dispersion of photonic modes for a W1 linear waveguide in an air

bridge of thicknessl=0.3a and dielectric constard=12. The hole radius

isr=0.36. The dotted lines denote the light dispersion in the core material

dAuthor to whom correspondence should be addressed; electronic mailind in air. The inset shows the 2D structure in real space: for a W1 wave-
andreani@fisicavolta.unipv.it guide,w=wy=v3a.
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FIG. 3. Imaginary part of the energy of the lowest guided mode for a linear

FIG. 2. (a) Imaginary part of the energyb) group velocity,(c) attenuation ~ Waveguide in an air bridge wite= 12, hole radius =0.32a, (a) for a core
length of the lowest guided modes for a W1 linear waveguide in an airthicknessd=0.3a and different values of the channel width or (b) for a
bridge with d=0.3a and e=12, for different hole radii. The results are channel thicknese/=w, and different values of the core thicknets

plotted only for the energies for which the waveguide is monomode.

where the mode dispersion is linear with a group velogjfy

gap-confined mode.Notice the mini-stop band in thee  close toc/n, wheren is an average refractive index of the
mode atk=0 arounda/\A=0.405, and a higher one & mode. The attenuation length depends smoothly on fre-
#0 betweena and g modes’”*® The lowest mode lies quency when gis close toc/n. The results of Fig. @) show
above the light line in air for about 2/3 of the Brillouin zone, that the typical attenuation length of a W1 waveguide in the
then it crosses the light line and it becomes truly guidedair bridge is of the order of FOlattice constantse.g.,
albeit with a very low group velocity. The group velocity in ~50 um at A\=1.5 um). Forr/a=0.36 and 0.40 a mini-
the guided mode region can be increased by a careful strustop band can be recognized arowdd ~0.4—0.42. At the
ture desigrt? In this work we are not concerned with this edge of the mini-stop band Iraf always tends to a finite
issue, nor with the problem of having a region of monomodeconstant: in other words, even k&0 there are active dif-
waveguide propagation when modes of both vertical paritie$raction channels for radiative losses. The opposite curvature
(oy,=*1) are consideret®® of the lower and upper modes at the mini-gap edger far

In Fig. 2 we show(a) the imaginary part of the fre- =0.36 and 0.40 can be related to the opposite parities of the
quency,(b) the modulus of the group velocity4//c and(c)  two modes with respect to a vertical mirror plane perpen-
the attenuation lengti{/a: the latter is defined ag~!  dicular to the channel. Sincey vanishes at the mini-gap
=2|Im(K)|, where the imaginary part of the wave vector is edge, the attenuation length must also vanish there. However,
given by Imk)=Im(w)/vy. These quantities are plotted as aFig. 2(c) shows that the attenuation length first increases
function of frequency in the photonic gap, for the same airwhen the energy approaches the mini-gap edge from below,
bridge structure of Fig. 1, but for increasing values of thethen it decreases towards zero in a frequency range which
hole radius. For the sake of clarity, the results are shown onlgan be extremely narrow.
when the channel waveguide is monomode for the specified Since the diffraction losses depend on the extension of
parity. As a first remark, the imaginary part of the frequencythe electromagnetic mode in the patterned regions, it is
is between 10% and 104, i.e., much smaller than in peri- worthwhile to study the behavior of the losses as a function
odic 2D lattices! this is due to lateral field confinement in of the channel widtiw as defined in the inset of Fig. In(
the dielectric channel, which reduces the overlap with the=wy=v3a for the W1 waveguideor as a function of the
patterned regions where radiative losses occur. The lossesre thicknessl. This is illustrated in Fig. 3, which shows
increase with the air fraction in the lattice, as expected fromim(w) as a function of the wave vector fofa=0.32, when
previous theoretical modélsand experimental results®  the channel width increases from @@to 1.3w, at fixedd
The losses go to zero at the lowest edge of the mode disper0.3a [Fig. 3@] and when the core thickness increases
sion window, where the mode crosses the light lisee Fig. from 0.2a to 0.5 at fixed channel widthv=w, [Fig. 3(b)].

1). For all investigated cases, there is a frequency regiomn both cases, far enough from the mini-gap clear trends can
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0.38 038 the losses depend smoothly on frequency and have clear
osrr /T %:1 T 1037 trends as a function of structure parameters: the diffraction
osel/ ”gh_“me loss losses increase with the air fraction in the 2D lattice and
‘ decrease rapidly on increasing the width of the channel or the
0.35F | 10.35 )
= slab thickness. The same trends are expected to hold for
g0 1034 losses due to other scattering processes, i.e.efbrinsic
fos3r N\ 1033 losses related to disorder and fabrication-induced defects.
------ o . . .
0.32f 0l 0,32 Both the imaginary part of the frequency and the propagation
01l los1 losses have a complex behavior as a function of frequency,
. particularly on approaching a mini-gap between modes.
0.3Q . . t . 0.30 .
00 02 04 06 0810 100 1000 Good agreement with the frequency dependence of the losses

Wavevector (/a) Loss (dB/mm)

measured by Lorar et al® is found.
FIG. 4. (a) Defect mode dispersion an) propagation loss of ther,
=—1 modes for the parameters of the Si slab measured in Refal3:
=530 nm,r/a=0.392,d/a=0.566, e=12.25.
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