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Complete photonic band gap in a two-dimensional chessboard lattice
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The photonic structure of a two-dimensional square lattice with square columns rotated by 45° is theoreti-
cally studied. For a range of dielectric filling factors aroundf 50.5 ~for which the lattice reduces to a chess-
board! a photonic band gap common tos andp polarizations is found. The complete band gap occurs for a
wide range of values of the dielectric contrast and is maximum for relatively low values of the contrast.
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Photonic crystals have attracted much interest in rec
years, after the pioneering suggestions1,2 that a photonic
band gap~PBG! could lead to inhibited spontaneous em
sion and light localization. Much attention has been devo
to the problem of finding three-dimensional structures t
forbid propagation of light in all directions, see e.g., Re
3–5. Two-dimensional~2D! photonic crystals have also bee
intensively studied,6–18since they are easier to fabricate~par-
ticularly in the optical region! and may be employed in
waveguide configurations.15,16 An important problem in this
context is to find structures that, for light propagating in t
plane, support a PBG common to polarizations of the elec
field perpendicular~s! and parallel~p! to the plane.

A complete PBG in two dimensions was first demo
strated for a triangular lattice of air columns in a dielect
material7,8 and for a square lattice of air columns.8,9 It was
later demonstrated for the hexagonal lattice with the grap
and BN structures.13 For a given type of lattice symmetry
the PBG depends on the form of the basis and on the die
tric contrast.19 For the triangular lattice a full PBG exists i
the case of air columns~not for dielectric columns!, and is
maximum for a circular cross section of the columns.8,10

Similarly, for the square lattice a complete PBG was sho
only for the case of air columns; it exists for a circular or
square cross section of the columns, but in the latter ca
requires a higher dielectric contrast.9 The width of the gap of
the square lattice may be increased by a suitable bas14

Physical arguments suggest that a PBG fors polarization is
favored in the case of dielectric columns, while a PBG fop
polarization is favored if the dielectric regions a
connected.3,7 However the existence of a complete PBG
quiresoverlap of the s and p gaps: since this overlap ofte
involves the gap between the first and secondp bands with
the gap between highers bands, it is difficult to give simple
arguments predicting~or explaining! the existence of a com
plete PBG for a given lattice.

In this work we study a different type of square photon
lattice in two dimensions, which consists of square colum
of either dielectric or air rotated by 45° with respect to t
square axes of the lattice~see Fig. 1!. The structure is char
acterized by the filling factorf of the dielectric, which is
related to the lattice constanta and the column diagonalb by
f 5b2/(2a2) @in the case of dielectric columns, Fig. 1~a!# or
f 512b2/(2a2) @for air columns, Fig. 1~b!#. For the close-
packed conditionb5a, or f 50.5, the two cases of Figs. 1~a!
and 1~b! become equivalent and the structure resemble
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chessboard. We shall refer to the structure of Fig. 1 a
‘‘chessboard’’ lattice for every value off. We find that a
complete PBG exists in a range of filling factors aroundf
50.5 and is maximum for the case of dielectric column
This is at variance with the ‘‘conventional’’ square lattic
with square columns.9 Furthermore, the complete PBG exis
in a wide range of dielectric constrasts and is maximum fo
relatively low value ofe, that is e.8.9. This makes the
present square lattice an interesting candidate for experim
tal studies.

Photonic band structures are obtained solving Maxw
equations in macroscopic media with a periodic dielec
constante(r ). Assuming nonmagnetic and lossless me
@m.1,e(r ) real#, absence of free currents and charges,
rearrange Maxwell equations in a master equation for
electric fieldE:

“3“3E5
v2

c2
e~r !E, ~1!

plus the divergence equation“•e(r )E50, wherev is the
frequency of harmonic modes. For a 2D photonic crystal,
dielectric constant is periodic in the (x̂,ŷ) plane and homo-
geneous along theẑ direction: e5e(x,y). Considering in-
plane propagation,kz50, mirror symmetry decouples th
electromagnetic field into two modes:s polarization
(Ez ,Hx ,Hy) and p polarization (Ex ,Ey ,Hz). Sincee(r ) is
periodic, we exploit Bloch’s theorem expanding the elect

FIG. 1. The chessboard lattice:~a! dielectric rods in air,~b! air
rods in dielectric. The dashed line marks the unit cell,a is the
length of the unit cell andb is the rod’s diagonal;~c! the Brillouin
zone with symmetry points,G,X,M .
15 519 ©2000 The American Physical Society



ne
tr

tio
re

re
d

e

e

nd
n

(
BG
p

ire

co
e:

-

m
e
-

r.
n
r

er
v

th

ent
to
ng
xi-

di-
d
to

n

si-
fade
ric
e

lec-

w-
.
the

y

uan-

15 520 PRB 61BRIEF REPORTS
magnetic field in terms of plane waves. Different pla
waves are coupled by the Fourier transform of the dielec
constanteGx ,Gy

, which for our structure takes the form

e0,05e f 1~12 f !, G50

eGx ,Gy
54~e21!

cos~Gyb/2!2cos~Gxb/2!

a2~Gx
22Gy

2!
,

eGx ,6Gx
5~e21!b

sin~Gxb/2!

a2Gx

, GÞ0 ~2!

whereG is a reciprocal lattice vector andGx andGy are its
components alongx̂ and ŷ, respectively. The resulting
k-space equations are solved by a matrix diagonaliza
technique. Photonic bands are calculated to about 1% p
sion including .225 plane waves fors modes and up to
.880 plane waves forp modes. For the conventional squa
lattice, we recover results identical to those of Refs. 7 an
within the precision stated.

We present numerical results for the chess-board lattic
Fig. 1, for three choices of the dielectric contrast:19 e58.9
~alumina!, e512 ~GaAs!, ande516 ~Ge!. An important fea-
ture of the chessboard lattice is that the structure with ov
lapping dielectric columns (b.a, f .0.5) is identical to a
structure with nonoverlapping air columns (b,a and the
same filling fraction of dielectric!. All configurations are
spanned taking only nonoverlapping dielectric rods@ f ,0.5,
Fig. 1~a!# or air rods @ f .0.5, Fig. 1~b!#. The casef 50.5
identifies the close-packing condition for both dielectric a
air rods, and makes the lattice invariant under the excha
dielectric↔ air.

Choosing alumina ceramic as dielectric mediume
58.9), we find that photonic bands exhibit a complete P
which is maximum for f 50.45, corresponding to a ga
width to midgap frequency ratioDv/v58.5%. For these
parameters, the frequencies calculated along symmetry d
tions of the Brillouin zone are plotted in Fig. 2~a!. The de-
generacies at the symmetry points are the same of the
ventional square lattice,8,9 since the symmetry is the sam
nondegenerate and doubly degenerate states atG and M,
nondegenerate states atX. However the order of the fre
quency levels is different. There are threes gaps and just one
p gap, which overlaps the seconds gap giving rise to a com-
plete PBG. Increasing the dielectric contrast, morep gaps
open. With germanium (e516), we find two complete
PBG’s: for f 50.475 the first PBG reaches its maximu
width, Dv/v55.6%. Figure 2~b! shows the band structur
calculated fore516 andf 50.475. The higher dielectric con
trast produces fourp gaps and threes gaps. The seconds gap
overlaps again the firstp gap; moreover, the thirds gap over-
laps the secondp gap: thus two complete PBG’s occu
These results are interesting considering that the traditio
square lattice of air columns with square cross section
quires e.12.3 for a complete PBG to exist. On the oth
hand, the chessboard lattice exhibits a complete PBG e
for e58.9 and preserves the symmetry and simplicity of
square lattice. Actually, spanninge from 1 to 16, we find the
existence of a complete PBG fore.7, with Dv/v being
maximum fore close to 8.9.
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Figure 3 gives gap maps calculated for three differ
dielectric constants:e58.9,12,16. Since the purpose is
find PBG’s and to understand their behavior when the filli
factor is varied, to save computing time, we used a ma
mum of .570 plane waves forp modes. Comparison with
the photonic bands of Fig. 2 for the proper values ofe andf
shows that numerical accuracy remains good. Fixing the
electric contrast, the filling factor is varied from 0 to 1 an
the existence of a PBG is marked with different tones
distinguish among onlys ~white!, only p ~gray!, and com-
plete PBG’s~black!. Generally,s gaps are concentrated i
the left part of the plots, wheref ,0.5, that is the lattice is
made up of dielectric rods in air: this agrees with the phy
cal arguments discussed in Refs. 3 and 7. These PBG’s
away just whenf becomes larger than 0.5 and the dielect
rods begin to overlap. Insteadp gaps occur around the valu
f 50.5 and are the only existing gaps forf .0.5, when the
dielectric regions are connected.3,7 Thus, close tof 50.5, the
chessboard lattice exhibitss gaps as well asp gaps, since at
the close-packing condition the lattice possesses both die
tric columns and connectivity.

On increasing the filling factor the midgap frequency lo
ers. The same happens whene increases from 8.9 to 16
Therefore, the midgap frequency should be related to
effective dielectric constanteeff , which is derived in the

FIG. 2. Photonic bands of the chessboard lattice for~a! e
58.9, f 50.45 and~b! e516, f 50.475 calculated along symmetr
directions of the Brillouin zone. Solid~dashed! lines correspond to
s ~p! modes. Frequencies are plotted using the adimensional q
tity va/(2pc), wherea is the length of the unit cell andc the speed
of light.
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long-wavelength limit. Moreover, a larger dielectric contra
widens PBG’s and gives origin to additional ones, as sho
in Fig. 3. Fore58.9 the seconds gap overlaps the first~and
unique! p gap. One would expect this complete PBG to g
larger as the dielectric contrast is increased. On the contr
the gap shrinks becauses andp gaps have a smaller overlap
In fact, sinces andp modes are decoupled and are govern
by different equations, the overlap does not follow a sim
rule and can be optimized for a right choice off and e.
However, a larger dielectric contrast provides more PBG
making complete PBG’s more likely to occur. This is wh
happens fore516: a new complete PBG comes from th
overlap of the thirds gap and the secondp gap. In this case
the chessboard lattice exhibits two complete PBG’s, the
one maximizes its width forf 50.475 and the second one fo
f .0.38. Besides, the second PBG occurs at a higher
quency and for a wider range of the filling factor than t
first one.

In Fig. 4 the gap width to midgap frequency ratio is plo
ted with respect to the filling factor for the complete PBG
shown in Fig. 3. The maximum fractional gap is fore58.9.

FIG. 3. Gap maps for different dielectric contrasts obtain
varying the filling factor from 0 to 1. The existence of a PBG f
both polarizations is represented by a black spot.
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When the dielectric contrast is raised, the peak correspo
ing to the lowest complete PBG lowers and shrinks; it a
becomes restricted to a narrow region around the clo
packing conditionf 50.5. The smooth peak of the dotte
curve (e516) is due to the second complete PBG, whi
extends for a wider range of filling fractors. The first an
second complete PBG’s fore516 are of comparable width
Dv, but the fractional gap is obviously smaller for the se
ond one.

The chessboard lattice is found to have a complete P
arising from overlap of the seconds gap with the firstp gap.
The full PBG exists for a range of filling factors around th
close-packing conditionf 50.5, provided the dielectric con
stant e.7, and it reaches a maximum fore;8.9 and f
50.45 with a fractional gapDv/v58.5%. On increasing
the dielectric contrast the complete PBG decreases so
what. Fore516 a second complete PBG arises from over
of the thirds gap with the secondp gap, and is maximum for
f 50.38.

The gap maps as a function of filling factor show thas
gaps are favored for the case of nonoverlapping dielec
columns (f ,0.5), whilep gaps are favored in the case of a
columns (f .0.5). Although the overlap ofs andp gaps does
not follow a simple rule, the existence of a complete PBG
related to the fact that the chessboard lattice, at the clo
packing condition (f 50.5), has both dielectric columns an
connected dielectric regions. The chessboard lattice has
same symmetry and simplicity of the conventional squ
lattice: the low dielectric contrast required for the existen
of a complete gap makes it interesting for experimental st
ies.

Note added. Recently a paper by Wanget al., has been
published,20 where the square lattice with rotated square c
umns is also studied.

The authors are grateful to S. Botti, A. Lorenzoni, and
Rappoldi for helpful suggestions and advice in the course
this work and to C. M. Soukoulis for a critical reading of th
manuscript.
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FIG. 4. Gap width to midgap frequency ratio plotted with r
spect to the filling factor for three dielectric contrasts: solid line
e58.9, dashed line fore512 and dotted line fore516 ~in this case
only the largestDv/v is represented for each value off ).
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