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Complete photonic band gap in a two-dimensional chessboard lattice
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The photonic structure of a two-dimensional square lattice with square columns rotated by 45° is theoreti-
cally studied. For a range of dielectric filling factors arour0.5 (for which the lattice reduces to a chess-
board a photonic band gap common $ocand p polarizations is found. The complete band gap occurs for a
wide range of values of the dielectric contrast and is maximum for relatively low values of the contrast.

Photonic crystals have attracted much interest in recenthesshoard. We shall refer to the structure of Fig. 1 as a
years, after the pioneering suggestiohshat a photonic “chessboard” lattice for every value dof We find that a
band gap(PBG) could lead to inhibited spontaneous emis- complete PBG exists in a range of filling factors around
sion and light localization. Much attention has been devoted=0.5 and is maximum for the case of dielectric columns.
to the problem of finding three-dimensional structures thaflhis is at variance with the “conventional” square lattice
forbid propagation of light in all directions, see e.g., Refs.with square column$Furthermore, the complete PBG exists
3-5. Two-dimensional2D) photonic crystals have also been in a wide range of dielectric constrasts and is maximum for a
intensively studied;*®since they are easier to fabricdpar-  relatively low value ofe, that is e=8.9. This makes the
ticularly in the optical region and may be employed in present square lattice an interesting candidate for experimen-
waveguide configuration's:*® An important problem in this tal studies.
context is to find structures that, for light propagating in the Photonic band structures are obtained solving Maxwell
plane, support a PBG common to polarizations of the electriequations in macroscopic media with a periodic dielectric
field perpendiculals) and parallel(p) to the plane. constante(r). Assuming nonmagnetic and lossless media

A complete PBG in two dimensions was first demon-[u=1,e(r) reall, absence of free currents and charges, we
strated for a triangular lattice of air columns in a dielectricrearrange Maxwell equations in a master equation for the
material*® and for a square lattice of air columf8lt was  electric fieldE:
later demonstrated for the hexagonal lattice with the graphite
and BN structure® For a given type of lattice symmetry,
the PBG depends on the form of the basis and on the dielec-
tric contrast'® For the triangular lattice a full PBG exists in
the case of air columnéot for dielectric columns and is  plus the divergence equatidvi- (r)E=0, wherew is the
maximum for a circular cross section of the colurfif®. frequency of harmonic modes. For a 2D photonic crystal, the
Similarly, for the square lattice a complete PBG was showniielectric constant is periodic in the,{) plane and homo-
only for the case c_>f air columns; it exists f_or a circular or ayeneous along the direction: e= e(x,y). Considering in-
square cross section of t.he columns, bqt in the latter case ﬁlane propagationk,=0, mirror symmetry decouples the
requires a h|gh¢_3r dielectric cpntra"sT.he width of t_he 9ap Of_ electromagnetic field into two modess polarization
the square lattice may be increased by a suitable E)%S'S'(EZ,HX,H),) and p polarization €,,E,,H,). Sincee(r) is

Physical arguments suggest that a PBGs@olarization is  narindic, we exploit Bloch's theorem expanding the electro-
favored in the case of dielectric columns, while a PBGor

polarization is favored if the dielectric regions are
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connected:” However the existence of a complete PBG re- M
quiresoverlap of the s and p gaps: since this overlap often © = -
involves the gap between the first and secpristhnds with

the gap between higherbands, it is difficult to give simple

arguments predictingpr explaining the existence of a com- ]

plete PBG for a given lattice. L 2 _&_ <
In this work we study a different type of square photonic b

lattice in two dimensions, which consists of square columns L 2IK SR 2

of either dielectric or air rotated by 45° with respect to the

square axes of the lattidsee Fig. 1 The structure is char- ‘ ‘ ‘

acterized by the filling factof of the dielectric, which is
related to the lattice constaatand the column diagonal by

f=b?(2a%) [in the case of dielectric columns, Figial] or FIG. 1. The chessboard lattice) dielectric rods in air(b) air
f=1-Db?/(2a?) [for air columns, Fig. (b)]. For the close- rods in dielectric. The dashed line marks the unit callis the
packed conditiolb=a, or f=0.5, the two cases of Figs(@  length of the unit cell and is the rod’s diagonalfc) the Brillouin
and Xb) become equivalent and the structure resembles @one with symmetry pointd;,X,M.

(@) (b)
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magnetic field in terms of plane waves. Different plane
waves are coupled by the Fourier transform of the dielectric
constanteGX,Gy, which for our structure takes the form

EOVOZEf‘F(l_f), G=0

cog Gyb/2) —cog G,b/2)
a’(G{-Gy)

sin(Gyb/2

EGX,tGX:(E_l)b%' G#0 2

X

GGX 'Gy:4(6_

whereG is a reciprocal lattice vector ar@, andG, are its
components alongk and y, respectively. The resulting
k-space equations are solved by a matrix diagonalization
technique. Photonic bands are calculated to about 1% preci-
sion including =225 plane waves fos modes and up to
=880 plane waves fgp modes. For the conventional square
lattice, we recover results identical to those of Refs. 7 and 8,
within the precision stated.

Frequency wa/27c¢

We present numerical results for the chess-board lattice of 03k
Fig. 1, for three choices of the dielectric contrise=8.9
(aluming, e=12 (GaA9, ande=16 (Ge). An important fea- 02}
ture of the chessboard lattice is that the structure with over- ;
lapping dielectric columnsk(>a, f>0.5) is identical to a 01

structure with nonoverlapping air columng<ta and the
same filling fraction of dielectric All configurations are _
spanned taking only nonoverlapping dielectric rpfls0.5, r X M r

Fig. 1(@)] or air rods[f>0.5, Fig. 1b)]. The casef=0.5 . _
identifies the close-packing condition for both dielectric and_ FIG. 2. Photonic bands of the chessboard lattice @r e

ir rod d K he |attice i . der th h =8.9, f=0.45 and(b) e=16, f=0.475 calculated along symmetry
air rods, and makes the lattice invariant under the exc NG rections of the Brillouin zone. Solidashed lines correspond to

dielectric— air. , , . _ s (p) modes. Frequencies are plotted using the adimensional quan-
Choosmg alumina ceramic as d|e_|e_Ct”C mediura  ( tity wa/(27c), wherea is the length of the unit cell andthe speed
=8.9), we find that photonic bands exhibit a complete PBGos |ight.

which is maximum forf=0.45, corresponding to a gap

width to midgap frequency ratid w/ w=28.5%. For these Figure 3 gives gap maps calculated for three different
parameters, the frequencies calculated along symmetry diregielectric constantse=8.9,12,16. Since the purpose is to
tions of the Brillouin zone are plotted in Fig(&). The de- find PBG’s and to understand their behavior when the filling
generacies at the symmetry points are the same of the cofactor is varied, to save computing time, we used a maxi-
ventional square lattic®? since the symmetry is the same: mum of =570 plane waves fop modes. Comparison with
nondegenerate and doubly degenerate statds ahd M,  the photonic bands of Fig. 2 for the proper values @indf
nondegenerate states Xt However the order of the fre- shows that numerical accuracy remains good. Fixing the di-
quency levels is different. There are thiegaps and just one electric contrast, the filling factor is varied from 0 to 1 and
p gap, which overlaps the secos@ap giving rise to a com- the existence of a PBG is marked with different tones to
plete PBG. Increasing the dielectric contrast, mprgaps distinguish among onlg (white), only p (gray), and com-
open. With germanium g=16), we find two complete plete PBG's(black. Generally,s gaps are concentrated in
PBG’s: for f=0.475 the first PBG reaches its maximum the left part of the plots, where<0.5, that is the lattice is
width, Aw/w=5.6%. Figure gb) shows the band structure made up of dielectric rods in air: this agrees with the physi-
calculated fore=16 andf =0.475. The higher dielectric con- cal arguments discussed in Refs. 3 and 7. These PBG’s fade
trast produces fouys gaps and thresgaps. The seconslgap  away just wherf becomes larger than 0.5 and the dielectric
overlaps again the firgt gap; moreover, the thirslgap over-  rods begin to overlap. Instegdgaps occur around the value
laps the secong gap: thus two complete PBG’s occur. f=0.5 and are the only existing gaps fbr 0.5, when the
These results are interesting considering that the traditionalielectric regions are connectddThus, close td=0.5, the
square lattice of air columns with square cross section reehessboard lattice exhibitsgaps as well ap gaps, since at
quires e>12.3 for a complete PBG to exist. On the otherthe close-packing condition the lattice possesses both dielec-
hand, the chessboard lattice exhibits a complete PBG evetfic columns and connectivity.

for e=8.9 and preserves the symmetry and simplicity of the  On increasing the filling factor the midgap frequency low-
square lattice. Actually, spannirgfrom 1 to 16, we find the ers. The same happens whenincreases from 8.9 to 16.
existence of a complete PBG fer>7, with Aw/w being  Therefore, the midgap frequency should be related to the
maximum fore close to 8.9. effective dielectric constangé.;, which is derived in the
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When the dielectric contrast is raised, the peak correspond-
ing to the lowest complete PBG lowers and shrinks; it also

06 L \ becomes restricted to a narrow region around the close-
packing conditionf=0.5. The smooth peak of the dotted

curve (e=16) is due to the second complete PBG, which
0.4 extends for a wider range of filling fractors. The first and
I second complete PBG’s far=16 are of comparable width

Aw, but the fractional gap is obviously smaller for the sec-

0.0. I . . .

0.2

ond one.
0 ;:rnﬂg‘jzz The chessboard lattice is found to have a complete PBG
0.0 |1 both . ‘5.: 16 arising from overlap of the secorstgap with the firstp gap.
00 02 04 06 08 1.0 The full PBG exists for a range of filling factors around the
Filling Factor f close-packing conditiori=0.5, provided the dielectric con-

stant e>7, and it reaches a maximum fe~8.9 andf
FIG. 3. Gap maps for different dielectric contrasts obtained=0.45 with a fractional gap\ w/w=28.5%. On increasing
varying the filling factor from 0 to 1. The existence of a PBG for the dielectric contrast the complete PBG decreases some-
both polarizations is represented by a black spot. what. Fore=16 a second complete PBG arises from overlap

long-wavelength limit. Moreover, a larger dielectric contrast?];tgeséh"ds gap with the second gap, and is maximum for

widens PBG’s and gives origin to additional ones, as shown The gap maps as a function of filling factor show teat

in Fig. 3. Fore=8.9 the second gap overlaps the firgand gaps are favored for the case of nonoverlapping dielectric
unique p gap. One would expect this complete PBG to get: /' {<0.5), whilep gaps are favored in the case of air

larger as the dielectric contrast is increased. On the contrary,
the gap shrinks becausendp gaps have a smaller overlap. Eolumns ¢>0.'5)' Although the _overlap afandp gaps does .
C{1ot follow a simple rule, the existence of a complete PBG is

In fa_ct, SInces and_p modes are decoupled and are 9OVEMEE e lated to the fact that the chessboard lattice, at the close-
by different equations, the overlap does not follow a simple

rule and can be optimized for a right choice and . Egﬁﬁler:g[eco? r&?éﬁlg:tr(ic: r()é5i)c;nhsaSTlr)gr::r?éilset?:)r;dccl);?tzzgshzrs];dthe
However, a larger dielectric contrast provides more PBG’s gions. _
; , : L S5ame symmetry and simplicity of the conventional square
making complete PBG’s more likely to occur. This is what, .. "~ . : . .
P lattice: the low dielectric contrast required for the existence
happens fore=16: a new complete PBG comes from the of a complete gap makes it interesting for experimental stud-
overlap of the thirds gap and the secorgap. In this case, P 9ap 9 P

. o . ies.
the chessboard lattice exhibits two complete PBG's, the first
one maximizes its width fof = 0.475 and the second one for Note addedRecently a paper by Wangf al, has been

. O . . _
£~0.38. Besides, the second PBG occurs at a higher frégubhshedz, where the square lattice with rotated square col

guency and for a wider range of the filling factor than theMNS 1 also studied.

first one. The authors are grateful to S. Botti, A. Lorenzoni, and A.
In Fig. 4 the gap width to midgap frequency ratio is plot- Rappoldi for helpful suggestions and advice in the course of

ted with respect to the filling factor for the complete PBG’s this work and to C. M. Soukoulis for a critical reading of the

shown in Fig. 3. The maximum fractional gap is f©=8.9.  manuscript.
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