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1 Introduction 

Photonic crystals realized in planar waveguides, commonly known as photonic crystal slabs, are at the 
heart of current interest in periodic dielectric structures thanks to their capability to control propagation 
of light in all spatial directions [1–4]. This is achieved by combining Bragg reflection due to a two-
dimensional (2D) lattice in the slab plane with total internal reflection in the vertical direction. In particu-
lar, semiconductors are very suited for the realization of PhC slabs, due to their high refractive index 
yielding good confinement properties and to the availability of mature processing technologies. The 
lithographic definition of the 2D lattice allows introducing line and point defects, which behave as linear 
waveguides and nanocavities, respectively. 
 A crucial issue related to PhC slabs is that of losses, especially due to scattering (diffraction) out of the 
slab plane. Photonic modes whose dispersion lies above the cladding light line(s) in the k – ω plane are 
subject to intrinsic losses, as they are coupled to leaky modes of the slab, and are usually called quasi-
guided. On the other hand, modes lying below the cladding light line(s) in the k – ω plane are lossless, or 
truly guided, in an ideal structure without disorder, and are subject only to extrinsic losses due to fabrication 
imperfections. Point defects in PhC slabs behave as nanocavities with full photonic confinement and their 
quality (Q) factor is also determined by diffraction losses, both intrinsic and extrinsic. Linear waveguides 
with ultra-low propagation losses have been recently achieved [5–7]. Also, spectacular progress has been 
achieved in demonstrating nano-cavities with extremely high Q-factors in thin Silicon [8–10] and GaAs 
[11] slabs. The excellent control and knowledge of photonic states in PhC slabs makes it possible to study 
highly interesting phenomena related to the coupling between light and matter, like optical switching [12, 
13], low-threshold lasing [14], and the strong-coupling regime of radiation-matter interaction [15, 16]. 
 In this paper we review a theoretical approach to PhC slabs in relation with the above-mentioned is-
sues. In Section 2 we describe a Guided-Mode Expansion (GME) method for calculating photonic mode 
dispersion and diffraction losses in ideal (non-disordered) structures, which relies on an expansion in a 
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three-dimensional (3D) basis set and on the use of perturbation theory for losses. In Section 3, extension 
of the method to calculate disorder-induced losses is described. In Section 4 we present a quantum-
mechanical formulation of radiation–matter interaction, relying on the classical calculation of photonic 
modes by the GME method, with application to the coupling between PhC slab modes and quantum-well 
excitons leading to photonic crystal polaritons. Section 5 contains concluding remarks. Numerical results 
in this paper are given for PhC slabs realized in a self-standing membrane made of a high-index material, 
although most of the formalism and theoretical considerations apply to more general slab structures. 

2 Guided-mode expansion method 

Solving Maxwell equations for a PhC slab structure is a complicated numerical task, especially for what 
concerns quasi-guided modes and their diffraction losses. The basic idea of the GME method is to repre-
sent the electromagnetic field in a finite basis set consisting of the guided modes of an effective homoge-
neous waveguide. We start from the second-order equation for the magnetic field in a source-free dielec-
tric medium and for harmonic time dependence, 
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Due to translational invariance in the slab (xy) plane implying Bloch-Floquet theorem, the magnetic field 
can be expanded on a basis in which planar and vertical coordinates are factorized 
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where r = (ρ, z), k is the in-plane Bloch vector in the first Brillouin zone (BZ), G are reciprocal lattice 
vectors, and the functions ( )z

α+ ,k G
h  (α = 1, 2, . . . ) are the (discrete) guided modes of the effective planar 

waveguide with an average dielectric constant jε  in each layer j = 1, 2, 3, calculated from the air fraction 
of the given photonic lattice. Thus, Eq. (1) is reduced to a linear eigenvalue problem 
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where the matrix H is given by 
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This formulation of the electromagnetic problem has strong analogies with the quantum-mechanical 
treatment of electrons, with the Hermitian matrix H playing the role of a Hamiltonian. The explicit ex-
pressions for the matrix H are given in Ref. [17] and the properties of the specific photonic lattice enter 
via the Fourier transform of the inverse dielectric constant in each layer, 1( ) ( )j jη ε

-

, = ,¢ ¢G G G G , the 
matrix inversion being performed numerically. The eigenvalue problem (3) is solved by numerical di-
agonalization and the resulting photonic modes are classified according to their band index, n, and their 
in-plane Bloch vector k. Once the magnetic field is calculated, the electric field is obtained from 
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The fields Ekn(r) and Hkn(r) calculated by the GME approach satisfy the orthonormality conditions 
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thus they constitute a very convenient set for the second-quantized formulation to be discussed later. 
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 The basis set consisting of the guided modes of the effective waveguide is orthonormal, but not com-
plete, since leaky modes are not included. Coupling to leaky modes produces a second-order shift of the 
mode frequency: the neglect of this effect is the main approximation of the method. A comparison with 
exact scattering matrix calculations indicates that the second-order shift is quite small (fractional shift 
usually <1%) [18], at least for the low air fractions that are usually employed. Possible choices for the 
average dielectric constant, convergence tests and other numerical issues are discussed in Ref. [17]. 
 When the guided modes are folded in the first Brillouin zone, many of them fall above the light line 
and become quasi-guided. Indeed, first-order coupling to leaky modes at the same frequency leads to a 
radiative decay, which can be calculated by time-dependent perturbation theory (like in Fermi Golden 
Rule for quantum mechanics). The imaginary part of the squared frequency of a PhC mode with Bloch 
vector k, whose frequency lies above the cladding light lines (or at least above one of them), is given by 
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where the matrix element between a guided and a leaky PhC slab mode is 
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and 2 2( / )j k cρ ω+ ;¢k G  is the 1D photonic density of states (DOS) at fixed in-plane wave vector for radia-
tion states that are outgoing in medium j = 1, 3: 

 

2 2

2

2 2 2 2 1 2

1 22 2
2 2

0 2

d

2π 4π

j jz z

j

j

j

c g

ck g k

c c ε c g

θ ω
εω ω ε

ρ δ

ω
ε

•
/

/

Ê ˆ
-Á ˜Ê ˆ Ë ¯+Ê ˆ; ∫ - = .Á ˜ Á ˜Ë ¯ Ë ¯ Ê ˆ

-Á ˜Ë ¯

Úg  (10) 

Notice the sum over reciprocal lattice vectors and polarizations in Eq. (8), as all diffraction processes 
contribute to Im (ω2/c2). Equations (8)–(10) generalize the expressions given in Ref. [19] to the case of 
an asymmetric PhC slab and to situations in which processes with G′ ≠ 0 contribute to diffraction losses. 
Once Im (ω2/c2) is found, the imaginary part of frequency is easily obtained as Im (ω) � Im (ω2)/(2ω). 
 In the matrix elements (9), we replaced the radiative modes of the PhC slab with those of the effective 
waveguide. This approximation is consistent with the guided-mode expansion (2), as the set of 
guided + leaky modes of the effective waveguide is orthonormal and complete: guided modes are kept 
for the calculation of the dispersion, while leaky modes are used for the perturbative calculation of 
losses. Thus, no problem of mode overcounting occurs in this scheme. Again, explicit expressions for the 
matrix elements and convergence tests as a function of numerical parameters are given in Ref. [17]. 
 As an example of results and comparison with other methods, we discuss propagation losses in a line-
defect waveguide. We consider a W1 waveguide, i.e., a missing row of holes in the triangular lattice 
along the Γ K direction. Results are shown in Fig. 1 and the structure is illustrated in Fig. 1(b): the chan- 
nel width w equals w0 ≡ 3a for a W1 waveguide, where w0 is the period along the Γ M direction of the 
triangular lattice, but structures with increased channel width can also be considered. In order to treat a 
line defect, a supercell in the ΓM direction has to be introduced. We adopt the same parameters of 
Ref. [20]: membrane thickness d =  0.6a, dielectric constant ε = 11.56, hole radius r = 0.3016a, lattice 
constant a = 430.55 nm. We consider TE-like modes (parity σxy = +1 with respect to horizontal mirror 
symmetry ˆ

xy
σ ). The dispersion of the defect modes in the gap is shown in Fig. 1(a) for the modes with 

σkz = ±1 parities with respect to vertical mirror operator ˆ kzσ , i.e., reflection symmetry with respect to a 
vertical plane bisecting the waveguide. The propagation loss in decibel/mm is calculated as 4.34 ×  
2Im (k), where Im (k) = Im (ω)/vg is the imaginary part of the wavevector and vg = dω/dk is the mode 
group velocity [21]. In order to avoid finite-size effect due to the supercell along Γ M, an average of the 
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Fig. 1 (online colour at: www.pss-b.com) (a) Dispersion of the line-defect modes for a W1 waveguide 

structure shown in (b). The dotted line represents the light dispersion in air and the gray areas denote the 

photonic band regions of the 2D triangular lattice. Parameters are: self-standing membrane with thickness 

d =  0.6a, dielectric constant ε = 11.56, hole radius r = 0.3016a, lattice constant a = 430.55 nm. (c) Intrin-

sic propagation loss for the σ
kz
 = –1 mode. The dotted vertical line denotes the crossing point with the 

light line, where the loss goes to zero. 

 

results over different supercell periods (typically from 3w0 to 10w0) is taken. The intrinsic propagation 
loss of the σkz = –1 mode is shown in Fig. 1(c) as a function of wavelength. The loss vanishes for wave-
lengths larger than 1527 nm, when the mode lies below the light line and is truly guided. The results of 
Fig. 1(c) can be compared with those reported in Fig. 2 of Ref. [20], which were calculated with the 
finite-difference time domain (FDTD) method [20] and previously with a Fourier modal method [22, 
23]. A comparison of all results is also shown in Ref. [24]. It can be seen that the present results for 
propagation losses of W1 waveguide obtained with the GME method are in good agreement with those 
of more exact approaches. The discrepancies in the loss values are no larger than about 15% and can be 
attributed mainly to the approximation of replacing radiative modes of the PhC slab with those of the 
effective waveguide in Eq. (9). 
 As another example, Q-factors of nanocavity modes can be calculated within the GME method by 
repeating the nanocavity with a supercell in 2D and defining Q = ω/(2 Im (ω)). The Q-factors of L3 
cavities, namely three missing rows of holes along Γ K in the triangular lattice, were shown experimen-
tally to be larger than 45 000 in silicon membranes [8] when the local geometry is optimized by displac-
ing the positions of the two nearby holes. The Q-factors calculated by the GME method [25] and by a 
Fourier modal method [26] are found to be in very good agreement with each other, reaching a maximum 
value of about 150 000 for a displacement ∆x = 0.18a (the Q-factor of the cavity mode for non-displaced 
holes is about 6 000). The strong increase of the Q-factor as a function of nearby hole displacement has 
been interpreted in terms of ‘gentle confinement’ of the electromagnetic field [8] as well as by matching 
of spatial profiles of Bloch modes that are back-reflected within the defect cavity [26]. Similarly, the  
Q-factor increases strongly when the nearby holes are reduced in size [25]. The combination of shifting 
and shrinking of the nearby holes yields a nanocavity design which is especially robust with respect to 
small deviations of the parameters and it has been used to enhance radiation–matter interaction in GaAs 
PhC membranes containing InAs quantum dots, leading to low-threshold lasing [14] and to strong cou-
pling [16]. 
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Fig. 2 (online colour at: www.pss-b.com) Dispersion and propagation losses of defect modes for W1 (a, 

b) and W1.5 (c, d) waveguides in a high-index membrane, assuming a slab thickness d = 0.55a, average 

hole radius r = 0.275a, dielectric constant ε  = 12.11, lattice constant a = 420 nm. The grey areas in (a), (c) 

represent the region of bulk modes. 

 

3 Disorder-induced losses 

In order to account for the effect of fabrication imperfections, we introduce a disordered lattice character-
ized by a spatially-dependent dielectric modulation εdis(r), leading to a dielectric perturbation 
∆ε(r) = ε dis(r) – ε(r). For a given representation of disorder, the perturbation ∆ε(r) may couple truly-
guided modes of the PhC slab to leaky modes, giving rise to extrinsic (disorder-induced) losses. These 
can be calculated again by perturbation theory, within the approximation of replacing radiative modes of 
the PhC slab with those of the effective waveguide. In this paper we consider a size-disorder model in 
which the hole radii r are randomly varied around a mean value r  according to a Gaussian distribution, 
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This model is characterized by a single disorder parameter, namely the r.m.s. deviation σ  [27, 28]. More 
general two-parameter models which include micro-roughness of the hole sidewalls and allow compari-
son with conventional waveguides have also been studied within the present GME method [29] or with a 
Green function approach [30]. In order to apply the formalism outlined in Section 2, disorder is modelled 
within a supercell and an average over several random distributions and supercell widths is taken. 
 We consider a W1-type waveguide like that of Fig. 1(b), but with varying channel width w. The W1.5 
waveguide, where the channel width is increased to w = 1.5w0, has a single-mode region below the light 
line where propagation losses are expected to be very low [28, 29]: the presence of a single-mode region 
below the light line for both W1 and W1.5 waveguides has recently been verified experimentally [31]. 
Extending our previous work, we calculate also the effect of backscattering into the counter-propagating 
defect mode, which is described by a perturbative formula 
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where the density of states for the scattered mode at –k depends on the group velocity vg = dω /dk as 
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Thus the propagation loss 4.34 × 2 Im (k) = 4.34 × 2 Im (ω) /vg is proportional to 2

g
v
- , as first pointed out by 

Hughes et al. [30], and it grows rapidly in the slow-wave region where the group velocity tends to zero. 
 In Fig. 2(a), (c) we show the dispersion of σkz = ±1 line-defect modes for the W1.0 and W1.5 
waveguides. A single-mode propagation region for the σkz = –1 mode (often called index-guided, or 
spatially even) is present in both cases. In Fig. 1(b), (d) we show the calculated propagation losses of the 
σkz = –1 mode, assuming a roughness parameter σ  = 2 nm, for out-of-plane scattering into the leaky PhC 
modes (filled points) and for backscattering into the counter-propagating mode (open points). Radiation 
losses of the W1 waveguide become purely extrinsic and very small when the mode dispersion falls 
below the light line and disorder-induced scattering remains the only loss mechanism. However, they 
increase like 1/vg in the region close to the Brillouin zone edge where vg tends to zero. It can be seen that 
backscattering losses are much smaller than radiation losses in the low-loss region with high group ve-
locity, just like in rectangular high index-contrast waveguides [32]. On the other hand, backscattering 
losses become dominating for the W1 waveguide close to the Brillouin-zone edge because of the 1/vg

2 
increase [30]. Radiation losses for the W1.5 waveguide are reduced by almost one order of magnitude as 
compared to the standard W1 case. We notice that for the W1.5 waveguide the defect-mode dispersion 
below the light line has always a high group velocity, yielding a rather wide low-loss region with negli-
gible backscattering losses.  
 The calculations reported in Refs. [27–29] and those shown in Fig. 2 are performed by evaluating the 
effect of disorder in a supercell approach in the following way: referring to Fig. 3(a), the unperturbed 
line-defect modes are found by solving the electromagnetic problem within the small supercell (along  
Γ M only), while disorder-induced modifications of the dielectric function and the resulting coupling to  
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Fig. 3 (a) Scheme of a W1 waveguide, showing the small and large supercells along Γ K used in the cal-

culations. Right: radiation losses for W1 and W1.5 waveguides in a Silicon membrane with ε = 12.11, 

slab thickness d = 0.55a, average hole radius r = 0.275a, lattice constant a = 420 nm: (b) calculated with-

out local-field effect (disorder in large supercell treated perturbatively), (c) with local-field effects (disor-

der in large supercell treated exactly). 
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leaky PhC slab modes are represented in the large supercell (along Γ M and Γ K) and are treated by per-
turbation theory. An average over different disorder distributions and supercell sizes is performed in 
order to reduce finite-size effects and to improve convergence. However, this approach does not consider 
changes of the local electromagnetic field due to the shifting boundaries in each hole, which require 
modifications of the perturbative formalism [33]. In the present guided-mode expansion based on the 
magnetic field, the matrix element between guided and radiation modes is expressed in terms of 
∇ × H = – i(ω/c)D: thus the field components perpendicular to the interface (i.e., the radial components 
in each hole) are continuous and correctly treated, while the parallel components are not continuous and 
the boundary conditions for the in-plane tangential component of the field are not treated correctly. 
 In order to take into account the local modifications of the field due to disorder, we calculate the elec-
tromagnetic field in the large supercell of Fig. 3(a) assuming a random distribution of hole sizes and 
solving the problem exactly, i.e., the fields of the line-defect mode in the disordered system are obtained 
by solving the full eigenvalue problem without the use of perturbation theory. The eigenmodes of the 
fields are obtained in a folded Brillouin zone and are coupled to leaky PhC slab modes by the dielectric 
modulation, leading to disorder-induced propagation losses with the local-field effect being fully taken 
into account. An average over different disorder distributions and supercell sizes is again performed. The 
results of the two approaches are compared in Fig. 3(b), (c) for both W1 and W1.5 waveguides. Al-
though the numerical spread of the results is larger in the case of the local-field calculation of Fig. 3(c), 
the averaged results turn out to be very close to those of the previous calculation of Fig. 3(b). Also, the 
ratio between the losses of W1.5 and W1 waveguides is unchanged. These results suggest that disorder-
induced modifications of the local field have a minor effect on propagation losses for the present case of 
W1 and W1.5 waveguides. This may be due to the fact that radial field components in each hole domi-
nate the loss behavior in the present formalism based on the magnetic field. The role of local-field effects 
in different structures and with other disorder models, however, is worth more detailed investigations. 

4 Quantum theory of radiation–matter interaction 

We consider a PhC slab with a quantum well (QW) grown in the middle of the core layer, as illustrated 
in Fig. 4(a). The ground-state QW exciton is usually a heavy-hole exciton, with in-plane polarization of 
the transition dipole, and is able to interact with TE-like (σ

xy
 = +1, even) modes of the PhC slab. In the 

following we take the specific case of a square lattice of holes with lattice constant a, whose photonic 
bands for TE-like modes are plotted in Fig. 4(b) in dimensionless units. When the QW exciton is reso-
nant with truly-guided photonic modes below the light line (e.g., at the frequencies indicated by the two  
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Fig. 4 (online colour at: www.pss-b.com) (a) Schematic view of a 2D photonic crystal slab with core 

thickness d and lattice constant a, with an embedded single quantum well at the midplane of the core 

layer. (b) Photonic mode dispersion (even modes, σ
xy
 = +1) for a square lattice in a high-index (ε = 11.76) 

photonic crystal membrane with d/a = 0.3, r/a = 0.34. The first few modes are labelled by a band number. 

Dashed lines represent the light dispersion in air. 
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arrows in Fig. 4(b)) it forms stationary modes which we call guided photonic crystal polaritons. On the 
other hand, when the exciton is resonant with quasi-guided photonic modes above the light line, the 
exciton–photon interaction can be in a weak or in a strong-coupling regime: when the exciton–photon 
coupling is larger than the intrinsic photonic mode linewidth, exciton-polariton states are formed, which 
we name radiative photonic crystal polaritons. Those states are especially interesting, since they can be 
probed by incident light from the surface of the sample in a reflectance or transmission experiment. In-
deed, strong exciton–light coupling has been reported in photonic crystal slabs filled with organic exci-
tons [34] and the semiclassical theory of the optical response has been developed using a scattering-
matrix formalism, where the excitonic resonance is treated by a Lorentz oscillator [35].  
 Here we formulate a theory of radiation–matter interaction, which is based on a full quantization of 
the exciton and photon fields. In a non-homogeneous dielectric medium, the vector potential can be cho-
sen to satisfy the generalized Coulomb gauge ∇ ⋅ (ε(r)A(r, t)) = 0 and it is expanded in normal modes as 
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1 2 † *( , ) 2π ( ) e ( ) eˆ ˆn n

i t i t

n nn n n

n

Â t a a
ω ω

ω�
È ˘/ -
Í ˙
Í ˙Î ˚

,

= + ,Â k k

k kk k k

k

r A r A r  (14) 

where †
ˆ

nak  ( ˆ
nak ) are creation (destruction) operators of field quanta with eigenfrequencies ωkn, and the 

indices k, n are the in-plane Bloch vector and band number of each eigenmode. In order to satisfy Bose 
commutation relations for ˆ

nak , †
ˆ

nak , the normalization conditions for the classical functions ( )
nk

A r  are 
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which are equivalent to (6) and (7) for the electric and magnetic fields. Thus, the classical fields calcu-
lated by the GME method (neglecting the QW dielectric discontinuity and prior to including the exciton 
contribution) can be conveniently used as normal modes for second quantization. The exciton field can 
also be quantized by introducing operators †

ˆb νk
 and ˆb νk

, which satisfy Bose commutation relations in the 
limit of weak excitation, using quantum number k, v analogous to those of the photon modes. Indeed, the 
free motion of the exciton center-of-mass in the QW plane is restricted to the dielectric region and it can 
be described by a 2D Schrödinger equation for the envelope function in an effective potential ( )V �R : 
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where 
ex e h

M m m* *= +  is the total exciton mass and the potential ( ) 0V � =R  in the dielectric regions, 
while ( )V �R  takes a large value V

∞
 in the air holes. Equation (16) can be solved by plane-wave expan-

sion, using the same Fourier components as for the photonic modes in the slab, leading to exciton ener-
gies (ex)

exE E E
ν ν

= +
k k

, where Eex is the bare QW exciton energy and Ekv is the center-of-mass quantization 
energy in the in-plane potential ( )V �R . Since the photonic and excitonic problems are characterized by 
the same 2D Bravais lattice, their interaction conserves the 2D Bloch vector k. The exciton–photon 
Hamiltonian can be derived by second-quantizing the classical minimal-coupling hamiltonian with the 
A ⋅ p and A2 interaction terms. The resulting quantum Hamiltonian takes the form 
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with the coupling coefficients being given by 
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while (ex)
/

nn n n
D C C E

ν ν ν ν

*

¢ ¢
=

k k k k
. Equation (17) has the same structure of the well-known Hopfield Hamilto-

nian for bulk exciton-polaritons [36, 37], however the interaction takes place between photons and exci-
tons with the same Bloch vector k but with all pairs of quantum numbers n, v. The coefficients Cknv can 
be expressed in terms of the oscillator strength per unit area of the QW exciton, f /S, and of the overlap 
integral between electric field and exciton center-of-mass wavefunction in the 2D plane as 
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Thus, all parameters of the quantum Hamiltonian are determined from a classical calculation of the  
electric field eigenmodes, through the GME method outlined in Section 2, and of the exciton en- 
velope function confined in the dielectric regions. The Hamiltonian (17) can be diagonalized by a  
generalized Hopfield transformation, which leads to a non-hermitian eigenvalue problem of dimension 
2(Nmax + Mmax) × 2(Nmax + Mmax) at each bloch vector k, where Nmax and Mmax are the number of photon 
and exciton modes kept in the expansion, respectively. Numerical solution of this eigenvalue problem 
yields finally the eigenfrequencies of the mixed exciton–photon modes. It should be noted that the 
dampings of photon and exciton states can be taken into account in the formalism by means of an imagi-
nary part of their frequencies in the diagonal terms of Eq. (17). In particular, the intrinsic photon 
linewidth plays a crucial role in the theory: even if the exciton linewidth is assumed to be small (which 
requires very high-quality samples at low temperature), and for an ideal sample without disorder, quasi-
guided PhC slab modes have an intrinsic linewidth arising from out-of-plane diffraction. Thus, the occur-
rence of radiative PhC polaritons depends on the relative size of the exciton-photon interaction (quanti-
fied by the coupling coefficients Cknv) versus the photonic mode linewidth Im (ωkn), which is also calcu-
lated by the GME method. 
 We notice that a strong-coupling regime may also occur when quantum dots are embedded in PhC 
nanocavities [15, 16], however in that case the quantum Hamiltonian is different since quantum dot exci-
tations are described by pseudo-spin (instead of bosonic) operators [40, 41]. Theoretical treatments of 
strong coupling of quantum dots in PhC slab nanocavities can be found in [42, 43]. In particular, we have 
shown [43] that for typical oscillator strengths of self-assembled InAs quantum dots (f ∼ 11, corresponding 
to a dipole moment d = 5.6 |e| ⋅ Å = 27 debye) strong coupling occurs for Q-factors larger than about 2 000. 
 We now give examples of calculated dispersion for guided and radiative polaritons, assuming an oscil-
lator strength per unit surface f /S = 4 × 1012 cm–2 typical of a In

x
Ga1–xAs/GaAs QW [44]. In Fig. 5(a) and 

(b) we consider the interaction of a QW exciton with photonic modes 1 and 2, respectively, from the 
band dispersion shown in Fig. 4(b). The lattice constant is chosen in order to have the resonance condi-
tion close to the BZ edge along the Γ X direction, for k

x
�0.95π/a [see also arrows in Fig. 4(b)]. As it can 

be seen from Fig. 5, the dispersion of bare exciton and photon modes is strongly modified in both cases,  
 

 

Fig. 5 (online colour at: www.pss-b.com) Guided 

polariton dispersion along Γ X for a photonic mode 

interacting with a QW exciton at E
ex

 = 1.485eV, with 

oscillator strength f /S = 4 × 1012 cm–2; the uncoupled 

mode dispersions are shown with dashed and dot-

dashed lines, respectively. Parameters of the 

photonic structure are: ε  = 11.76, r/a = 0.34, 

d/a = 0.3. Panel (a): coupling to the first photonic 

mode, lattice constant a = 213 nm. Panel (b): cou-

pling to the second mode, a = 294 nm. 
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Fig. 6 (online colour at: www.pss-b.com) (a) Photonic mode dispersion around the QW exciton energy, 

Eex = 1.485 eV, for structure parameters: r/a = 0.34, d/a = 0.3, a = 430 nm. (b) Close-up for the 10 meV 

energy range of interest, showing the solution for the coupled exciton–photon system (full line) together 

with the bare exciton and photon dispersions (dashed). 

 

giving rise to sizable anticrossings. The strongly coupled polaritonic dispersion is compared to the bare 
exciton and photon dispersions (the uncoupled exciton center-of-mass levels are not shown, for simplic-
ity). The calculated vacuum Rabi splitting is ħΩR = 6 meV for the first mode and ħΩR = 5.5 meV for the 
second one, respectively. The exciton-photon coupling is dependent on the specific band of interest, due 
to the different spatial profile of the corresponding electric field and thus to the modified overlap with 
the exciton center-of-mass wavefunctions. In any case, we point out that such values obtained with a 
single quantum well are comparable to those commonly achieved for MC polaritons with six QWs [38]. 
This arises from the increased exciton–photon coupling of Eq. (19), due to better confinement in the 
vertical direction of a high-index dielectric slab compared to a MC with low-index contrast distributed 
Bragg reflectors. 
 We show in Fig. 6 the case of a PhC slab of lattice constant a = 430 nm, in which the exciton is reso-
nant with different photonic modes within the first BZ (those labelled with indices 4 and 5 in Fig. 4(b)). 
In Fig. 6(a), the bare photonic mode dispersion around Eex = 1.485 eV is shown. It is interesting to notice 
the existence of a band minimum for mode 5 at the Γ-point: such feature leads to a quasi-particle disper-
sion similar to MC polaritons, as it will be clear in the following. Actually, the resonance condition oc-
curs simultaneously with different modes along Γ M and Γ X. In Fig. 6(b), the dispersion of the exciton–
photon coupled modes is shown in a restricted energy range around the exciton resonance. Notice that 
there are five resonant points between QW excitons and PhC slab modes, leading to a variety of situa-
tions for the coupled modes. Along Γ M, anticrossings can be seen with photonic modes 4 and 5, which 
are fingerprints of the strong coupling regime. In this case, the intrinsic radiative linewidth of bare 
photonic states is lower than the exciton–photon coupling energy. As the QW exciton is resonant with 
mode 4 for two different wave vectors along Γ M, we observe two anticrossings above the light line in 
the middle of the BZ. This peculiar effect is due to the light dispersion engineering allowed in PhC struc-
tures. Along Γ X, resonance with mode 5 gives strong coupling, while resonance with mode 4 at larger 
in-plane wave vector gives a crossing of the bare excitonic and photonic dispersions, meaning that the 
system is in weak coupling. 
 Radiative PhC polaritons can be probed by angle-resolved reflectance from the sample surface, as first 
done on 1D photonic crystals filled with organic molecules [34]. The same kind of experiment could be 
performed with semiconductor-based systems discussed in this work. Indeed, the present quantum-
mechanical treatment of interacting photon and exciton states has been compared with semiclassical 
calculations of the surface reflectance, showing a very good agreement for the splitting in strong cou-
pling regime [25, 39, 43]. For guided polaritons, on the other hand, coupling to an external propagating 
beam is prohibited due to the evanescent character of the electromagnetic field in the claddings. As 
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shown in Fig. 6(b), a peculiar property of the square lattice is that radiative polaritons can form with an 
energy minimum at the Γ-point. This is similar to the dispersion of microcavity polaritons [45–48], 
which has usually a minimum at k = 0, and which has been used in the last few years to demonstrate a 
number of outstanding phenomena related to parametric scattering of cavity polaritons [49, 50] and to 
their Bose condensation [51]. 

5 Conclusions 

The guided-mode expansion method is seen to be a useful approach for describing photonic modes in 
PhC slabs, especially for calculating the dispersion and losses of quasi-guided modes as well as cavity Q-
factors. The method can be generalized to calculate scattering losses of truly guided modes induced by 
disorder. Furthermore, the classical fields obtained by the GME method are conveniently normalized and 
can be used as a set of normal modes for second quantization of the electromagnetic field in a PhC slab. 
A quantum-mechanical theory of the interaction between photons and QW excitons has been developed 
and it leads to the description of photonic crystal polaritons, which can either guided or radiative. In 
particular, the dispersion of radiative PhC polaritons may have a minimum at k = 0, in analogy to micro-
cavity polaritons: this suggests the possibility of achieving polariton parametric processes in a PhC slab. 
In general, quantum electrodynamical processes related to light-matter interaction in PhC slabs are likely 
to be one of the major themes of nanophotonics in the next few years. 
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