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Abstract
A theory of photonic crystal (PhC) slabs is described, which relies on an expansion in the basis of guided modes of an

effective homogeneous waveguide and on treating the coupling to radiative modes and the resulting losses by perturbation

theory. The following applications are discussed for the case of a high-index membrane: gap maps for photonic lattices in a

waveguide; exciton–polariton states, when the PhC slab contains a quantum well with an excitonic resonance; propagation

losses of line-defect modes in W1 waveguides, also in the presence of disorder; the quality factors of photonic nanocavities. In

particular, we predict that disorder-induced losses below 0.2 dB/mm can be achieved in state-of-the-art samples by increasing

the channel width of W1 waveguides.
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1. Introduction

Photonic crystals embedded in planar waveguides,

also known as photonic crystal (PhC) slabs, can lead to

a full control of light propagation because of the two-

dimensional (2D) photonic lattice in the slab plane

combined with dielectric confinement in the vertical

direction [1,2]. Electromagnetic eigenmodes in PhC

slabs can be either truly guided (if their frequency lies
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below the light line of the cladding material) or quasi-

guided (if the frequency lies above the light line).

Quasi-guided modes are subject to intrinsic radiative

losses because of diffraction out of the slab plane.

Truly guided modes are only subject to extrinsic losses

due to disorder. Diffraction losses represent a crucial

problem for prospective applications of PhC slabs to

integrated photonic devices.

In this work, we present a theory of photonic modes

and of radiation-matter interaction in PhC slabs that

relies on an expansion of the magnetic field on the

basis of guided modes of an effective homogeneous

waveguide. Coupling to radiative modes of the effec-
.
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tive waveguide is taken into account by perturbation

theory and leads to a determination of diffraction

losses. The theory allows calculation of the following

quantities: photonic band dispersion and gap maps for

1D and 2D lattices embedded in a waveguide; the

intrinsic losses of quasi-guided modes, due to the non-

separable form of the dielectric modulation; the

extrinsic losses of truly guided modes, by means of

a Gaussian model of disorder; exciton–polariton

states, when the PhC slab contains a quantum well

with an excitonic resonance. Throughout this paper we

consider the self-standing membrane (air bridge) as a

prototype of a PhC slab with a strong refractive index

contrast. In particular, we calculate propagation losses

of line defect modes in W1 waveguides in the presence

of structural disorder (modelled as random variations

of hole radii in the triangular lattice) and Q-factors of

photonic nanocavities.
2. Method

In order to formulate the method, we start from the

second-order equation for the magnetic field,

r� 1

eðrÞr � H

� �
¼ v2

c2
H; (1)

where eðrÞ is the spatially-dependent dielectric con-

stant. If the magnetic field is expanded in an orthonor-

mal set of basis states as HðrÞ ¼
P

m cmHmðrÞ, then

Eq. (1) is transformed into a linear eigenvalue problem,

X
n

Ĥmncn ¼
v2

c2
cm; (2)

where the matrix Ĥmn (which is the analog of a quantum

Hamiltonian for an electronic problem) is given by

Ĥmn ¼
Z

1

eðrÞ ðr � H�
mðrÞÞ�ðr � HnðrÞÞ dr: (3)

For the case of a PhC slab we have a waveguide along z

and a periodic patterning in the xy plane. The basis set

HmðrÞ is chosen to consist of the guided modes of an

effective waveguide, where each layer j has a homo-

geneous dielectric constant given by the spatial average

of ejðx; yÞ. The index m can be written as

m ¼ ðk þ G;aÞ, where k is the 2D Bloch vector, G

is a reciprocal lattice vector and a labels the guided
modes at wave vector k þ G. The matrix elements (3)

can be expressed in terms of the inverse dielectric

tensor in each layer e	1
j ðG;G0Þ, evaluated by a numer-

ical inversion of the matrix ejðG;G0Þ as in usual plane

wave calculations.

The basis set consisting of the guided modes of the

effective waveguide is orthonormal, but not complete,

since the leaky modes of the waveguide are not

included. Coupling to leaky modes produces a sec-

ond-order shift of the mode frequency: neglect of this

effect is the main approximation of the method. A

comparison with exact scattering matrix calculations

indicates that the second-order shift is quite small [3],

at least for the low air fractions that are usually

employed. When the guided modes are folded in

the first Brillouin zone, many of them fall above the

light line and become quasi-guided. Indeed, first-order

coupling to leaky modes at the same frequency leads

to a radiative decay, i.e., to an imaginary part of the

frequency. This can be calculated by time-dependent

perturbation theory, like in Fermi Golden Rule for

quantum mechanics, and is given by

	Im
v2

k

c2

� �
¼ p Ĥleaky;guided

�� ��2 r k;
v2

k

c2

� �
; (4)

where rðk;v2
k=c2Þ is the 1D photonic density-of-

states at fixed in-plane wave vector [4,5].

The effect of disorder is modelled by considering a

random variation of hole radii within a large supercell,

with a Gaussian probability function,

PðrÞ/ exp
	ðr 	 r̄Þ2

2ðDrÞ2

 !
; (5)

where the root mean-square deviation Dr of the radius

is taken as a disorder parameter. The variations of hole

size from the ideal value change the dielectric function

to edisðrÞ and give rise to a dielectric perturbation,

De	1ðrÞ ¼ e	1
dis ðrÞ 	 e	1ðrÞ; which couples both

quasi- and truly guided modes into the radiative region

and is also treated by perturbation theory.
3. Photonic bands and gap maps

A notable feature of the present method is that it

leads to a determination of the photonic mode disper-

sion both below and above the light line. This allows
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Fig. 1. Gap map of a 1D lattice of air stripes in a dielectric slab with

e ¼ 12 and thickness d=a ¼ 0:4. The solid curve is the cut-off of the

second-order waveguide mode.
calculation of gap maps for photonic lattices

embedded in a waveguide. As an example, in Fig. 1

we show the gap map of a 1D lattice of air stripes in a

dielectric slab with e ¼ 12 and core thickness

d=a ¼ 0:4. Transverse electric (TE) and transverse

magnetic (TM) polarizations are defined with respect

to a vertical plane perpendicular to the stripes. TE and

TM polarization are degenerate in the ideal 1D sys-

tem; this degeneracy is removed in the slab, because of

the effect of vertical confinement which is much more

pronounced for TM than for TE polarization. As a

result, a complete band gap for all polarizations does

not generally occur. For the parameters of Fig. 1, a

complete photonic gap is formed between the second-

order TE gap and the first-order TM gap. A systematic

study of gap maps of 2D and 1D photonic lattices in a

waveguide is presented in Refs. [3,6], respectively.
Fig. 2. (a) Photonic mode dispersion (real part of frequency), (b) reflectanc

calculated for a membrane with e ¼ 12 and d=a ¼ 0:3, patterned with a tri

TM-polarized modes along the GK orientation. Solid (dashed) lines refer

dotted line in (a) is the light line in air.
An example of complex frequency dispersion of

quasi-guided modes is given in Fig. 2, which shows

the real and imaginary parts of frequency as a function

of wave vector and compares them to the reflectance of

a plane wave incident on the crystal surface calculated

by the scattering-matrix method [7]. The positions of

the spectral features in reflectance as a function of the

incidence angle are seen to correspond to the disper-

sion of the real part of the frequency in Fig. 2a; the

wave-vector component parallel to the surface is given

by k ¼ ðv=cÞsinu. The linewidths of the resonances

also change with the incidence angle and correspond

to the imaginary part of the frequency shown in Fig.

2c. For example, the first even band has a linewidth

that increases as a function of wave vector, until it

drops to zero at the light cone; the third even band has

a finite linewidth at k ¼ 0 (indeed it has dipolar

symmetry at the G point) which decreases as a func-

tion of wave vector. These and other features can be

recognized in the reflectance curves of Fig. 2b. Notice

that the small values of Im(v) in Fig. 2c justify the use

of perturbation theory. The behavior of Im(v) as a

function of dielectric contrast and air fraction is dis-

cussed in Ref. [5].
4. Exciton–polaritons in photonic crystal slabs

Exciton–polaritons are the mixed modes of the

electromagnetic field and an excitonic resonance,

and are a well established concept in solid state
e spectra from 0 to 80� in steps of 5�, (c) imaginary part of frequency

angular lattice of holes with r=a ¼ 0:3. All curves are calculated for

to even (odd) modes with respect to a horizontal mirror plane. The
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Fig. 3. (a) Dispersion of the uncoupled photon and exciton modes,

(b) dispersion of exciton–polaritons obtained by the full quantum

theory, and (c) reflectance spectra from 0 to 60� in steps of 2.5�. All

curves refer to TE-polarized modes along the GM symmetry

direction. Parameters: e ¼ 12, a ¼ 400 nm, d=a ¼ 0:2, r=a ¼ 0:3,

a single 8 nm wide QW with an oscillator strength per unit area

f=S ¼ 8:4 � 1012 cm	2.
physics [8]. Polaritonic effects in PhC slabs infiltrated

with organic materials have been already shown

experimentally[9] and studied theoretically[10,11]

on a classical basis.

Here we describe a quantum theory of exciton

polaritons in semiconductor-based PhC slabs. The

method described in Section 2 allows calculation of

the coefficients of the electromagnetic field through

the solution of the linear system (2). By imposing the

commutation relations on the classical fields in the

Coulomb gauge, we obtain a description of the elec-

tromagnetic field in terms of creation/annihilation

operators for its quanta, represented by the classical

eigenmodes. The active material consists of one or

more quantum wells (QWs) with an excitonic reso-

nance, and we assume that the QW is placed in the slab

with the same periodic pattern as the PhC. This leads

to confinement of the exciton center-of-mass in the

dielectric region. The second-quantized Hamiltonian,

including the radiation-matter interaction, is written as

Ĥ ¼
X
k;n

�hvknâ
y
knâkn þ

X
k;n

�hVknb̂
y
knb̂kn

þ i
X
k;n;n

Cknnðâkn þ â
y
	knÞðb̂

y
kn 	 b̂	knÞ

þ
X

k;n;n1;n2

C�
kn1n

Ckn2n

�hVkn
ðâ	kn1

þ â
y
kn1

Þðâkn2

þ â
y
	kn2

Þ: (6)

The first term describes free photon modes; âkn (â
y
kn)

is the destruction (creation) operator of a photon with

band number n and complex frequency vkn. The

excitonic problem is treated by solving Schrödinger’s

equation for the center-of-mass envelope function in a

piecewise constant potential. The corresponding

destruction (creation) operators are b̂kn (b̂
y
kn) with

eigenvalues �hVkn. The coupling matrix elements

are given by

Cknn ¼
e2�hV2

kn

2e0vkn

� �1=2

C
ðexcÞ
kn

X
j

EknðrjÞ�rj

�����
�����0

* +
;

(7)

where C
ðexcÞ
kn is the exciton wavefunction, Ekn is the

electric field profile for the photonic mode, and the

sum is over all QW electrons. Diagonalization of

Hamiltonian (6) leads to the full spectrum of mixed
photon-exciton modes. Polaritons are formed either

when the exciton interacts with a truly guided photo-

nic mode, or when it couples to a quasi-guided mode

whose radiative linewidth is smaller than the exciton–

photon coupling (7). The problem is also treated, for

comparison, on a semiclassical basis by calculating

the surface reflectance at varying angles of incidence

with the scattering matrix method [7], including the

excitonic resonance via a dispersive dielectric func-

tion in the QW layer. Result for 1D lattices of air

stripes have been previously reported [12].

As an example, we consider here a self-standing

membrane containing a QW layer at its center (see

inset of Fig. 3b) patterned with a triangular lattice of

holes. Fig. 3 shows the formation of PhC polaritons for

TE-polarized modes along the GM direction. The

excitonic resonance is placed at 1.58 eV and the

exciton interacts with two quasi-guided photonic

modes, see Fig. 3a. The intrinsic radiative width is

about 1 meV at 1.58 eV, while the coupling energy is

on the order of a few meV. This gives rise to coupled

modes with two anti-crossings, as shown in Fig. 3b.

The reflectance spectra in Fig. 3c display resonant

features that correspond to the excitation of polariton

modes above the light line and nicely reproduce the

exciton–polariton dispersion curves. The results of

quantum and semiclassical theories are in full agree-

ment with each other. Notice that the polariton split-

ting at resonance is � 10 meV, which is larger than the

typical values measured in III–V microcavities

[13,14]. This is due to the strong field confinement

in the slab waveguide, as compared to semiconductor
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Fig. 5. (a) Dispersion of the defect mode, (b) propagation loss, (c)

transmission spectra for different sample lengths with the para-

meters of the experiment of Ref. [18]: W1 waveguide in a Si slab

with e ¼ 12, d ¼ 220 nm, a ¼ 445 nm, r=a ¼ 0:37, Dr ¼ 5 nm.
microcavities where the electromagnetic field has a

sizeable penetration length in the distributed Bragg

reflectors.

5. Propagation losses and effect of disorder

in W1 waveguides

We consider a line defect consisting of a missing

row of holes along the GK direction of the triangular

lattice: this is called a W1 waveguide. The structure is

shown in Fig. 4a (inset). The channel width w equals

w0 �
ffiffiffi
3

p
a, if the positions of the surroundings holes

are those of the triangular lattice, but waveguides with

reduced or increased channel widths have also been

realized [15,16]. The W1 waveguide supports defect

modes in the photonic gap, which opens only for states

even with respect to a horizontal reflection plane. The

lowest TE defect mode (spatially even with respect to

the vertical midplane through the line defect) is mainly

index-guided, i.e., it is confined laterally by the dis-

continuity of the refractive index between the wave-

guide and the surrounding patterned material. Its

frequency-wave vector dispersion is shown in Fig. 4a.

We calculate the imaginary part of the frequency of

the defect mode, the group velocity vg and the pro-

pagation losses given by 2ImðkÞ ¼ 2ImðvÞ=vg (the
Fig. 4. (a) Dispersion of the defect mode, (b) imaginary part of

frequency for different values of the disorder parameter Dr=a.

Parameters of the air bridge structure are: e ¼ 12, d=a ¼ 0:5,

r=a ¼ 0:28, W1 waveguide (w ¼ w0 �
ffiffiffi
3

p
a).
loss in dB is given by 4:34 � 2ImðkÞ). In Fig. 4b we

show the imaginary part of the frequency of the defect

mode as a function of the degree of disorder Dr.1

Above the light line the intrinsic losses dominate and

coincide with those previously calculated [17], except

for a very large amount of disorder. Below the light

line the losses are purely extrinsic and fall to much

lower values. They grow quadratically with the dis-

order parameter, Dr, as expected for an elastic scatter-

ing mechanism in the perturbative limit.

In Fig. 5 we show a comparison of the calculated

propagation losses with a recent experiment per-

formed on W1 waveguides in Si membranes [18],

assuming the experimental structure and the quoted

disorder parameter Dr ¼ 5 nm. The defect mode is

guided for frequencies below va=ð2pcÞ ¼ 0:297 (Fig.

5a). The propagation loss in Fig. 5b has a minimum of

2.7 dB/mm when the defect mode crosses the light
1 The calculations employ also a supercell in the direction

perpendicular to the line defect with an average over different

supercell widths, as explained in Ref. [17]. An additional average

over different disorder distributions is taken in order to reproduce a

statistical ensemble.
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Fig. 6. (a) Dispersion of the defect mode, (b) group velocity, (c) imaginary part of frequency, (d) propagation loss for different values of the

channel width w. Parameters of the air bridge structure are: e ¼ 12, d=a ¼ 0:5, r=a ¼ 0:28, Dr=a ¼ 0:01. The results in (b), (c), and (d) are

shown only for frequencies below the crossing with the light line (straight line in (a)).
line. This result is in amazingly good agreement with

the experimental value 2.4 dB/mm. The losses

increase rapidly both below the light line, due to

the decreased group velocity of the defect mode,

and above the light line because of the onset of

intrinsic losses. The loss results can be shown in

the form of transmission spectra for different PhC

waveguide lengths, as in Fig. 5c. The comparison with

the measured spectra (see Fig. 6 of Ref. [18]) is very

satisfactory. It can be concluded that the present model

gives an adequate account of disorder-induced losses

measured in W1 waveguides, when state-of-the-art

values for the roughness are assumed.

Results for disorder-induced losses as a function of

core thickness and air fraction, as well as calculations

in Silicon-On-Insulator (SOI) structures, are presented

in Ref. [19]. Here, we shall discuss the dependence of

the losses on the channel width for W1-type wave-

guides in an air-bridge structure. In Fig. 6 we show the

defect mode dispersion, group velocity, imaginary part

of frequency and propagation losses for waveguides

with channel width w ranging from 0:7w0 to 1:5w0.

The frequencies of the defect mode decrease with an

increasing channel width. Moreover, the dispersion is

modified in such a way that the group velocity at the

crossing point with the light line increases and takes a

maximum value close to c=n� 0:25 for waveguides

with the largest values of w.2 The results of Figs. 6c
2 Reduced-width waveguides with large group velocity have

been demonstrated [15]: however, the mode considered in Ref.

[15] is not the one shown in Fig. 6, but rather a lower one at

frequencies lying close to the band edge.
and d, which assume a disorder parameter Dr ¼ 0:01a,

can be scaled to other values of Dr by using the

quadratic dependence discussed previously. The ima-

ginary part of the frequency shown in Fig. 6c

decreases rapidly for increasing channel width. This

behavior, similar to the one occurring above the light

line [17], follows from increasing localization of the

electromagnetic field in the dielectric (channel)

region, where it is less affected by fluctuations of

the hole diameter. As a consequence of both the lower

Im(v) and the higher vg, the propagation loss shown in

Fig. 6d is minimum for channel width w ¼ 1:5w0. By

considering also the spatially odd defect mode, it can

be shown that the waveguide with w ¼ 1:5w0 is truly

monomode. The minimum loss � 6 � 10	5 in dimen-

sionless units becomes about 0.15 dB/mm when

divided by a lattice constant a ¼ 420 nm (for a work-

ing wavelength l ¼ 1:55mm). Thus, we predict that

propagation losses on the order of 0:15 dB/mm can be

obtained in monomode waveguides with state-of-the-

art values for the roughness (Dr ¼ 4 nm), by increas-

ing the channel width to w ¼ 1:5w0. We notice that

such losses are comparable to those of silicon wires in

the monomode region [20,21].
6. Photonic cavities

Point defects in PhC slabs behave as 0D cavities

and support localized modes in the photonic gap.

Cavity modes are always subject to intrinsic losses,

as they have no wave vector and are coupled to the

continuum of leaky slab modes by the dielectric
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Fig. 8. Quality factor for L1, L2, L3 defects in a silicon membrane

with e ¼ 12, a ¼ 420 nm, d=a ¼ 0:6, r=a ¼ 0:29 as a function of (a)

displacement and (b) shrinking of the two holes close to the defect

along the GK direction (see Fig. 7).
modulation. Still, photonic cavities with large quality

factor Q and small mode volumes can be defined. The

quality factor can be increased by a momentum-space

design, which allows reducing the radiative compo-

nent of the confined photonic mode [22,23]. In real

space, this corresponds to changing the position or size

of the nearby holes. Up to now, the best performing

cavity consists of three missing holes along the GK

direction of the triangular lattice. By using the prin-

ciple of ‘‘gentle confinement,’’ which consists of

shifting the positions of the holes close to the defect,

Q-factors as high as 45,000 have been demonstrated

[23].

Within the present method, the quality factor is

calculated as Q ¼ v=ð2ImðvÞÞ, by introducing a

supercell in two directions and evaluating Im(v) in

perturbation theory. We focus on cavities with one,

two, or three missing holes in the triangular lattice (L1,

L2, L3 defect) and consider a displacement or a shift

of the nearby holes in the GK direction, as illustrated

in Fig. 7. We calculate only intrinsic losses, i.e., we do

not include the effect of disorder which is left for

further analysis.

In Fig. 8 we show the quality factor as a function of

(a) hole displacement and (b) hole shrinking. All

curves have a pronounced maximum, confirming that

the Q-factor is indeed increased by gentle confine-

ment. For the case of the L3 defect with hole dis-

placement, we find Q ¼ 45,000 for Dx=a ¼ 0:15, in

agreement with the experimental results of Ref. [23].

The maximum calculated value is Q� 1:5 � 105 at

Dx=a ¼ 0:18. The experimental values for Dx=a ¼
0:2 and 0.25 are lower than the theoretical ones.

Turning now to the case of hole shrinking, we

notice that the maximum of the Q-factor as a function

of Dr=a is broader, implying that the structure may be

more tolerant to small imperfections in fabrication.

When the two nearby holes are shrunk to zero radius,
Fig. 7. Schematic structure of L1, L2, L3 point defects with (a) hole

displacement and (b) hole shrinking.
that is Dr=a ¼ 0:29, the curve relative to the Ln defect

tends to the value for the L(n+2) defect at Dr ¼ 0. The

results of Fig. 8 show clearly that an L3 cavity with

either hole displacement or hole shrinking has a higher

Q than a bare L5 cavity.
7. Conclusions

The approach to PhC slabs consisting on an expan-

sion in the basis of guided modes and on treating

coupling to leaky modes by perturbation theory proves

to be an efficient method for calculating photonic

bands, gap maps, and diffraction losses for modes

below and above the light cone. This approach is

especially suited for PhC slabs with strong refractive

index contrast. Line and point defects are treated by

introducing a supercell, like in the usual plane-wave

calculations. The formulation allows description of

the effect of disorder on radiative losses by means of a

model of random variations of hole size, or by related

models currently under investigation. Also, the knowl-

edge of electric and magnetic field profiles is the

starting point for a quantum theory of exciton–polar-

itons in PhC slabs.

The main results discussed here are as follows. Gap

maps of photonic lattices in a waveguide differ con-

siderably from their 1D or 2D counterparts. Exciton–

polaritons can form in PhC slabs made of III–V

semiconductors with quantum wells, both below

and above the light line: in the latter case the eigen-

modes are radiative and can be probed by surface

reflectance. Results for radiative losses in W1 wave-

guides and for Q-factor of photonic cavities have been
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presented. In particular, disorder-induced losses grow

quadratically with the disorder parameter and

decrease while increasing the waveguide width.

Assuming the same roughness parameter as in state-

of-the-art samples (Dr � 4 nm), we predict that losses

� 0:15 dB/mm can be achieved in high-index mem-

branes using waveguides with increased channel width

w ¼ 1:5w0.
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