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Recent theoretical work on exciton–light coupling in waveguide-embedded photonic crystals is reviewed. 

After a short description of the theory of photonic crystal slabs, the following issues are discussed: (i) a 

quantum-mechanical formulation of the interaction between photonic modes and quantum-well excitons, 

leading to a description of photonic crystal polaritons; (ii) calculations of variable-angle reflectance spec-

tra, which show that radiative polaritons can be excited by an optical beam incident on the slab surface; 

(iii) a description of nanoscale cavities with extremely high Q-factors and low mode volumes in photonic 

crystal slabs; (iv) a quantum-mechanical model of the interaction between confined nanocavity modes and 

single quantum-dot transitions, leading again to a strong-coupling regime of light–matter interaction. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Strong exciton–light coupling and the formation of polariton states is a recurring theme in solid-state 

physics and optics. The quantum theory of exciton-polaritons in bulk crystals was first formulated by 

Hopfield [1] and Agranovich [2]. The effect of quantum confinement on exciton-polariton states has 

been the subject of a number of investigations (for reviews see, e.g., [3–5]). Photon confinement in pla-

nar semiconductor microcavities with embedded quantum wells (QWs) leads to a strong-coupling regime 

of exciton–light coupling and to robust cavity polariton states [6–9]. Exciton–light coupling in micro-

cavities with full three-dimensional photon confinement, like micro-pillars and micro-disks, has also 

been investigated [10–12]. 

 The field of photonic crystals (PhCs) has become increasingly important since the pioneering works of 

Yablonovitch [13] and John [14]. In particular, photonic crystals embedded in planar waveguides (also 

known as photonic crystal slabs) can lead to a full control of light propagation because of a two-

dimensional (2D) photonic lattice in the slab plane combined with dielectric confinement in the vertical 

direction [15–17]. Nanoscale cavities in PhC slabs with extremely high Q-factors and low mode volumes 

have been recently demonstrated [18, 19]. The performance of these nanocavity structures for optical con-

finement is, in principle, much better than that of conventional planar microcavities or of micro-pillar and 

micro-disk structures. Recently, the strong-coupling regime of quantum dot transitions coupled to high-Q 

cavity modes has been demonstrated for both micro-pillars [20] and PhC nanocavities [21]. 

 In this paper we describe recent theoretical work dealing with exciton-polariton states in PhCs and in 

nanocavities. In Section 2 we review a few basic concepts related to photonic mode dispersion in PhC 
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slabs. In Section 3 we present a quantum-mechanical formulation of exciton-light coupling in PhC slabs 

with embedded QWs, leading to the conditions for the occurrence of a strong-coupling regime, and cal-

culations of variable-angle reflectance from the slab surface: the quantum and semiclassical approaches 

agree with each other and show that radiative exciton-polaritons can be probed by surface reflectivity. In 

Section 4 we describe a basic nanocavity structure and present results for the Q-factor as a function of 

cavity geometry. In Section 5 we treat the coupling of a single quantum-dot transition with a high-Q 

cavity mode, and quantify the conditions for the occurrence of a strong-coupling regime. Section 6 con-

tains concluding remarks. 

2 Mode dispersion and linewidths in photonic crystal slabs 

Photonic crystal slabs consist of planar dielectric waveguides patterned with a one-dimensional (1D) or 

two-dimensional (2D) lattice. They can have either a weak refractive index contrast between core and 

claddings (like in the GaAs/AlGaAs or InP/InGaAsP systems) or a strong index contrast like in the self-

standing membrane or air-bridge. Electromagnetic eigenmodes in PhC slabs can be either truly guided (if 

their frequency lies below the light line of the cladding material) or quasi-guided (if the frequency lies 

above the light line). Truly guided modes are evanescent in the cladding regions and have low propaga-

tion losses that are due only to fabrication disorder (in the transparency region of the medium in which 

absorption losses are absent). Quasi-guided modes, instead, have a radiative component in the cladding 

regions and suffer from high scattering losses due to diffraction out of the slab plane. For the same rea-

son, however, they couple to an electromagnetic wave incident on the slab surface and represent opti-

cally active excitations of the photonic system. Indeed, the dispersion relations of quasi-guided modes 

have been studied in a number of angle-resolved linear [22–25] and nonlinear [26–29] experiments. 

Recently, truly-guided modes have also been probed by optical experiments from the slab surface using 

an attenuated-total-reflectance configuration [30]. 

 In order to calculate the dispersion relations of guided and quasi-guided modes in PhC slabs, we adopt 

the guided-mode expansion (GME) method recently developed [31]. As conveniently done for photonic 

crystals, we start from the second-order equation for the magnetic field 
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where ( )ε r  is the spatially dependent dielectric constant. If the magnetic field is expanded in an ortho-

normal basis set as ( ) ( )c
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H  (which is the analog of a quantum Hamiltonian) is given by 
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For the case of a PhC slab we have a waveguide along z and a periodic patterning in the xy  plane. The 

basis states ( )
µ

H r  are chosen to consist of the guided modes of an effective waveguide, where each 

layer j  has a homogeneous dielectric constant given by the spatial average of ( )j x yε , . The index µ  

can be written as ( )µ α= + ,k G , where k  is the 2D Bloch vector, G  is a reciprocal lattice vector and 

α  labels the guided modes at wave vector +k G . The basis states with the same Bloch vector k are 

coupled by the dielectric modulation. The matrix elements (3) can be expressed in terms of the inverse 

dielectric tensor in each layer 1( )jε
-

, ¢G G , which is evaluated by a numerical inversion of the dielectric 

matrix ( )jε , ¢G G . 
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 The basis set consisting of the guided modes of the effective waveguide is orthonormal but not com-

plete since the leaky modes of the waveguide are not included. Coupling to leaky modes produces a 

second-order shift of the mode frequency: the neglect of this effect (which is usually small, at least for 

the low air fractions that are employed here) is the main approximation of the method. When the guided 

modes are folded in the first Brillouin zone, many of them fall above the light line and become quasi-

guided. Indeed, first-order coupling to leaky modes at the same frequency leads to a radiative decay 

width, which is expressed as twice an imaginary part of the frequency. This can be calculated by time-

dependent perturbation theory, like in Fermi Golden Rule for quantum mechanics, and is given by 
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where 2 2( / )cρ ω;
k

k  is the 1D photonic density of states at fixed in-plane wave vector [32, 33]. Notice 

that the mode Q-factor can be obtained as [2 Im( )]Q ω ω= / . 

 As an example of photonic mode dispersion, in Fig. 1 we show the photonic bands of a triangular 

lattice of air holes in a membrane with the dielectric constant of GaAs at optical frequencies, along the 

Γ –M and Γ –K symmetry directions of the 2D Brillouin zone. In Fig. 1(a) a schematic picture of the 

structure and a definition of its direct and reciprocal lattices is displayed. A high-index membrane sup-

ports both guided modes (lying between the cladding and core light lines) and quasi-guided modes (lying 

above the air light line). It should be noted that the photonic band dispersion is calculated assuming the 

low temperature value at 1 48.  eV for the dielectric constant of the GaAs layer, i.e., 12 95ε = . . Although 

the band dispersion in Fig. 1(b) is calculated with a frequency-independent dielectric constant, an exciton 

level at 
exc

1 48E = .  eV (corresponding to a low-temperature exciton in a typical InGaAs quantum well) 

is also shown. This will be useful for the study of radiation–matter interaction in the next Section. It can 

be seen that the exciton energy crosses several photonic modes of the 2D photonic lattice. Only even 

modes with respect to the horizontal midplane (indicated with 1
xy

σ = + ) are considered here. 

 An expanded plot of the dispersion and the mode linewidths (twice the imaginary parts of the ener-

gies) along the main symmetry directions is shown in Fig. 2. Along the GM orientation, mode 2 has 

vanishing radiative linewidth when crossing the light line and becoming a truly guided mode, while 

mode 1 has vanishing linewidth on approaching the Γ  point. The latter behavior is determined by  

symmetry considerations [15, 33] since at Γ  only dipole-active, twofold-degenerate modes are coupled 

 

 

Fig. 1 (a) Schematic picture of a high index PhC membrane of thickness d patterned with a triangular lattice of air 

holes, together with its direct and reciprocal lattices; (b) photonic band dispersion for the structure in (a) with the 

following parameters: dielectric constant ε = 12.95, lattice constant a = 350 nm, membrane thickness d = 0.4a, hole 

radius r = 0.3a. The fundamental exciton level at 1.48 eV is also plotted. Only even modes with respect to the hori-

zontal midplane (σxy = +1) are shown, and for each symmetry direction the modes are classified as odd (σkz = –1) or 

even (σkz = +1) with respect to the corresponding vertical plane of incidence. The dotted lines represent the light 

dispersion in the air claddings and in the effective waveguide core. 

(a) (b) 



2200 L. C. Andreani et al.: Exciton-polaritons and nanoscale cavities in photonic crystal slabs 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

 

Fig. 2 (online colour at: www.pss-b.com) Complex energy dispersion of σxy = +1 photon modes for energies 

around the excitonic resonance, along the main symmetry directions of the triangular lattice (parameters as in 

Fig. 1). Left: mode linewidths along ΓM. Middle: real part of mode energies. Right: mode linewidths along ΓK. The 

points corresponding to a non-dispersive exciton resonance with E
exc
 = 1.48 eV and linewidth Γ

exc
 = 2 × 10–4 eV are 

also shown. 

 
to normally incident light. Considering now the ΓK direction, the two photonic modes have different 

symmetries with respect to the corresponding vertical plane of incidence. In particular, the even mode 

(indicated with 1
z

σ = +
k

) has vanishing linewidth on approaching the Γ  point, like the corresponding 

mode along ΓM. On the contrary, the odd mode ( 1
z

σ = -
k

) has much higher radiation linewidths 

(2 Im ( ) 20E >  meV). The value of the photonic mode (and exciton) linewidth is a crucial parameter 

when considering the interaction between photon and exciton states, as discussed in the next section. 

 It is important to notice, in the left panel of Fig. 2, that in correspondence to the exciton resonance 

both photonic eigenmodes have very small linewidths (2 Im 3( ) 10E
-

<  eV). We thus reasonably expect 

that photonic crystal polaritons should form at two different points in the irreducible Brillouin zone along 

ΓM, with two distinct anticrossings between exciton center-of-mass levels and photonic bands. 

3 Exciton-polaritons in photonic crystal slabs 

In order to develop a quantum-mechanical theory of polaritons in PhC slabs, we have to quantize both 

the photon and exciton states in the dielectric structure (a detailed account of the formalism is presented 

in Ref. [34]). The electric and magnetic fields are expanded as 
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where †
âµ  ( âµ ) are creation (destruction) operators of field quanta with energies µ

ω . In the above for-

mulas, 
0
ε  is the vacuum permittivity, V  is a quantization volume, and ( )nµ = ,k  is a combined index 

which includes the Bloch vector k and the photonic band index n . The field eigenmodes ( ) ( )
µ µ

,E r H r  

can be calculated by solving the classical Maxwell equations and are normalized as 
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For the exciton part, we consider a membrane containing a thin QW layer that is also patterned with air 

holes, assume strong electron–hole confinement leading to separability of the exciton wavefunction, and 

solve the Schrödinger equation for the center-of-mass motion in the QW plane 
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where ( )x y� = ,r  and the effective potential ( )V � = •r  in air regions, while ( ) 0V � =r  in the non-

patterned regions of the quantum well. We neglect dead-layer effects (the thickness of the dead layer is 

usually less than 10 nm, i.e., much smaller than the length scale of the photonic structure) and also im-

age-charge potentials. Equation (9) is solved numerically by plane wave expansion, yielding quantized 

center-of-mass levels in the periodic potential. By this procedure, the exciton levels are labelled by the 

same quantum number of the electromagnetic modes: i.e., by a Bloch vector 
exc

K  and a discrete index 

ν . This allows introducing exciton creation (destruction) operators †
ˆb
σ
 ( ˆb

σ
) corresponding to the ener-

gies 
σ

Ω� , where 
exc

( )σ ν= ,K  is again a combined index. 

 In the interaction with photon states, the Bloch vector is conserved, or 
exc

�K k . However, a photonic 

mode with band index n  couples to exciton center-of-mass levels with any ν . The interaction is deter-

mined by a matrix element of the full Hamiltonian, as first shown in Refs. [1, 2] for bulk exciton–

polaritons and later extended to quantum-confined systems [3–5]. The coupling matrix element between 

exciton and photon takes the form 
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where (exc)

ν
Ψ

k
 is the exciton wavefunction, and the sum is over all the electrons in the QW material. If the 

QW exciton is a heavy-hole state, only the in-plane components of the electric field are involved and 

1
xy

σ = +  modes (often called TE-like modes in the literature) are preferentially coupled. The integral can 

be expressed in terms the oscillator strength f  of the excitonic transition, which is generally defined as 
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where m  is the free-electron mass, ˆe  is the polarization unit vector of the exciton and jr  ( jp ) is the 

position (momentum) operator of the QW electrons. The matrix element (10) is found to depend on the 

oscillator strength per unit area, f S/ , as well as on the spatial overlap between the exciton center-of-

mass wavefunction and the mode electric field in the QW plane: 
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The full quantum Hamiltonian describing coupled photon and exciton states is finally given by 
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It should be noticed that both photon and exciton energies are taken to be complex quantities: i.e., the 

imaginary part of the frequency for quasi-guided photonic modes, as well as the exciton linewidth arising 

from non-radiative processes, are included in the calculation. Hamiltonian (13) is diagonalized by using a 

generalized Hopfield transformation [1, 35] to expand new destruction (creation) operators ˆP
k
 ( †
ˆP
k
) as 

linear combinations of ˆ
n

a
k
 ( †
ˆ

n
a
k
) and ˆb

νk
 ( †
ˆb
νk
), with the condition ˆ ˆ ˆ[ ]P H E P, =

k k k
. The transformation, 
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which leads to a non-hermitian eigenvalue problem, applies also to a Hamiltonian that includes dissipa-

tive terms. The new eigenenergies E
k
 correspond to mixed excitations of radiation and matter, which 

can be either in a weak or in a strong-coupling regime: in the latter case they give rise to photonic crystal 

polaritons. 

 For a GaAs membrane containing a typical InGaAs/GaAs quantum well at the field antinode, the 

coupling matrix element is calculated to be of the order of 6 meV in the present structure. The exciton 

linewidth in high-quality structures at low temperature can be made lower than 0.6 meV [36], i.e., negli-

gibly small as compared to the energy scale of the interaction. Thus, the eventual regime of the exciton–

photon coupling depends critically on the value of the photonic mode linewidth. If the exciton interacts 

with a truly-guided mode, the (intrinsic) linewidth is zero and the exciton–light coupling is always in a 

strong-coupling regime. The resulting polaritons are evanescent and non-radiative, as they lie below the 

air light line. Radiative polariton states are obtained when the exciton interacts with a quasi-guided mode 

whose linewidth is smaller than the exciton–photon coupling. Several possible situations for the interac-

tion of the exciton with quasi-guided modes are illustrated in Fig. 2 above. 

 Radiative polaritons in PhC slabs can be probed by reflectance (or transmittance) from the slab sur-

face, as done in a pioneering paper where the strong exciton resonance of an organic molecule [bis-

(phenethyl-ammonium) tetraiodoplumbate (PEPI)] with a giant oscillator strength per unit area was em-

ployed to observe the strong-coupling at room temperature [22]. Observing the same effect in III–V 

semiconductors is more difficult and has not been achieved at time of writing. Here we calculate the 

angle-resolved reflectance from the surface of the PhC slab using the scattering-matrix method [37, 38], 

which yields an exact numerical solution of Maxwell equations for a stratified medium consisting of 

patterned layers that are homogeneous in the z-direction. The presence of the exciton resonance is taken 

into account at a semiclassical level by adding a Lorentz-oscillator term to the dielectric function in the 

QW layers: 

 LT

exc

exc exc
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( ) 2i

ω
ε ω ε

Ω ω Γ
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Ê ˆ= + ,Á ˜Ë ¯- - /
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where ε
•

 is the background dielectric constant of the QW material, 
LT

ω  is the longitudinal–transverse 

(LT) splitting and 
exc

Ω� , 
exc

Γ  are the bare exciton energy and linewidth as in the quantum calculation. 

The LT splitting may be related to the quantum-mechanical oscillator strength per unit area by 

 
2

LT

0 exc QW

2

4

e f

m L S
ω

ε ε Ω

�
�

•

p
= ,

p
 (15) 

where QWL  is the QW width. This relation is valid for a single quantum well in the strong (electron–

hole) confinement regime. A fuller discussion of the relation between semiclassical and quantum de-

scriptions of the light–exciton interaction can be found elsewhere [3–5]. 

 In Fig. 3 we show a comparison between quantum and semiclassical treatments of PhC polaritons 

(results for 1D photonic lattices were previously presented in Ref. [39]), for a structure containing two 

InGaAs QWs. In order to make the quantum and semiclassical calculations consistent with each other, an 

oscillator strength per unit area 12
4 2 10f S/ = . ¥  cm 2-  is assumed for each InGaAs QW, corresponding to 

a quantum well of width QW 8L =  nm and a LT splitting 
LT

0 2ω� = .  meV in the semiclassical calculation. 

Panels (a), (c) display angle-resolved reflectance spectra along the Γ–M and Γ–K orientations, respec-

tively, while panel (b) reports the dispersion of coupled exciton-photon modes as calculated from the 

quantum theory (small circles) and extracted from the spectral structures in reflectance taking into ac-

count parallel momentum conservation (square points). Along the Γ–M orientation (TE polarization of 

incident light) there are two anticrossing points, i.e., exciton–light coupling is in a strong-coupling re-

gime for both photonic modes 1 and 2 previously shown in Fig. 2. Along the Γ–K orientation (TM inci-

dent polarization) there is only one anticrossing point. It is worth noting that odd modes ( 1
z

σ = -
k

) are 

excited by TE incident radiation along ΓK, whilst even modes ( 1
z

σ = +
k

) are excited by TM inci- 

dent beams along ΓM. The results of Fig. 3 demonstrate that radiative polaritons can be observed by 
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Fig. 3 (online colour at: www.pss-b.com) Photonic crystal polaritons in a 2D triangular lattice along the main 

symmetry directions (parameters as in Fig. 1). Scattering matrix calculations of reflectance spectra along (a) ΓM 

(TE incident light) and (c) ΓK (TM incident light) are compared to quantum calculations of mode dispersion in (b): 

small circles are from the quantum theory results, while square points are extracted from reflectance spectra in (a) 

and (c). 
 
angle-resolved reflectance, provided the photonic mode linewidth (and, of course, the exciton linewidth) 

be smaller than the exciton–photon coupling. They also demonstrate that the semiclassical and quantum 

treatments of photonic-crystal polaritons yield results that are in very good agreement with each other – 

the expected results for linear optical properties. 

 Notice that the polariton splitting at resonance is of the order of 10 meV with two embedded QWs. 

This is larger than common values for III–V microcavities which are typically of the order of 4 meV 

with two QWs [40], and no larger than 6–8 meV even with several quantum wells close to the field 

antinodes [7–9]. This increase of the polariton splitting has little to do with the x y,  dependence of the 

electric field and of the exciton envelope function: since the exciton center-of-mass levels are nearly 

degenerate, for a given photonic mode there is always a linear combination of exciton states which has 

the proper spatial dependence to yield an overlap matrix element (10) close to unity. In this respect, the 

physics of exciton-light coupling in photonic crystals is similar to the case of pillar microcavities [35] 

where a cavity mode couples to several exciton states and the polariton splitting has only a slight de-

pendence on the pillar radius. The reason for the increased polariton splitting in PhCs lies in a better field 

confinement along the vertical direction: in a microcavity with dielectric mirrors the penetration of the 

electric field in the distributed Bragg reflectors reduces the overlap of the cavity mode with the exciton 

state [5, 40], while in a PhC slab the fundamental waveguide mode is almost perfectly confined within 

the slab, thus yielding optimal coupling with the QW exciton. 

4 Nanoscale cavities in photonic crystal slabs 

Point defects in PhC slabs behave as 0D cavities and support localized modes in the photonic gap. Cavity 

modes are always subject to radiation losses, as they have no wave vector and are coupled to the continu- 

um of leaky slab modes by the dielectric modulation. Still, photonic cavities with large quality factor Q 

and small mode volumes can be defined. The quality factor can be increased by a momentum-space 

design, which allows to reduce the radiative component of the confined photonic mode [41]. In real 

space, this corresponds to changes of the position or size of the nearby holes. One of the best performing 

cavity structures consists of three missing holes along the ΓK direction of the triangular lattice: by using 

the principle of “gentle confinement”, which consists of shifting the positions of the holes close to the 

defect, Q-factors as high as 5
1 5 10. ¥  have been demonstrated [42]. The very high Q-factors can also be 

interpreted with a Fabry–Pérot model [43]. Using a conceptually different design approach, based on 

PhC slab heterostructures with varying lattice constants, measured Q-factors of the order of 5
6 10¥  have 

been reported [44]. 
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  L3L2  L1  

 (a)

 (b)  

Fig. 4 (online colour at: www.pss-b.com) Schematic structure of L1, L2, L3 point defects with (a) hole displace-

ment and (b) hole shrinking. 

 
 Within the present method, the quality factor is calculated as [2 Im( )]Q ω ω= /  by introducing a super-

cell in two directions and evaluating Im( )ω  in perturbation theory with the use of Eq. (4). Notice that by 

using a supercell, all photonic modes that fall above the light line upon folding in a reduced Brillouin 

zone become radiative: by this procedure, the determination of the Q-factor of cavity modes is similar to 

the calculation of propagation losses of extended modes. We focus on cavities with one, two or three 

missing holes in the triangular lattice (L1, L2, L3 defect) and consider a displacement or a shift of the 

nearby holes in ΓK direction, as illustrated in Fig. 4. We calculate only intrinsic losses, i.e., we do not 

include the effect of disorder which is left for further analysis. 

 In Fig. 5 we show the quality factor as a function of (a) hole displacement and (b) hole shrinking. All 

curves have a pronounced maximum, confirming that the Q-factor is indeed increased by gentle confine-

ment. For the case of the L3 defect with hole displacement, we find 4
4 5 10Q = . ¥  for 0 15x aD / = . , in 

agreement with the experimental results [18] obtained on nanocavities in Silicon membranes with a cavity 

mode around 1 55µmλ = . . The maximum calculated value is 5
1 5 10Q � . ¥  at 0 18x aD / = . . The experi-

mental values for 0 2x aD / = .  and 0.25 are lower than the theoretical ones. Turning now to the case of hole 

shrinking, we notice that the maximum of the Q-factor as a function of r aD /  is broader, implying that the 

structure may be more tolerant to small imperfections in fabrication. When the two nearby holes are 

shrunk to zero radius, the curve relative to the Ln defect tends to the value for the L(n +2) defect at 
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Fig. 5 (online colour at: www.pss-b.com) Quality factor for L1, L2, L3 defects in a silicon membrane 

with  12
r

ε = , 420a =  nm, 0 6d a/ = . , 0 29r a/ = .  as a function of (a) displacement and (b) shrinking of 

the two holes close to the point defect along the ΓK direction. The experimental points are taken from 

Ref. [18]. The mode considered has symmetry σ
xy
 = +1. 
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Fig. 6 Schematice picture of a L3 nanocavity and field profile of the ground cavity mode along the Γ–K and Γ–M 

symmetry directions for structure parameters as in Fig. 5. The field is calculated for the structure with no shift or 

shrinking of nearby holes. 

 

0rD = . The results of Fig. 5 show clearly that an L3 cavity with optimal hole displacement or shrinking 

(maximum of L3 curves) has a higher Q than a bare L5 cavity (end point of L3 curve in Fig. 5b). 

 In Fig. 6 we show the electric field profile along the main symmetry directions for the ground mode of 

the L3 cavity (for null displacement and shrinking of nearby holes). The square modulus of the electric 

field has a maximum at the cavity center, but it oscillates along the Γ–K direction (and, to a lesser extent, 

along the Γ–M direction) with secondary maxima. The oscillations along Γ–K result from the physical 

origin of the L3 cavity mode, which results from quantization of the line-defect mode corresponding to a 

missing row of holes along the Γ–K direction or W1 waveguide [45]: the quantized wave vector in the 

extended zone scheme is of the order of 4π (3 )a/ , which explains the period of the oscillations. Figure 6 

implies that there are three favorable positions for placing a dipole emitter at field antinodes: however, 

the extension of the region where the field is close to its maximum value is of the order of 0 1a± . , i.e., 

much smaller than the lattice constant. From Fig. 6 it is also possible to deduce the mode volume, which 

is generally defined as [46, 47] 

 �

2

2

peak peak

( ) | ( )| d

( ) | ( )|
V

ε

ε

= ,
Ú r E r r

r E r
 (16) 

where peakr  is the peak position of the product 2( ) | ( )|ε r E r  and the integral is the normalization of  

the electric field. The mode volume for the field shown in Fig. 6 is � 2 1 3

peak( | ( )| ) 0 67
r

V aε �

-

= .E r , where 

the electric field is normalized according to Eq. (7), and since the dimensionless frequency of the cavity  

mode is 0 27a λ �/ .  we get � 30 56( )
r

V nλ� . /  (
r r
n ε=  is the dielectric constant at the peak position). The 

mode volume of this kind of PhC nanocavity is smaller than a wavelength cubed, i.e., the electromag- 

netic field is very well confined in all three spatial directions. 

5 Strong exciton-light coupling in nanocavities 

In this section we consider a single InAs quantum dot (QD) coupled to a PhC nanocavity realized in a 

GaAs membrane. While quantum-well excitons are described by bosonic operators, the exciton transition 

in a single quantum dot can be modelled to a first approximation by a two-level system. The theory of 

radiation-matter coupling in this case relies on the Jaynes–Cummings model. If the QD interacts with a 

single cavity mode, the Hamiltonian is 

 † †1
exc 3 02

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )H a a i a a
µ µ µ µ µ

Ω σ ω Ω σ σ� � �
- +

= + + + - , (17) 
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where 
exc

Ω  is the fundamental exciton frequency, σ̂ +
, σ̂

-

, 3σ̂  are pseudo-spin operators for the two-

level system with ground (excited) state |gÒ  (|eÒ) and †
a a
µ µ
,  are creation/destruction operators for the 

cavity mode µ . The coupling constant 
0

Ω �= · ◊ Ò/d E  of the quantum dot–cavity interaction is 

 

1 2
2

0

0

1

4
r

e f

mV
µ

Ω
ε ε �

/

Ê ˆp
= ,Á ˜pË ¯

 (18) 

where f  is the oscillator strength of the transition, V
µ

�  is the mode volume defined in Eq. (16), 
r

ε  (
0

ε ) is 

the relative (vacuum) permittivity and m  is the free-electron mass. We are assuming that the quantum 

dot is located at the peak position of the electric field. The condition of spatial overlap between the QD 

and the cavity mode can be met by aligning the cavity around a chosen quantum dot, as demonstrated in 

Refs. [48–50]. 

 The quantum Hamiltonian (17)  has  a  discrete  spectrum consisting in a ladder of dressed states, in  

which each excited state is split into two levels separated by 
0

2 1nΩ� + , where n  is the number of 

photons in the cavity mode [51]. In the weak excitation regime, we can consider only the transition be-

tween the ground state and the first excited doublet, whose splitting 
0

2 Ω�  corresponds to the vacuum-

field Rabi splitting between the QD transition and the single cavity mode. In order to take into account 

the finite linewidth of both the QD exciton (
exc

Γ ) and the cavity mode (2 Im( ) Q
µ µ µ

ω ω� �= / ), a master-

equation approach has been used, which allows calculating the spontaneous emission spectrum. This 

leads to an analytical expression for the complex energy splitting of the two oscillators [52, 53] 

 

2

exc exc2 2

exc 0

( ) ( )

4 4

Q Q
i

µ µ
Γ ω Γ ω

Ω Ω Ω
� �

� � �
±

- / + /Ê ˆ Ê ˆ= ± - - .Á ˜ Á ˜Ë ¯ Ë ¯
 (19) 

We assume the quantum dot to be in resonance with the cavity mode, i.e., the QD has to be not only 

spatially but also spectrally resonant. Achieving spectral overlap is made difficult by the size distribution 

of self-assembled QDs. Spectral resonance is imposed here by properly designing the GaAs PhC nano-

cavity to have the ground cavity mode at energy 1 3
µ

ω� ∼ .  eV ( 950
µ

λ ∼  nm), which is a typical value 

for the fundamental exciton resonance of InAs QDs. 

 The solutions of Eq. (19) are plotted in Fig. 7 as a function of the Q-factor. We take a mode volume  

�
14

1 1 10V �

-

. ¥  cm 3 , estimated from 30 56( )
r
nλ∼ . /  at a wavelength 950λ =  nm and 3 54

r r
n ε �= .  (low  

temperature value for GaAs at 1.3 eV). The oscillator strength 10 7f � .  is a typical value for self-

assembled InAs QDs corresponding to the measured lifetime 1τ ∼  ns [10]. The crossover from weak to 

strong coupling is seen to appear at 2000Q ∼ , even if the corresponding imaginary part is still larger than 

the Rabi splitting. The maximum Rabi splitting for this kind of systems is seen to be reached already  

for 10 000Q ∼ . Such values of Q are well within the reach of present-day fabrication technology, even for 

  

(a) (b)

 

Fig. 7 (a) Real and (b) imaginary parts of Eq. (19) as a function of Q-factor, for QD parameters 

exc
0 05Γ = .  meV, 10 7f = . , and effective cavity mode volume �

14
1 1 10V

-

= . ¥  cm3. 
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cavities in GaAs slabs for which the Q-factor is limited by absorption at the GaAs/native oxide interfaces 

at the hole sidewalls [50]. 

 In Figs. 8(a–c) the calculated mode energy, Q-factor and effective volume are plotted as a function of 

the holes’ shift, x aD / , for proper design parameters of the GaAs PhC membrane. The resonance energy 

and the mode volume do not change appreciably, while the Q-factor has a dramatic increase with a 

maximum 5
10Q >  for 0 18x a ∼D / . . The latter results are employed to calculate the complex splitting as 

a function of x aD / , which is shown in Fig. 8(d) and (e). It is evident that the system is always in the 

strong coupling regime, regardless of the displacement of the nearby holes. This result is in agreement 

with the calculations of Figs. 7, because the Q-factor is always higher than 2000 for the present nanocav-

ity. The imaginary part of the complex splitting has a minimum for a value of x aD /  corresponding to the 

maximum Q-factor. It is arguable that, in order to observe the strong coupling, shifting the holes in the 

PhC slab nanocavity could be of importance for reducing the emission linewidth of the two peaks. These 

results agree well with recent experimental findings [21] as well as with a theoretical study of the strong-

coupling based on a Green’s function approach [54]. 

 Notice that the physics of the Jaynes–Cummings model (17) is very different from that of the Hamil-

tonian (13) describing the interaction between photonic modes and quantum-well excitons. The point is 

that the QW exciton is a delocalized excitation that represents a collection of excited unit cells and has a 

bosonic character, while the quantum-dot transition is localized and has to be modelled by a two-level 

system which cannot be excited more than once. The two systems behave in a similar way under weak 

excitation conditions, but the differences become manifest on increasing the excitation, as the quantum- 

dot transition coupled to the nanocavity mode gives a Rabi splitting that increases like 1n + . Indeed,  

the coupled QD–cavity system is expected to display a Mollow-type spectrum [55] with a classical Rabi 

splitting at high excitation intensity. Of course, a more complete model should take into account bi-

exciton and multi-exciton states of the quantum dot [56, 57] with their complex many-body interactions. 

 

(b)

(a)

(c)

(d)

(e)

 

Fig. 8 Results for a PhC slab nanocavity in GaAs air bridge. Parameters of the structure are: 12 53
r

ε = . , 

126d =  nm, 258a =  nm, 0 3r a/ = . . (a) Energy, (b) Q-factor, and (c) mode volume for the cavity mode as a 

function of the shift of two holes along the x-direction. (d) Real and (e) imaginary parts of Eq. (19), plot-

ted as a function of the holes’ shift by using the quantities calculated in (a), (b), and (c), and QD param- 

eters 
exc

0 05Γ = .  meV, 10 7f = . . 
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6 Conclusions 

Photonic crystal slabs are very suitable systems for the control of light propagation and confinement in 

all spatial directions. A recently developed theory of photonic crystal slabs has been reviewed. The main 

conclusions of the present work are as follows. 

 Exciton-polaritons can form in PhC slabs with embedded quantum wells when a narrow excitonic 

transition is in resonance with either a truly-guided or a quasi-guided photonic mode: in the latter case, 

the intrinsic linewidths of the exciton and of the photonic mode need to be smaller than the coupling 

matrix elements. When these conditions are met, the polariton splitting can be larger than for polariton in 

microcavities, due to the tighter field confinement in a high-index planar waveguide. Polaritons arising 

from excitons in interaction with quasi-guided modes are radiative and can be probed by reflectance 

from the slab surface. The results of quantum and semiclassical treatments of photonic crystal polaritons 

are in very good agreement with each other. 

 Nanoscale cavities realized in photonic crystal slabs have very high Q-factors and low mode volumes: 

on these respects they are more performing than usual 3D microcavities like micro-pillars and micro-

disks. On the other hand, their electric field profile is rapidly varying, making spatial alignment of a 

single quantum dot more difficult to achieve. Starting from a Jaynes–Cummings model for a two-level 

system coupled to a cavity mode, we have quantified the conditions for a single QD transition interacting 

with a PhC nanocavity to be in a strong-coupling regime with a vacuum-field Rabi splitting. Quality 

factors larger than 2000 are already sufficient to achieve strong coupling. This makes PhC nanocavities 

very promising systems for quantum-electrodynamics applications at a nanoscale level. 
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[20] J. P. Reithmaier, G. Sȩ k, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, 

T. L. Reinecke, and A. Forchel, Nature 432, 197 (2004). 

[21] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. 

Deppe, Nature 432, 200 (2004). 

[22] T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, Phys. Rev. B 57, 12428 (1998). 

[23] V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. 

De La Rue, Phys. Rev. B 60, 16255 (1999). 

[24] V. Pacradouni, W. J. Mandeville, A. R. Cowan, P. Paddon, J. F. Young, and S. R. Johnson, Phys. Rev. B 62, 

4204 (2000). 

[25] M. Patrini, M. Galli, F. Marabelli, M. Agio, L. C. Andreani, D. Peyrade, and Y. Chen, IEEE J. Quantum Elec-

tron. 38, 885 (2002). 

[26] A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, 

A. Passaseo, and M. De Vittorio, Phys. Rev. B 68, 161306 (R) (2003). 

[27] J. P. Mondia, H. M. Van Driel, W. Jiang, A. R. Cowan, and J. F. Young, Opt. Lett. 28, 2500 (2003). 

[28] J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le 

Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, Phys. Rev. B 69, 085105 (2004). 

[29] G. Vecchi, J. Torres, D. Coquillat, M. Le Vassor D’Yerville, and A. M. Malvezzi, Appl. Phys. Lett. 84, 1245 

(2004). 

[30] M. Galli, M. Belotti, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. C. Andreani, and Y. Chen, 

Phys. Rev. B 70, 081307(R) (2004). 

[31] L. C. Andreani and M. Agio, IEEE J. Quantum Electron. 38, 891 (2002). 

[32] T. Ochiai and K. Sakoda, Phys. Rev. B 64, 045108 (2001). 

[33] L. C. Andreani, phys. stat. sol. (b) 234, 139 (2002). 

[34] D. Gerace, Photonic Modes and Radiation–Matter Interaction in Photonic Crystal Slabs, Ph.D. thesis, Univer-

sity of Pavia (2004). 

[35] G. Panzarini and L. C. Andreani, Phys. Rev. B 60, 16799 (1999). 

[36] L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, Phys. Rev. B 66, 

195307 (2002). 

[37] D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610 (1999). 

[38] A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, S. G. Tikhodeev, T. Fujita, and T. Ishihara, J. Phys. Soc. Jpn. 

70, 1137 (2001). 

[39] D. Gerace, M. Agio, and L. C. Andreani, phys. stat. sol. (c) 1, 446 (2004). 

[40] V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, Solid State Commun. 93, 733 (1995). 

[41] K. Srinivasan and O. Painter, Opt. Express 10, 670 (2002). 

[42] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Opt. Express 13, 1202 (2005). 

[43] C. Sauvan, Ph. Lalanne, and J. P. Hugonin, Phys. Rev. B 71, 165118 (2005). 

[44] B.-S. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005). 

[45] L. C. Andreani, D. Gerace, and M. Agio, Photon. Nanostruct. 2, 103 (2004). 

[46] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 

(1999). 

[47] S. T. Ho, L. Wang, and S. Park, in: Confined Photon Systems – Fundamentals and Applications, edited by 

H. Benisty, J.-M. Gérard, R. Houdré, J. Rarity, and C. Weisbuch (Springer, Berlin, 1999), p. 243. 

[48] K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoğlu, P. M. Petroff, E. Hu, G. Jin, S. Shi, and D. W. 

Prather, Appl. Phys. Lett. 83, 3650 (2003). 

[49] K. Hennessy, A. Badolato, P. M. Petroff, and E. Hu, Photon. Nanostruct. 2, 65 (2004). 

[50] A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, Science 308, 1158 (2005). 

[51] S. Haroche in: Fundamental Systems in Quantum Optics, edited by J. Dalibard, J. M. Raimond, and J. Zinn-

Justin (Elsevier, Amsterdam, 1992). 

[52] H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, Phys. Rev. A 40, 5516 (1989). 

[53] L. C. Andreani, G. Panzarini, and J.-M. Gérard, Phys. Rev. B 60, 13276 (1999). 

[54] S. Hughes and H. Kamada, Phys. Rev. B 70, 195313 (2004). 

[55] B. R. Mollow, Phys. Rev. 188, 1969 (1969). 

[56] E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J.-M. Gérard, and I. Abram, Phys. Rev. Lett. 87, 183601 

(2001). 

[57] D. V. Regelman, U. Mizrahi, D. Gershoni, E. Ehrenfreund, W. V. Schoenfeld, and P. M. Petroff, Phys. Rev. 

Lett. 87, 257401 (2001). 


