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Abstract

We experimentally characterize the spatial far-field emission profiles for the two lowest confined modes of a photonic crystal

cavity of the L3 type, finding a good agreement with FDTD simulations. We then link the far-field profiles to relevant features of the

cavity mode near-fields, using a simple Fabry–Perot resonator model. The effect of disorder on far-field cavity profiles is clarified

through comparison between experiments and simulations. These results can be useful for emission engineering from active centers

embedded in the cavity.
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1. Introduction

Photonic crystals (PhC) offer unprecedented control

over electromagnetic field confinement in all three

spatial directions [1]. In particular, two-dimensional

PhC nanocavities in a planar waveguide have already

found applications in different fields such as nanolasers,

nonlinear optics and quantum information processing

[2,3]. Similar to any electromagnetic resonator, PhC

nanocavity modes are essentially characterized by two
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figures of merit: the cavity quality factor, Q, and the

effective confinement volume of each mode, Vmode [4].

The quality factor is proportional to the photon lifetime

in the cavity which depends on the cavity losses to the

external world. The mode volume is a quantitative

measure of the spatial confinement of the electro-

magnetic mode. In most applications, it is crucial to

maximize the Q/Vmode ratio. For example, the Purcell

factor, which measures the enhancement of the

spontaneous emission rates for atoms resonant with a

cavity is directly proportional to this figure of merit. In

PhC nanocavities the mode is strongly confined to a

very small volume, on the order of (l/n)3, where l is the

mode wavelength. In a planar membrane nanocavity, in-

plane confinement is provided by spatial localization of

a structural defect in a perfectly periodic PhC with a

photonic band-gap, while out-of-plane confinement is

given by total internal reflection between the slab and
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the air cladding (assuming a suspended membrane as a

planar waveguide). Very high quality factors, in the

range 104–106 [5–7] have been demonstrated in the

literature. In particular, the L3-type cavity, consisting of

three missing holes in a triangular lattice, was the first

PhC cavity to show quality factors larger than 104 [5].

The spectral mode structure for L3 cavities has been

thoroughly investigated by Chalcraft et al. [8] who

compared the calculated resonant energies, quality

factors and emission polarizations for the lowest order

modes with experimental data. Most experiments

coupling single quantum dot emitters to a nanocavity

exploit the fundamental (i.e. lowest energy) cavity

mode [9,10]. However, higher order modes can still be

important for, e.g., efficient pumping in nanocavity

lasers [11], selective excitation of quantum dots

embedded within the cavity [12,13], or mutually

coupling quantum dots in different spatial positions

[14]. Several groups have studied the near-field

emission profiles of photonic crystal nanocavities

[15,16], even with polarization-resolving imaging [17].

In this paper we report an experimental and theoretical

investigation of the spatial far-field profile of the out-of-

plane emission for the two lowest order modes of L3-type

PhC nanocavities. We believe the characterization of the

out-of-plane far-field emission for PhCs is important for

two main reasons. First, for single-photon source

applications the emitted radiation needs to be efficiently

collected into a fiber, and simultaneous optimization of

far-field emission for multiple nanocavity resonances

could be useful. In addition, in the case of cavity-QED

experiments in the ‘‘one-dimensional atom’’ approxima-

tion, a perfect mode-matching is needed to get a large

enough interference between the input light field and the

field radiated by the atom [18–20]. Recently, quite some

work has been done to get a beam-like vertical emission

from PhC nanocavities [21–24] for the fundamental

mode. Here we extend previous work by experimentally

analyzing the far-field emission properties of both the

fundamental and the second-order mode, finding good

agreement with numerical simulations. We introduce a

simple model, based on a one-dimensional Fabry–Perot

resonator, to estimate the essential far-field character-

istics of a given near-field mode profile and link them to

the relevant device parameters. We believe that such a

model can be useful for fast parameter optimization,

while full-scale numerical simulations can provide an

accurate but time-consuming description of the electro-

magnetic field in the structure. Finally, we will discuss the

effect of fabrication imperfections on the far-field cavity

emission profiles. As we will show, measurements of far-

field profiles are relatively easy to perform and they can
provide insightful information about the parameters and

the quality of the cavities under examination.

The paper is organized as follows: in Section 2, we

present experimental measurements of the far-field

profiles and a comparison with theoretical far-fields

extracted from finite-difference-time-domain (FDTD)

simulations; in Section 3, we introduce a simple model,

based on a Fabry–Perot resonator, which is sufficient to

give indications of what the actual far-field profile looks

like for a given near-field and to link far-field properties

to actual device parameters.

2. Theoretical modeling and experimental data

Our sample consists of a 180 nm GaAs membrane

grown by molecular beam epitaxy on top of a 0.92 mm

Al0.7Ga0.3As sacrificial layer on a GaAs substrate. An

In0.4Ga0.6As quantum dot layer is grown at the center of

the GaAs membrane by depositing 10 periods of 0.55 Å

thick InAs and 1.2 Å thick In0.13Ga0.87As. The L3 PhC

cavities were fabricated on the sample using standard

electron beam lithography and reactive ion etching

techniques [25,26]. The lattice constant of the triangular

hole lattice is a = 240 nm. The L3 cavity design was

properly modified for Q optimization (see modified

holes in Fig. 1) [27,28].

The sample was placed in a He-flow cryostat at about

5 K and illuminated above the GaAs bandgap with a few

mW laser beam (wavelength 780 nm) on a few mm2 spot.

The photoluminescence from the quantum dot layer

embedded in the membrane was collected in the direction

normal to the membrane using a microscope objective

with numerical aperture NA = 0.8 and spectrally

analyzed with a spectrometer (resolution 5.5 GHz/pixel).

An example of the spectral emission is shown in Fig. 1 for

a device with R = 54 nm. According to theoretical

predictions based on a guided-mode expansion method

[29], the cavity supports two confined modes, with

resonances respectively at l
ðthÞ
1 ¼ 987 nm (theoretical Q-

factor Qth � 180, 000) and l
ðthÞ
2 ¼ 957 nm (Qth � 15,

000). Experimentally, we measured the first-order mode

with a Lorentzian profile centered around l1 = 982.5 nm

with a full-width at half-maximum (FWHM) of

0.195 � 0.002 nm, from which we extract an experi-

mental quality factor of Q � 5000. On the other hand, the

second-order mode has a less perfect Lorentzian line-

shape centered around l2 = 956.4 nm with FWHM

0.63 � 0.03 nm, and an experimental Q-factor

Q � 1500. Experimental quality factors are lower then

the predicted ones due to scattering from fabrication

imperfections [30] and possible absorption from sub-

bandgap trap levels and surface states [31].
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Fig. 1. Top: sketch of the L3 photonic crystal cavity used in the

experiments. Given a design radius R for the holes, the two holes

closest to and in-line with the cavity have reduced design radii

R0=0.75R [27]. The small holes are shifted from their lattice positions

out from the center of the cavity by a fixed quantity (55 nm). Finally,

the third holes (i.e. two holes away from the small holes) are shifted

from their lattice positions out from the center of the cavity by 45 nm

[28], to further increase the theoretical Q. Bottom: experimentally

measured photoluminescence spectra for the two cavity modes.
Experimentally, the emitted radiation collected from

both modes results in a strongly linearly polarized

signal. However, as it is shown in the 3D FDTD

simulations of Fig. 2, each near-field mode profile has x-

and y-components of the electric field of comparable

intensity. The reason for the detection of linearly

polarized light can be found by calculating the far-field

projections of such polarization-resolved near-field

profiles. The far-field profile can be obtained from

the near-field using the procedure introduced by

Vuckovic et al. [32]. According to the surface

equivalence theorem, all the information about the

far-field profile can be obtained from equivalent electric

and magnetic currents, Js = n � H and Ms = � n � E,

which depend on the in-plane near field components:

Nx ¼ �FT2ðHyÞ Ny ¼ FT2ðHxÞ
Lx ¼ FT2ðEyÞ Ly ¼ �FT2ðExÞ

(1)
where FT2 denoted the two-dimensional Fourier trans-

form. These equivalent currents are used to calculate the

retarded vector potential of the electromagnetic field,

which in the far-field can be related to Fourier trans-

forms of the near-fields. The radiation intensity per unit

solid angle can be calculated as:

Kðu; ’Þ ¼ h

8l2
Nu þ

L’

h

����
����
2

þ N’ �
Lu

h

����
����
2

  !
(2)

where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m0=e0

p
is the impedance of free-space and

l is the mode wavelength. The radiation vectors in

spherical coordinates can be expressed from their car-

tesian components as:

Nu ¼ ðNxcos’ þ Nysin’Þcosu

N’ ¼ �Nxsin’ þ Nycos’ ;
(3)

and similarly for L. The far-field profiles calculated

from the near-fields in the left panels of Fig. 2 are shown

in the same figure, on the right. In these plots, the color

scale is normalized to the totally emitted power in the

upper half-space of the PhC cavity (the same normali-

zation factor is used for Ex and Ey). Most of the emission

from the x-polarization of both modes is predicted at

very large angles, and therefore is inefficiently collected

by commonly employed microscope objectives. This

results in the strong linear polarization observed in the

photoluminescence spectra.

To perform a direct measurement of the far-field

emitted intensity at each resonant mode frequency, the

filtered photoluminescence at the back focal plane of

the microscope objective is imaged. Given a character-

istic size of the near-field emission, p � 500 nm, at a

wavelength l � 1 mm the Fresnel number is F = p2/

(Ll) � 0.01, well in the far-field regime (L � 2 mm).

The far-field was imaged on an intensified CCD camera

by a lens with focal length 40 cm in a 2f–2f

configuration. To make sure that we were looking at

the microscope objective back focal plane, we adjusted

the lens to see the sharp image of the objective edge on

the CCD. This sharp edge was used to calibrate the

numerical aperture scale of the far-field images,

assuming that the sharp edges correspond to the

NA = 0.8 of the objective employed. An interference

filter, with a bandwidth 1 nm, was used to spectrally

select the mode of interest. Images were collected after

integrating for 30 s and the background noise was

removed by subtracting an image taken with a slightly

tilted interference filter.

The experimental far-field spatial emission profiles

for the first-order and second-order modes are shown in

the two larger plots on the right side of Fig. 3, together
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Fig. 3. Experimental far-field emission profiles for the two L3 cavity

modes (larger panels) and the corresponding predictions by FDTD

simulations (smaller panels on the top left of the experimental plots),

resulting from the sum of x- and y-components in Fig. 2. The white

concentric rings correspond to a grid with numerical-aperture step of

0.2. The color scale bars show the detected photon counts per second.

The counts for the two profiles cannot be compared since they depend

not only on the device parameters, but also on the density of quantum

dots emitting in the wavelength range of the specific cavity mode. (For

interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Fig. 2. FDTD simulations of polarization resolved near-field patterns (left 

second modes of an L3 cavity. Each mode has two linearly polarized compo

aperture step of 0.2. For far-field plots, the color scale is normalized to the tot

normalization factor is used for Ex and Ey). For the x-polarization, most of th

than for y-polarization and resulting in a strongly polarized photoluminesce

legend, the reader is referred to the web version of this article.)
with the far-field projections obtained from FDTD

simulations (smaller insets on the left) for a direct

comparison. The first-order mode exhibits a centrally

illuminated area extending to about NA � 0.5, with a

ring-like structure inside (NA � 0.2), matching the low-

NA portion of the simulated far-field. The simulated far-

field suggests that most of the light from the first-order

mode is emitted in two high-NA lobes, which are not

collected at all by our set-up. The far-field profile for the

second-order mode consists of two lobes, whose center

is at a minimal NA � 0.3.

Finer details also appear inside the two lobes, in the

form of spots separated by Dk/k0� 0.1–0.2. Such

structures correspond, in the near-field, to light sources

which are separated from the cavity about 5–10 times

the characteristic size of the cavity mode. The simulated

near-field profiles shown in Fig. 2 suggest that the

optical field decays very fast out of the cavity region,

implying that such features might be due to light that

escapes from the cavity due to fabrication imperfections

[30]. The fine details are reproducible for different

measurements performed on the same device. Finally,

we show in Fig. 4 the far-field profiles of the second-

order modes for different devices on the same wafer.

Each plot shows the characteristic two-lobes profile, as

expected for this mode, with reproducible finer details

that appear to be device-dependent.

To investigate the cause of fine structure within the

two-lobe far-field pattern of the second order mode,

FDTD simulations were done in which disorder was

introduced. It is assumed that, due to fabrication

imperfections, the dominant type of disorder is in the

hole radii of the PhC lattice. Therefore, the hole radii R

were varied randomly according to the distribution

function PðRÞ / exp½�ðR � RÞ2=2s2Þ�. Some simula-

tion data are given in Fig. 5, showing disorder

introduced to the far-field profiles as a result of

increasing the disorder parameter s. These results

indicate that far-field measurements could be used as an

indicator of disorder in the lattice structure.

3. A simple Fabry–Perot model

In general, 3D FDTD simulations can provide

accurate modeling of near-field and far-field properties

of PhC cavity modes. However, they give little physical
panels) and far-field emission profiles (right panels) for the first and

nents. The white concentric rings correspond to a grid with numerical-

ally emitted power in the upper half-space of the PhC cavity (the same

e far-field emission is at large angles, making collection less efficient

nce signal. (For interpretation of the references to color in this figure
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Fig. 4. Experimental far-field profiles of the second-order mode emission from four different devices on the same wafer. Finer details are

reproducible in different measurements performed on the same device, but differ from device to device. The white concentric rings correspond to a

grid with numerical-aperture step of 0.2.
insight on how the detected features of such far-field

profiles can be related to specific device parameters. In

this section, we will show that the experimental data can

be reproduced by a simple model, elaborated from the

proposal of Sauvan et al. [33].

For a line of N � 3 missing holes, the PhC nanocavity

can be described quite accurately by a Fabry–Perot

resonator, in which the fundamental Bloch mode of a

single-line-defect PhC waveguide is trapped between

two PhC mirrors of modal reflectivity r(l). The

properties of such a cavity are shown to depend only

on three parameters, namely the group index ng of the

Bloch mode, the reflection coefficient r(l) of the mirrors

and the effective cavity length L. The Bloch mode can be

calculated as the eigenstate of the PhC waveguide in the

Fourier basis, and its modal reflectivity can be obtained

with the method described in Ref. [34]. Fabry–Perot

models have been shown to be a useful tool to probe

cavity resonances and the group index of photonic crystal

waveguides [35,36], and to describe acousto-mechanical

cavity tuning effects [37]. We consider the Ey near-field

profiles shown in Fig. 2. Taking the intensity distribution
along the y = 0 axis, the modes show a sinusoidal

intensity distribution with nodes and antinodes in the

cavity region, decaying exponentially outside the cavity

region. From simulations, the intensity decay length for

the first-order mode is d1 � 220 � 10 nm, while it is

d2 � 155 � 8 nm for the second-order mode. This is very

similar to the intensity distribution in a cavity between

two Distributed Bragg Reflectors (DBR). For the Ey near-

field profiles most of the radiation is emitted along the

y = 0 axis, with little structure and weaker intensity

outside. Given the relevance of such polarization in

determining the far-field emission properties, to a first-

order approximation it makes sense to consider a one-

dimensional model, which takes into account only the

structure along the y = 0 axis. Such a model has the

advantage of being extremely simple, although able to

give significant hints on the main far-field profile

properties. A two-dimensional model based on an

effective index approximation should be used (with no

significant difficulties) to study also the Ex profiles.

Let us consider a one-dimensional Fabry–Perot

resonator, with the field intensity profile varying
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Fig. 5. Far-field intensity profiles for varying degrees of disorder, normalized by the total power radiated into the upper half space. The images are

cut-off at a numerical aperture value of 0.8, indicated by the white line, to allow for better comparison with experimental data. Data are shown for

disorder parameters of s = 1 nm (left column), 2 nm (middle column), and 5 nm (right column).
sinusoidally in the cavity region and exponentially

decaying in the mirror regions, with characteristic

penetration depth d. The resonant frequency Vm can be

calculated by imposing the total phase acquired by the

Bloch mode traveling back and forth to be a multiple of

p. The far-field profile can be calculated using the

procedure outlined in the previous section (Eq. (2)).

Since the modes are TE-like modes, only Ex, Ey and Hz

are non-negligible and only the Lx component is

relevant in Eq. (2). Let us consider a separable electric

field distribution Ey(x, y) = a(x)b(y). The component Lx

is separable as well: Lx ¼ ãðkxÞb̃ðkyÞ, where ã and b̃ are

the one-dimensional Fourier transforms of a(x) and

b(y), making:

Kðu; ’Þ / jãðk0sinucos’Þj2jb̃ðk0sinusin’Þj2

� cos2’cos2u þ sin2’
� �

(4)
In a simplified one-dimensional model, b(y) is narrow

in real-space, so its Fourier transform is wide and can be

neglected (jb̃ðkyÞj2� 1). If we look at the far-field

distribution along the x-axis we select w = 0, so that

the resulting one-dimensional far-field profile is:

KðuÞ � jãðk0sinuÞj2cos2u (5)

or, in terms of transverse wavevectors:

KðkxÞ � jãðkxÞj2ðk2
0 � k2

xÞ.
An analytical solution can be found and is reported in

Appendix A. However, the resulting formula is too

complicated to give intuitive insights; therefore we will

just discuss the numerical results (from Eq. (12)) in this

context. Fig. 6 shows the expected far-field profiles for

the first and second-order modes for different values of

the penetration depth, d. The first-order mode exhibits a

central peak (centered at k = 0) and two outer lobes as
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Fig. 6. Far-field results for the one-dimensional Fabry–Perot model

(first and second-order modes). For each mode, on the left side the

expected near-field profile considering a Fabry–Perot cavity with DBR

mirrors with varying penetration depth d. On the right side, the

corresponding far-field profiles calculated from Eq. (4). For the

first-order mode, in the region |kx|/k0 < 0.5, there is a single peak

centered at kx/k0 = 0 for small penetration depth. This peak flattens and

broadens on increasing penetration depth. For large enough penetra-

tion depth, the central peak splits into two smaller peaks. The second-

order mode, in the region |kx|/k0 < 0.5, consists of two peaks that split

further and further out for increasing penetration depth d.
predicted by the FDTD simulations. We see that, for

increasing penetration depth, the two main outer lobes

become narrower in k-space and more outward, while

the central peak broadens and flattens. A similar

behavior can be observed in the second-order mode.

Here, the far-field profile is given by two central peaks

and two outer lobes, and again, for increasing

penetration depth d the two outer lobes move outwards

and become more localized.

The Fabry–Perot resonator model was shown to give

results for the quality factor Q in agreement with more

sophisticated FDTD simulations [33]:

Q ¼ k0

1 � R
ng L þ 2L p

� �
(6)

where the group delay t = @fr/@v experienced by the

light upon mirror reflection enters as a characteristic

length L p ¼ �l2
0=ð4pngÞð@fr=@lÞl0

. In general, for

PhC structures (for example, heterostructure mirrors)

it has been shown that Lp can be unrelated to the

characteristic damping length of the energy distribution

inside the mirrors d [38]. However, in the configuration

under investigation, the classical relation for a DBR,

Lp � d, is valid, with the equality being strictly fulfilled

only in the limiting case of quarter-wave mirrors with

low refractive index contrast, Dn/n (Lp = d = nL/(2Dn)).

In Fig. 7, the emission in the region |kx/k0| < 0.5 is

shown as a function of the penetration depth. In the case

of the fundamental mode, there is a single peak centered

around k = 0 for small penetration depth, with a quite

flat profile and broadening for |kx/k0| < 0.25. When the

penetration depth increases beyond d � 150 nm, the far-

field emission splits into two lobes, which separate more

and more on increasing d. At d � 250 nm, the peaks are

centered around k � �0.25k0, corresponding to an

opening angle of about 158. These findings explain the

ring-like structure we observe in the experimental far-

field: the vertical dashed white line in the figure shows

the experimental central NA for the peaks (from Fig. 3),

which corresponds to a penetration depth of about

220 nm, fully compatible with the penetration depth

from FDTD simulations, d1. For the second-order mode,

in the region |kx/k0| < 0.5 there are always two emission

lobes, even at small penetration depth. On increasing d,

the two lobes move further and further apart. From

Fig. 3, the lobes are centered around NA � 0.35, which

in our simulations is consistent with a penetration depth

of about 150 nm, as predicted by FDTD simulations.

Therefore, far-field profiles can provide useful informa-

tion about the penetration depth d of PhC cavity modes,

which in this case offer a bound on the effective cavity

length, Lp, and therefore on the Q-factor. Extensions of
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Fig. 7. One-dimensional far-field profiles as a function of the intensity

penetration depths calculated using the simple Fabry–Perot model for

the first (left-side plot) and the second (right-side plot) order modes.

The white dashed lines correspond to the experimental position of the

center of the lobes (Fig. 3) and the penetration depth from FDTD

simulations.
the present analysis to treat coupled cavity modes

[39,40] can also be considered.

4. Conclusions

In conclusion, we have presented an extensive

characterization of far-field emission profiles from L3-

type photonic crystal nanocavities, introducing a simple

imaging technique as an efficient tool to give a two-

dimensional mapping of the emitted intensity. The

measurements have been directly compared to theore-

tically modeled far-field projections from the 3D FDTD

near-field cavity modes profiles, and we believe these

results to be useful to PhC cavity designs for specific

purposes. The effect of disorder on the far-field profiles
was investigated via numerical simulations. Finally,we

have introduced a simple Fabry–Perot model that is able

to capture the essential features of far-field properties

for suitably designed near-field profiles. As a particular

application of this model, we can envision, for example,

the simultaneous optimization of in- and out-coupling

for two different modes supported by the same PhC

cavity, which is still an open problem that might benefit

from simplified models like the one presented here.
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Appendix A. Analytical calculations

The resonance frequencies for the modes can be

found by setting the condition that the total phase

acquired by the Bloch mode traveling back and forth is a

multiple of p (2kmL = mp), which results in:

km ¼
mp

2L
(7)

Let us start with a perfectly confined mode, with no

penetration into the mirrors (d = 0). In this case the field

is given by:

ad¼0ðxÞ ¼ P
x

L

� �
eiðkmxþfmÞ þ c:c: (8)

where P(x) is the rectangular function, P(x) = 1 for

|x| < 1/2 and zero elsewhere. The phase fm is set by the

boundary conditions: fm = 0 for m even (cosine-like

solutions) and fm = p/2 for m odd (sine-like solutions).

From Eq. (4):

K1ðuÞ �
����eifm Sinc

mp

2
sinu � 1ð Þ

h i
þe�ifm Sinc

mp

2
sinu þ 1ð Þ

h i����
2

cos2u

(9)

The two modulo-squared Sinc functions in Eq. (9)

give two main peaks centered at u = � p/2, which

correspond to the higher NA peaks in the far-field in

Fig. 6. The first relative maximum of Sinc2(x) is at

x � 1.4303p, which for Eq. (9) corresponds to

sin u � � (1 ��2.861/m). The FWHM of such a peak

for Sinc2(x) is 0.522p, which corresponds to
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dkx � 1.044/m (dkx � 0.35 for the first-order mode,

corresponding to m = 3, and dkx � 0.26 for the second-

order mode, corresponding to m = 4). Therefore for the

first-order mode, the first relative maxima of the Sinc

functions superpose, giving just one central peak. For

the secod-order mode, on the other hand, the first

relative maxima are well separated.

Including the penetration depth d into the model, a

simple near-field profile can be taken as a superposition

of P(x/L) and two exponentially decaying wings, as

follows:

aðxÞ ¼
�
P

x

L

� �
þ H x � L

2

	 

e�ðx�L=2Þ=d

þ H �x � L

2

	 

e�ð�x�L=2Þ=d

�
eiðkmxþfmÞ þ c:c:

(10)

where H(x) is the Heaviside function (H(x) = 1 for

x > 0, H(x) = 0 for x < 0). The part around x = 0

(P(x/L)) gives the same Fourier-transform as in

Eq. (9) (which we label ã1ðsinuÞ)), while the left and

right-side exponential decay regions give the following:
ã2ðsinuÞ � eifm
eimðp=2Þðsinuþ1Þ

d=L � impðsinu þ 1Þþe�ifm
eimðp=2Þðsinu�1Þ

d=L � impðsinu � 1Þ

ã3ðsinuÞ � eifm
e�imðp=2Þðsinu�1Þ

d=L þ impðsinu � 1Þþe�ifm
e�imðp=2Þðsinu�1Þ

d=L þ impðsinu � 1Þ

(11)
All the quantities depend on the ratio d/L between the

penetration depth and the cavity length. The far-field

profile can be calculated to be:

K1ðuÞ ¼
X3

j¼1

ã jðsinuÞ
�����

�����
2

cos2u (12)
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