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We discuss a scalable scheme for the implementation of quantum-information processing in qubits formed
by superconducting resonators and spin ensembles. The scheme is based on a hybrid dual-rail encoding, which
allows one to perform both single- and two-qubit gates by shifting the resonator frequency. We estimate the
quantum-gate fidelity by simulating the driven dynamics through a master-equation approach. High values of
the fidelity can be achieved also in the presence of the main decoherence sources, namely, cavity-photon loss,
and pure dephasing of the superconductive elements that are involved in the two-qubit gates. This result allows
envisioning the scalability of such elements to a quantum-computing architecture made of an array of hybrid
spin-photon qubits. Analogous results are obtained for a simpler, nonscalable setup, which we propose here in
order to simplify the realization of the first proof-of-principle experiments.
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I. INTRODUCTION

Superconducting circuits are emerging as promising can-
didates for the realization of scalable quantum-information
processing [1,2]. In the context of so-called circuit-quantum
electrodynamics [3], an important achievement is represented
by the strong coupling between microwave photons confined
in a superconducting resonator and superconducting qubits [4].
The strong anharmonicity provided by these artificial atoms
allows one to control the number of photonic excitations
introduced in the resonator [5]. Ideally, they should also show
long coherence times to perform many quantum gates at high
speed [6], which could be exploited in a prospective scalable
architecture for quantum computation [7]. However, highly
anharmonic superconducting qubits are usually more affected
by dissipation [8]. Even though important advances have been
made to increase the coherence times of superconducting
qubits [9], other physical systems, such as spin ensembles
(SEs), would provide much more stability.

For these reasons, hybrid devices are being investi-
gated [10–15], in order to benefit from the fast manipula-
tion rates of superconducting qubits, such as Cooper-pair
boxes (CPBs) or transmons [1,4,6,7,16], while avoiding
the limitations coming from their relaxation and dephasing
mechanisms [8,9]. In such devices, superconducting qubits
and spin ensembles are used, respectively, to process and store
quantum information, while cavity photons induce an effective
coupling between them, thus acting as a quantum bus [17,18].
In order to use the SE as a quantum memory, its coupling with
the resonator mode has to exceed the dephasing and relaxation
rates in the system. With this aim, a

√
N enhancement of

the spin-photon coupling is achieved by replacing single-spin
excitations with the collective excitations of the spin ensemble,
N being the number of coupled spins. This allowed the
achievement of coupling constants in the megahertz range
with nitrogen vacancy defects in diamond [19], and Cr3+
spins in Al2O3 [20]. On the other hand, a significant reduction
of the photon-loss rate is achieved in resonators with high
quality factor (Q). Great improvements in increasing Q

have recently been demonstrated, leading to the realization

of superconducting resonators [21] reaching experimental
Q ∼ 106–107.

Based on the same ingredients and experimental achieve-
ments, we have recently proposed a different approach for the
implementation of quantum-information processing [22]. This
is based on a hybrid dual-rail encoding of the qubit, in which
both photonic and spin degrees of freedom enter on an equal
footing. As a result, quantum gates can be implemented by a
single tool, namely, by tuning the resonator frequencies. This
can be achieved, e.g., by external magnetic fields [23] or by
means of micro superconducting quantum interference devices
properly connected to the resonator [24,25]. A single qubit
is encoded in each cavity and an additional cavity contains
a superconducting device (a CPB) which is exploited as an
auxiliary degree of freedom to implement two-qubit gates.
As the CPB is excited only during the implementation of
two-qubit gates, its possibly short coherence time should not
introduce significant error rates.

In order to assess the feasibility of the proposed approach
in relation to the state-of-the-art technology, it is important to
gain a quantitative understanding of the main decoherence pro-
cesses and of their effect on the quantum gates. In the present
work, we report a detailed study of the effects of relaxation and
dephasing on the system dynamics, by simulating the quantum
gates within a master-equation formalism. Such decoherence
channels are considered for each element involved in the
quantum computation, namely, photons, SEs, and the CPB.
We find that the most important source of error is given by
photon loss. However, for reasonably high (but technologically
achievable) values of the quality factor (Q ≈ 105–106), one
can reach high values of the quantum-gate fidelity (>95%).

The paper is organized as follows. Section II contains a
brief description of the qubit encoding in the scalable setup,
of the model Hamiltonian, and of the implementation of the
single- and two-qubit quantum gates. Section III is devoted to
the description of the density matrix formalism that is used
to simulate the quantum gates, and to the estimate of the gate
fidelity in the presence of decoherence. In Sec. IV we describe
a nonscalable setup, which could simplify the realization of
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the first proof-of-principle experiments. Finally, in Sec. V we
discuss different aspects of the scheme implementation, and
in Sec. VI we draw the conclusions.

II. DESCRIPTION OF THE SCALABLE SETUP

A set of gates is said to be universal for quantum
computation if any unitary operation may be performed by
means of a quantum circuit involving only those gates. We
describe here such a set, consisting of a controlled-Z (CZ)
two-qubit gate and of arbitrary single-qubit rotations around
two nonparallel axes [26]. In particular, we summarize the
hybrid qubit encoding already introduced in Ref. [22], as well
as the setup, the model Hamiltonian, and the scheme adopted
for the quantum-gate implementation.

A. Hybrid dual-rail qubit encoding

We consider a coplanar waveguide resonator containing a
single photon in a mode of frequency ωc, and an ensemble of
N noninteracting s = 1/2 spins, each prepared in its ground
state: |ψ0〉 ≡ | ↓1 · · · ↓N 〉. The spins can be initialized in the
state |ψ0〉, e.g., by cooling them down in a static magnetic field.
If the resonator frequency is tuned to match the spin gap ω, the
SE can absorb the photon and collectively evolve into the state
|ψ1〉 = 1√

N

∑N
q=1 | ↓1 · · · ↑q · · · ↓N 〉 [27]. Spin excitations

are described (in the limit of a small number of excitations) by
the bosonic operators b̂ and b̂†, where b̂ = 1√

N

∑N
q=1 |↓〉〈↑|q

and [b̂,b̂†] = 1 [15,19]. Within the single-excitation subspace
of the system formed by the cavity mode and the SE, we
introduce the hybrid dual-rail encoding of the qubit μ:

|0〉μ ≡ b̂†μ|∅〉 = ∣∣ψμ

1 ,nμ = 0
〉
,

(1)
|1〉μ ≡ â†

μ|∅〉 = ∣∣ψμ

0 ,nμ = 1
〉
,

where â†
μ is the photon creation operator and |∅〉 = |ψ0,nμ =

0〉 is the vacuum state. Thus, the logical state of the qubit
depends on whether the excitation is stored within the spin
ensemble or in the quantized electromagnetic field of the
resonator.

B. Setup and system Hamiltonian

In this section, we describe the elementary unit of the
scalable setup used to implement the quantum gates, i.e., a
system of two qubits (μ = A,A′). These consist of two distinct
SEs, coupled to the modes of two different resonators, as
shown in Fig. 1. The extension of the scheme to a bipartite
linear lattice of cavities is straightforward [28]. The two SEs
are formed by effective s = 1/2 spins, with different energy
gaps: ωA is close to the harmonic ωA

c of the cavity belonging
to qubit A, and ωA′

is close to the harmonic ωA′
c of the cavity

of A′ (see Fig. 2). A third unit B, interposed between the
qubits A and A′, includes a resonator coupled to a nonlinear
element, such as a transmon or a Cooper-pair box, which is
exploited to implement the CZ. In the following, we shall refer
to this nonlinear element as the CPB, and we will consider
it as a three-level system [29]. We stress that the CPB is not
used to encode the qubits and is left in its ground state always
except during the implementation of the two-qubit gates. In

FIG. 1. (Color online) Sketch of the elementary unit of the
scalable setup. Black arrows indicate the electric field distribution
of different harmonics in each resonator. Qubits A and A′ include
each an ensemble of s = 1/2 spins, placed at the antinodes of the
magnetic field (rotational lines) of the respective cavity modes. These
are coupled to each other through the auxiliary unit B, formed by a
resonator and a superconducting nonlinear element (a CPB).

the cavity of B we consider two different harmonics ωB
c and

ωB ′
c , respectively close to the gaps �B and �B ′

of the CPB.
The total Hamiltonian of the SEs and CPB, coupled to the

cavity modes, is given by

Ĥ = Ĥspin + ĤCPB + Ĥph + Ĥint + Ĥph-ph. (2)

The first term describes the SEs of the qubits A and A′ as
independent harmonic oscillators [30] (� ≡ 1):

Ĥspin = ωAb̂
†
Ab̂A + ωA′

b̂
†
A′ b̂A′ . (3)

The CPB is treated as an effective three-level system [31]:

ĤCPB = �B
∣∣ψB

1

〉〈
ψB

1

∣∣ + (�B ′ + �B)
∣∣ψB

2

〉〈
ψB

2

∣∣. (4)

The time-dependent photonic term is entirely responsible for
the manipulation of the qubits. It can be expressed as

Ĥph =
∑

γ=A,A′,B,B ′
ωγ

c (t)â†
γ âγ , (5)

where ω
γ
c (t) = ω

γ
c (0) + �

γ
c (t). Hereafter, we will use the

interaction picture, with Ĥ0 = Ĥspin + ĤCPB + Ĥph(t =
0). Hence, within the rotating-wave approximation the
spin-photon and CPB-photon coupling Hamiltonians take the

FIG. 2. Level diagram (solid lines) of the two s = 1/2 spin
ensembles, used to define the qubits, and of the interposed CPB, which
is employed to implement the two-qubit CZ gate. The spin-photon
coupling strengths are indicated as Ḡγ and correspond to transitions
of frequency ωγ between the spin-ensemble states |ψγ

0 〉 and |ψγ

1 〉
(γ = A,A′). The CPB-cavity couplings are indicated by Gγ . Dashed
lines represent the frequencies of the photonic modes inside each
cavity.
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form:

Ĥint = GB

[
â
†
B

∣∣ψB
0

〉〈
ψB

1

∣∣ei(ωB
c −�B )t + H.c.

]
+GB ′

[
â
†
B ′

∣∣ψB
1

〉〈
ψB

2

∣∣ei(ωB′
c −�B′

)t + H.c.
]

+
∑

γ=A,A′
Ḡγ

[
â†

γ b̂γ ei(ωγ
c −ωγ )t + H.c.

]
. (6)

Here, the coupling constants Ḡγ are enhanced by a factor√
N with respect to their single-spin counterparts (see, e.g.,

Ref. [15] for a detailed derivation).
Finally, the last term in Eq. (2) describes the photon-

hopping processes induced by the capacitive coupling be-
tween the modes A and B (A′ and B ′) of the neighboring
cavities [33,34]:

Ĥph-ph = − κâ
†
AâBei(ωA

c −ωB
c )t − κ ′â†

A′ âB ′ei(ωA′
c −ωB′

c )t + H.c.

(7)

By properly engineering the two different cavities, the cou-
pling between other modes can be easily made negligible.

C. Description of the quantum gates

Resonant processes involving the absorption (emission)
of the photons entering the hybrid encoding in Eq. (1) are
exploited to perform one- and two-qubit gates. These processes
are induced by “shift pulses,” in which the cavity frequency
is varied by a quantity �

γ
c for a suitable amount of time.

Experimentally, the resonator frequencies have already been
shown to be variable up to tenths of the fundamental-mode
frequency [24], even on a nanosecond time scale [25,30].
In order to make the manipulation experimentally easier, we
choose ωB

c (0) to be intermediate between ωA
c (0) and �B , while

ωA′
c (0) is close to ωB ′

c (0), and ωB ′
c (0) is close to �B ′

(see Fig. 2).
Single-qubit rotations. In the idle mode �

γ
c (t) = 0, the

photon frequencies are largely detuned from the spin en-
ergy gaps [|ωγ

c (0) − ωγ | � Ḡγ ], and Ĥint is ineffective. In
addition, the cavity modes A and A′ are far-detuned from B

and B ′ (|ωA
c − ωB

c | � κ,|ωA′
c − ωB ′

c | � κ ′), and the effect of
Ĥph-ph is negligible. Single-qubit gates can thus be performed
independently on each qubit.

In particular, off-resonance pulses are employed to obtain a
rotation by an arbitrary angle about the z axis of the Bloch
sphere. These induce a phase difference between the |0〉μ
and |1〉μ states of the hybrid qubits [Eq. (1)]. We assume
for simplicity steplike pulses �

γ
c (t) ≡ δ

γ
c θ (τ/2 − |t − t0 −

τ/2|), so that a generic phase shift R̂ϕ is performed, with
ϕ = −δ

γ
c τ . In the basis {|0〉μ,|1〉μ}, this rotation takes the

form

R̂ϕ =
(

1 0

0 e−iδ
γ
c τ

)
. (8)

This coincides with a rotation around the z axis up to an overall
phase, where R̂z(ϕ) = e−iσ̂zϕ/2 = e−iϕ/2R̂ϕ and σα=x,y,z are the
Pauli matrices. Conversely, rotations around the x axis,

R̂x(ϕ) = e−iσxϕ/2 =
(

cos ϕ

2 −isin ϕ

2

−isin ϕ

2 cos ϕ

2

)
, (9)

are obtained by resonant processes in which the frequency of
the cavity mode is tuned to match the corresponding energy gap
of the SE [δγ

c = ωγ − ω
γ
c (0), with γ = A,A′] for the proper

amount of time, τ = ϕ/2Ḡγ (see the Appendix for a more
detailed analysis).

Controlled-Z gate. The CZ gate, which in the two-qubit
basis {|0A0A′ 〉,|0A1A′ 〉,|1A0A′ 〉,|1A1A′ 〉} is represented by the
matrix

UCZ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ , (10)

is implemented by means of a two-step Rabi oscillation of
the CPB between |ψB

0 〉 and |ψB
2 〉. We describe here the CZ

multistep pulse sequence, involving the auxiliary states

|η〉 = |∅〉 ⊗ ∣∣ψB
0 ,nB = 1,nB ′ = 1

〉
,

|ξ 〉 = |∅〉 ⊗ ∣∣ψB
1 ,nB = 0,nB ′ = 1

〉
, (11)

|ζ 〉 = |∅〉 ⊗ ∣∣ψB
2 ,nB = 0,nB ′ = 0

〉
,

where |∅〉 = ⊗μ=A,A′ |ψμ

0 ,nμ = 0〉 is the vacuum state of the
two-qubit register. We schematically explain the effect of such
a sequence on two qubits initialized in state |1A1A′ 〉:

(1) The first step corresponds to the hopping of the photons
from the modes A and A′ into the cavity modes B and B ′ of the
unit B, by means of two simultaneous π pulses that bring the
two pairs of modes into resonance. This induces the transition
|1A1A′ 〉 −→ |η〉.

(2) As a second step, the photon of frequency ωB
c is tuned

to �B by means of a π pulse, which transfers the excitation
from the mode B to the intermediate level |ψB

1 〉 of the CPB,
carrying the system into the state |ξ 〉.

(3) Then, a 2π pulse brings the mode of frequency ωB ′
c into

resonance with �B ′
, thus inducing a complete Rabi flopping

between the states |ξ 〉 and |ζ 〉. In this process, a phase π is
added to |ξ 〉.

(4) Finally, the repetition of the first two steps brings the
state back to |1A1A′ 〉, with an overall phase π . By properly
setting the delay of the two π pulses corresponding to the
previous steps (or by performing single-qubit phase shifts;
see the Appendix), the associated absorption and emission
processes yield a zero additional phase.

Conversely, the other basis states do not acquire any phase,
as required for the CZ gate. In fact, the basis state |0A1A′ 〉 has
only the high-energy photon which is driven to mode B ′, but
is off resonance with the �B gap, and hence is not absorbed.
Instead, |1A0A′ 〉 contains only the low-energy photon, which is
absorbed by the CPB, bringing it to the first excited state |ψB

1 〉.
However, the following Rabi flop does not occur, due to the
absence of the higher-energy photon. Finally, the state |0A0A′ 〉
is completely unaffected by the pulse sequence, because of the
absence of both photons.

III. EFFECT OF DECOHERENCE

The interaction of the system with the environment tends to
introduce errors in the implemented quantum gates. Hereafter,
we introduce the theoretical approach that will be employed
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to simulate the dynamics in an open-system scenario, in order
to assess the robustness of the present scheme with respect to
the relevant decoherence sources.

A. Master-equation approach

The time evolution of the system density matrix ρ̂ is
described within a Markovian approximation and a Lindblad-
type dynamics, with the Liouville–von Neumann equation of
motion [35]:

d

dt
ρ̂ = −i[Ĥ ,ρ̂] +

∑
j

�jLx̂j
[ρ̂] +

∑
j

γjLx̂
†
j x̂j

[ρ̂], (12)

where �j and γj are respectively the damping and pure-
dephasing rates of the field x̂j . The Lindblad term for an
arbitrary operator x̂ is given by

Lx̂[ρ̂] = − 1
2 (x̂†x̂ρ̂ + ρ̂x̂†x̂) + x̂ρ̂x̂†. (13)

The density matrix approach followed in the present work
allows us to include the effects of relaxation and pure
dephasing on each element involved in the scheme. If the
operator x̂j destroys an excitation in the system, terms like
Lx̂j

[ρ̂] account for energy losses, while pure dephasing
processes are described by L

x̂
†
j x̂j

[ρ̂]. We note that the former

provide the most important contribution for photons [36] (with
x̂j = âj , j = A,A′,B,B ′), while the latter are dominant for
the CPB [31] (x̂j = |ψB

j 〉〈ψB
j+1|, j = 0,1). Hence, we initially

study the fidelity of the quantum gates as a function of the
photon leakage rate and the CPB pure-dephasing rate. We
then include two further sources of error. The first one is
represented by energy loss from the superconducting nonlinear
element, which however is not expected to appreciably alter
the gate fidelity, since the loss rate is usually smaller than
the pure-dephasing rate. The second one is given by the pure
dephasing of the spin ensemble, whose effect on the system
dynamics is similarly small.

For the simulations, we represent each field as a matrix
in the Fock-state basis, and truncate it at a number of total
excitations previously checked for convergence. The total
Hamiltonian, Eq. (2), and the density matrix master equation
of the whole system, Eq. (12), are built from tensor products
of these operators. Then, the equation of motion for ρ̂ is
numerically integrated, in the interaction picture, by using a
standard Runge-Kutta approximation.

B. Numerical results

In order to investigate the effects of decoherence on
quantum-information processing, the numerical simulation of
single- and two-qubit gates reported in Ref. [22] has been
reproduced by using the master-equation formalism outlined
above. As in Ref. [22], we identify the modes A and A′
(B and B ′) with the first and second (second and third)
harmonics of the respective cavities (see also the sketch in
Fig. 1), and assume the following values for the fundamental
cavity frequencies: ω0

c/2π = 22, 21, 12.5 GHz for the units
A, A′, B, respectively. With these choices, photon hopping
between modes other than those included in Eq. (7) is
negligible. We also assume realistic values of the CPB-cavity
(Gγ /2π = 30–45 MHz) and SE-cavity (Ḡγ /2π = 30 MHz)

coupling rates, with the latter corresponding to N ∼ 1012

spins 1/2 (see Ref. [19]). Finally, the photon-tunneling rate
is κ = κ ′ = 2π × 25 MHz, which has already been shown
experimentally [33].

Since the time required to implement the two-qubit CZ gate
is much longer than that corresponding to the single-qubit
rotations, this gate is more error prone. Therefore, we consider
the CZ gate as a test bed for the robustness of our quantum-
information processing scheme. As a figure of merit for the CZ

gate, we compute its fidelity F :

F =
√

〈ψ |ρ̂|ψ〉, (14)

where ρ̂ is the final density matrix and |ψ〉 the target state.
First, we investigate the effects of photon leakage and pure

dephasing of the CPB, described by the last two terms in
Eq. (12). For each cavity mode, we have assumed a photon-
leakage rate that is proportional to the relative mode frequency
�i = ωi

c/Q, while the quality factor is the same for all the rel-
evant cavity modes [23]. Furthermore, we notice that the same
dephasing rate has also been assumed for the two Lindblad
operators, x̂

†
j x̂j = |ψB

j+1〉〈ψB
j+1| (j = 0,1), acting on the two

relevant CPB transitions, without loss of generality. Figure 3(a)
reports the fidelity as a function of the resonator quality
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FIG. 3. (Color online) Fidelity of the CZ gate as a function of the
quality factor Q of the resonators, for different values of the CPB
dephasing time T CPB

2 (a) and of the CPB dephasing time T CPB
2 , for

different values of the quality factor Q (b). The system is initialized
in the superposition of the computational basis states (|0A0A′ 〉 +
|1A1A′ 〉)/√2. (c) Two-dimensional surface of F(Q,T CPB

2 ). Both Q

and T CPB
2 are varied in a realistic range, which can be reached with

available technology. The gate fidelity is represented both by the
colors and by the height of the surface.
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FIG. 4. (Color online) CZ-gate fidelity as a function of T CPB
1 and

T CPB
2 , assuming Q = 106. The calculated fidelity is represented both

by the colors and by the height of the surface.

factor Q. Different curves refer to different values of the CPB
dephasing time T CPB

2 = 1/γCPB , chosen in a realistic range.
In particular, the lower bound of T CPB

2 = 0.1 μs is typical of
charge qubits, in the regime EC � EJ [17]. Dephasing times
of the order of T CPB

2 = 10 μs have already been demonstrated
experimentally [32] for CPBs in the transmonic regime EJ ≈
10EC , which is close to the range of parameters we are explor-
ing [31]. With such values of T CPB

2 and with Q approaching
106, we obtain a fidelity above 99%. In Fig. 3(b) the fidelity is
plotted as a function of T CPB

2 , for different values of Q. The de-
pendence of the fidelity on T CPB

2 is much weaker than that on
Q. This results from the fact that the excited states of the CPB
are populated only for a fraction of the total gating time. Fig-
ure 3(c) reports the overall dependence of the CZ-gate fidelity
on the cavity quality factor and on the CPB dephasing time.
For the simulation reported in Fig. 3, the system is initialized
in a superposition state (|0A0A′ 〉 + |1A1A′ 〉)/√2. This state is
one of the most error prone, as it introduces in the calculation
the relative phase between |1A1A′ 〉 (in which both qubits are
subject to damping and dephasing) and |0A0A′ 〉, which is com-
pletely unaffected by the pulse sequence. Consequently, other
superposition states lead to similar or slightly larger fidelities.

Typically, T CPB
1 is larger than T CPB

2 in CPBs [31]. In any
case, we have checked that the inclusion of a relaxation term
for the CPB does not reduce the gate fidelity appreciably.
A color map of the CZ-gate fidelity as a function of T CPB

1
and T CPB

2 is reported in Fig. 4. We note a slightly more
pronounced dependence of F on the relaxation time T CPB

1
than on the dephasing time T CPB

2 . However, in the regime [31]
examined here we can assume T CPB

2 ≈ 10 μs and T CPB
1 >

T CPB
2 , leading (in a cavity with Q = 106) to values of F

above 99%.
As far as photons are concerned, it has been experimentally

shown that pure dephasing of the cavity modes is practically
negligible (see, e.g., Ref. [36], where the measured value of the
dephasing time T

ph

2 approximately corresponds to twice the
value of the photon decay time T

ph

1 ). Finally, we have included
in the equation of motion a pure-dephasing term acting on the
spin ensembles. The calculated fidelity at the end of a CZ gate is
plotted in Fig. 5 as a function of the spin-ensemble dephasing
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FIG. 5. (Color online) Fidelity of the CZ gate as a function of the
spin-ensemble dephasing time T SE

2 = 1/γSE . The three curves refer
to different Q factors and are calculated assuming T CPB

2 = 10 μs.

time T SE
2 , for different values of Q. We note that for T SE

2 >

1 μs, the fidelity of a single gate (which takes about 50 ns) is
nearly independent of T SE

2 , whereas the dependence on Q is
much more pronounced. In that limit, the spin-dephasing rate
does not appreciably affect the system dynamics.

IV. PROOF-OF-PRINCIPLE EXPERIMENT

We describe here a simpler, not scalable setup, which could
be exploited for the first proof-of-principle demonstrations
of the present scheme. This setup includes a single cavity,
coupled to a CPB and an ensemble of equally oriented s = 1
spins, as schematically shown in Fig. 6 [37]. We refer here
not to disordered diluted systems, but to crystals of equally
oriented magnetic ions diluted in a nonmagnetic matrix (see,
e.g., Ref. [38]). In the low-excitation regime, the spin ensemble
can be modeled by two independent harmonic oscillators,
related to two different magnetic-dipole transitions from the
m = 0 ground state of the single spin, namely, those to the
m = −1 and m = 1 states. This can be achieved by properly
choosing a system with easy-plane magnetic anisotropy, which
provides a zero-field splitting between the m = 0 ground state
and the excited m = ±1 doublet, and in the presence of a small
static magnetic field. The corresponding creation operators
(excitation energies) are given by b̂

†
A = 1√

N

∑N
q=1 | − 1〉〈0|q

and b̂
†
A′ = 1√

N

∑N
q=1 |1〉〈0|q (ωA and ωA′

), while the ground
state of the SE is |ψ0〉 = |01 · · · 0N 〉. These spin modes,

FIG. 6. (Color online) Sketch of the nonscalable setup for proof-
of-principle experiments. Qubits A and A′ are now encoded by using
two different states of the same spin ensemble of s = 1 spins, coupled
to two different harmonics of the same cavity.
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together with the modes A and A′ of the single cavity, allow
us to introduce here a dual-rail encoding equivalent to that
defined in Eq. (1) for the scalable architecture:

|0A0A′ 〉 = b̂
†
Ab̂

†
A′ |∅〉, |0A1A′ 〉 = b̂

†
Aâ

†
A′ |∅〉,

(15)
|1A0A′ 〉 = â

†
Ab̂

†
A′ |∅〉, |1A1A′ 〉 = â

†
Aâ

†
A′ |∅〉,

where |∅〉 = |ψ0,nA = 0,nA′ = 0〉. For the qubit manipula-
tion, and specifically for the two-qubit gate, we exploit the
lowest three levels of the CPB (|ψB

0 〉, |ψB
1 〉, and |ψB

2 〉), with
transition energies �B and �B ′

, as in the scalable scheme. In
addition, the two harmonics of the resonator that are taken
into account have frequencies ωA

c and ωA′
c : ωA

c is intermediate
between ωA and �B , while ωA′

c is intermediate between ωA′

and �B ′
. In this way, the cavity mode ωA

c (ωA′
c ) can be coupled

both to the spin gap ωA (ωA′
) and to the superconducting gap

�B (�B ′
). As in the scalable setup, the CPB does not enter the

definition of the qubits, for it remains in its ground state in all
the computational space.

Single-qubit rotations are implemented in a way similar
to that described for the scalable setup: rotations about the
z axis of the Bloch sphere, R̂z(ϕ), are realized by means of
off-resonant pulses, while R̂x(ϕ) are performed by tuning ω

γ
c

to ωγ for the proper amount of time (γ = A,A′). However,
as the photons that are involved in the encoding of the two
qubits correspond to different harmonics of the same cavity, the
R̂z(ϕ) rotations applied to qubits A and A′ are not independent.
Indeed, by applying a pulse of amplitude 2δc to the second
harmonic for a time τ , one also varies the phase of the third
harmonic by an amount of 3δcτ . In the two-qubit basis, we
thus obtain the transformation

R̂zz(τ ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 e−2iδcτ 0 0

0 0 e−3iδcτ 0

0 0 0 e−5iδcτ

⎞
⎟⎟⎟⎠ . (16)

A rotation of, e.g., the first qubit can however be performed
without affecting the second one, by exploiting the equality

R̂zz(τ )[R̂x(ϕ) ⊗ Î ]R̂zz(τ ) = R̂y(ϕ) ⊗ Î , (17)

FIG. 7. (Color online) Fidelity of the CZ gate as a function of
Q and T CPB

2 in the nonscalable setup. The calculated fidelity is
represented both by the colors and by the height of the surface.
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FIG. 8. (Color online) (a) Population of the fields as a function
of time during a CZ gate, with the system initialized in state |1A1A′ 〉.
The continuous, dashed, dot-dashed, and dotted lines represent the
time dependences of 〈â†

AâA〉, 〈|ψB
1 〉〈ψB

1 |〉, 〈|ψB
2 〉〈ψB

2 |〉, and 〈â†
A′ âA′ 〉,

respectively. (b) Pulse sequence representing the relative frequency
variations of the cavity during the implementation of the CZ in the
nonscalable setup.

which holds for τ = 3π/2δc [39]. In this way, we demonstrate
the ability to implement independent R̂y rotations on each
qubit. This, together with rotations about the x axis, allows us
to obtain any single-qubit gate.

The CZ gate can be implemented as in the scalable setup.
Here, however, a single resonator is involved, and no photon
hopping is needed: this reduces the overall time required to
implement the quantum gate. Figure 7 is a color map of the
fidelity in a CZ gate, as a function of the two parameters
accounting for the two included sources of error: the resonator
quality factor Q, accounting for photon leakage, and the CPB
dephasing time T CPB

2 . The plot is similar to that of Fig. 3: the
larger Q and T CPB

2 , the larger the fidelity. However, as the
implementation of a single CZ gate here is faster, the photon
leakage is less relevant: slightly larger values of the fidelity
correspond to the same values of Q. In Fig. 8(a) we plot the
expectation value of the number operators as a function of
time, i.e., 〈â†

AâA〉t = Tr[ρ̂(t)â†
AâA], and analogously for the

other fields. The parameters corresponding to photon loss
and pure dephasing of the CPB are given by Q = 106 and
T CPB

2 = 10 μs. The system is initialized in state |1A1A′ 〉.
Figure 8(b) displays the profile of the steplike pulse sequence
employed in the simulation: The first π pulse brings the photon
of frequency ωA

c into resonance with the CPB gap �B , leading
to the absorption of the photon A. The second one is a 2π pulse,
which induces a full Rabi flop between states |ψB

1 〉 and |ψB
2 〉.

Then an off-resonant pulse is used to implement a rotation
about the z axis which corrects the unwanted phase acquired
during the Rabi oscillation. Finally, a π pulse brings the system
to state −|1A1A′ 〉, while the other basis states are unaffected.

V. DISCUSSION

In the present section, we briefly discuss the possible
consequences of the above decoherence mechanisms for
quantum-information processing. In addition, we discuss the
physical implementation of the qubit, and specifically of the
component represented by the spin ensemble.
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A. Errors resulting from the decoherence mechanisms

The results reported in the previous sections show that
the main source of error in our scheme is represented by
photon loss. Conversely, since the CPB is excited only during
part of the implementation of the CZ gate, T CPB

2 > 1 μs is
sufficient to guarantee a high fidelity of the gates. Quality
factors somewhat smaller than 105 already lead to fidelity
values F > 0.90–0.95, but it could be realistic to assume
Q ≈ 106–107, as shown in Ref. [21]. In the limit of Q = 108,
the photon lifetime would reach 0.3 ms, very close to the
coherence time of the best SEs. Within this time scale, several
quantum gates could be performed on the proposed setup,
leading to the implementation of complex quantum algorithms,
as well as the simulation of different quantum systems [40].
Other decoherence sources, such as relaxation of the CPB, are
found to be ineffective, in a realistic range of parameters.

The fact that the dominant source of error is given by photon
loss represents a potential advantage for the implementation
of quantum computation [41]. In fact, within the dual-rail
encoding we propose, the photon loss corresponds to a
locatable error, and can in principle be detected without
requiring any redundant multiqubit encoding [42]. We note
that the same effect is produced by inhomogeneous broadening
of the spin ensemble, which can induce the leakage of the
subsystem state out of the computational space. In fact,
in the presence of inhomogeneities, the state |ψμ

1 〉 decays
into other collective modes of the spin ensemble, which
are decoupled from the cavity mode (see the discussion in
Sec. VB). Therefore, neither photon loss nor inhomogeneous
broadening of the SE induces an undesired bit flip or phase
shift. These can only result from imperfections in the pulses
that are used for the quantum-gate implementation. In one-way
quantum computing [43], the presence of only locatable errors
was shown to result in a significant increase of the error rate that
is compatible with fault-tolerant quantum computation [44].

B. Physical implementation of the spin ensemble

In single spins, the dephasing time can reach the value
of 0.1–1 ms [38]. As stated above, an additional source
of decoherence in SEs is represented by inhomogeneous
broadening [45,46]. This is essentially due to the presence
of disorder, which spreads the emitter’s bare frequencies and
spin-photon couplings within the ensemble. In the spin-wave
representation, the effect of such disorder is the dynamical
coupling of the super-radiant (k = 0) mode with the subradiant
(k �= 0) ones. Here k is a quantum number labeling the
one-boson states (and it coincides with the wave vector of
the magnons in a translationally invariant arrangement of the
spins). A transition to these subradiant modes can be regarded
as an irreversible population leakage out of the subspace
{|ψ0〉,|ψ1〉}, and thus of the computational space. In the
absence of cavity-spin coupling, this leakage effect depends
crucially on the width � of the distribution in the emitter’s
bare frequencies ρ(ω), for the transition from k = 0 to the
k �= 0 modes takes place on a time scale τ ∼ 1/�. However, a
strong spin-cavity coupling provides a protection mechanism,
by inducing an energy gap between the super-radiant and the
subradiant modes [46]. If this gap is large enough, the system
is efficiently protected from decoherence and the excitation

can be stored in |0〉μ for times much longer than 1/�. Indeed,
out of resonance (δγ

c � Ḡγ ) and in the presence of strong
coupling (Ḡγ � �), the cavity has a dispersive effect that
shifts the energy of the super-radiant mode by ε = −Ḡ2

γ /δ
γ
c .

Provided that ε � � and that the tail of the emitter’s bare
frequency distribution ρ(ω) falls off sufficiently fast (as in
the case of a Gaussian profile) [45], the super-radiant mode
is energetically separated from the subradiant modes and the
cavity protects the information stored in the spin ensemble.

Hence, the robustness of the scheme relies on the choice
of a suitable spin system. In order to reduce the effect of
inhomogeneous broadening, we need an ordered system, or a
spin system with Gaussian broadening, possibly isotropic and
diluted in a nonmagnetic matrix to avoid dipolar interactions,
which typically lead to Lorentzian line shapes. Another im-
portant mechanism of decoherence is represented by hyperfine
interactions between electronic and nuclear spins. These tend
to reduce the intrinsic decoherence time of the individual
spins, and introduce a Gaussian broadening of the transition
energies. At least the largest contribution to the hyperfine
couplings, represented by the contact term, can be avoided
by considering spin systems where the magnetic ions have
nonmagnetic nuclei.

A class of spin systems that provides interesting and
yet unexplored possibilities in this respect is represented
by molecular nanomagnets [47]. For example, high-spin
molecules possess magnetic-dipole transitions (e.g., those
between the states |m = 0〉 and |m = ±1〉) whose amplitude
is roughly proportional to the spin length. This, along with the
possible localization of the molecules in the nanometer-sized
constrictions of the resonator, enabled by efficient deposition
techniques, might allow one to achieve the strong-coupling
regime even with a single molecule [48]. Such an achievement
would eliminate the contribution to decoherence resulting from
inhomogeneous broadening. In this way the only relevant
source of error of the spins is given by pure dephasing of the
single molecule (see Fig. 5), whose coherence time can reach
values of several microseconds [49]. A further opportunity is
represented by the suppression of the intrinsic decoherence
time of the spins. This could in principle be achieved by
exploiting protected degrees of freedom within the molecular
spin cluster, such as spin chirality [50].

VI. CONCLUSIONS

In conclusion, we have studied the robustness of the
quantum gates realized with a recently proposed hybrid
spin-photon qubit encoding, in which both photonic and spin
degrees of freedom enter on an equal footing in the definition
of the qubits. This allows one to implement all the required
quantum gates by a unique means, namely, by tuning the
resonator frequencies through shift pulses, and to limit the
role played by nonlinear superconducting elements, such as
Cooper-pair boxes.

In such a scheme, the main decoherence processes are
represented by photon loss and pure dephasing of the super-
conducting elements. The simulation of these effects within a
master-equation formalism allowed us to test the robustness
of our scheme, and to compute the fidelity of single- and
two-qubit gates in a realistic range of parameters. We find

052308-7



A. CHIESA et al. PHYSICAL REVIEW A 89, 052308 (2014)

that photon leakage is the most relevant source of error,
while pure dephasing only slightly alters the gate fidelity.
Reasonable values of the resonator quality factor (Q ≈ 105)
lead to high values of the gate fidelity (F > 0.95) for a single
gate. Moreover, photon losses lead to population leakage
out of the computational space, and can thus be detected
without requiring any redundant multiqubit encoding. Since
the Cooper-pair box is involved only as an auxiliary unit
during the implementation of two-qubit gates, the computation
is weakly affected by its possibly short decoherence times.
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APPENDIX: RESONANT EVOLUTION

In this appendix, we determine the time evolution of
qubit μ in the resonant regime. We start from the following
Hamiltonian:

Ĥ = ωμb̂†μb̂μ + ωμ
c â†

μâμ

+ Ḡμ

[
â†

μb̂μei(ωμ
c −ωμ)t + âμb̂†μe−i(ωμ

c −ωμ)t
]
, (A1)

in which we take into account only the relevant interactions
involving qubit μ. In the limit of large detuning between cavity
μ and cavity B, photon-hopping terms are ineffective. Then
we set δ

μ
c = ωμ − ω

μ
c and we determine analytically the time

evolution of a state initialized (in the interaction picture) in a
general superposition α|0〉μ + β|1〉μ of the single-qubit basis.
At t = 0 the cavity is far detuned (δμ

c � Ḡμ) from the spin
gap and the resonance condition ωμ = ω

μ
c is established at

t = t0. As the Hamiltonian conserves the total number Nex of
excitations, we can reduce it to the subspace Nex = 1, where

Ĥ =
(

ωμ Ḡμ

Ḡμ ωμ

)
. (A2)

The single-qubit evolution (in the interaction picture) can be
summarized by the following unitary operator:

U1 =
(

cos (Ḡγ τ ) −ie−iδ
γ
c t sin (Ḡγ τ )

−ieiδ
γ
c t0 sin(Ḡγ τ ) e−iδ

γ
c (t−t0) cos (Ḡγ τ )

)
(A3)

where τ = t − t0. By comparing Eqs. (9) and (A3), we note
that the additional phase ϕ = −δ

γ
c τ of the |1〉μ qubit state is

straightforwardly corrected by an R̂−ϕ rotation. Furthermore,
in order to obtain a rotation about the x axis of the Bloch
sphere, we need to choose t0 as an integer multiple of 2π/δ

γ
c .

This auxiliary degree of freedom can be exploited to obtain
a rotation about an arbitrary axis in the xy plane. In fact, by
applying R̂−ϕ and then U1, we obtain the unitary operator:

U2 =
(

cos (Ḡγ τ ) −ie−iδ
γ
c t0 sin (Ḡγ τ )

−ieiδ
γ
c t0 sin (Ḡγ τ ) cos (Ḡγ τ )

)
, (A4)

which has the form of a general rotation about an axis n̂ =
(nx,ny,0), i.e., R̂n̂(θ ) = cos θ

2 − isin θ
2 (nxσx + nyσy) [26], σα

being the Pauli matrices. The same analysis holds also for
two-qubit gates. Indeed, each pair of states involved in the
resonant processes exploited to obtain the CZ gate evolves
accordingly to Eq. (A3), with the only difference that in 2π

processes the choice of t0 is not relevant. In this way additional
trivial phases acquired during 2π photon-hopping processes or
during the second step of the evolution described in Sec. II C
can be straightforwardly eliminated by short R̂z operations as
in the implementation of R̂x .
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