
IOP PUBLISHING JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS

J. Opt. A: Pure Appl. Opt. 11 (2009) 114011 (11pp) doi:10.1088/1464-4258/11/11/114011

Theoretical and experimental investigation
of radiative decay rates in active slot
waveguides
C Creatore1,2, L C Andreani2, M Galli2, M Miritello3, R Lo Savio3

and F Priolo3

1 Dipartimento di Fisica, Politecnico di Torino, Corso duca degli Abruzzi 24,
I-10129 Torino, Italy
2 Dipartimento di Fisica ‘A Volta’, Università degli Studi di Pavia, via Bassi 6,
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Abstract
We present a quantum-electrodynamical formalism to study the spontaneous emission from
dipoles embedded in a non-absorbing and lossless multilayer dielectric structure. In this model
the electromagnetic field is quantized by a proper choice of a complete and orthonormal set of
classical modes and the analytical expressions for the emission rates are obtained within the
framework of perturbation theory. We apply our model to investigate the 1.54 μm transition of
Er3+-doped SiO2 thin layers acting as active material in planar slot waveguides in
polycrystalline silicon. The theoretical results show that a strong reduction of the radiative
lifetime does occur in the slot waveguide. Furthermore, by using the theoretical analysis
together with photoluminescence measurements, we estimate also the radiative efficiency which
is found to be only slightly reduced with respect to the value for Er3+ in a bulk of SiO2. These
results are important for future realization of silicon-compatible active optical devices and show
the relevance of our model to study the spontaneous emission processes in multilayer structures.
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1. Introduction

Since the pioneering work by Purcell [1] it is well known
that the modifications in the electromagnetic (e.m.) boundary
conditions induced by the material surrounding an excited
atom can considerably affect its rate of spontaneous emission
(SE). Such an effect can be explained either within classical
electromagnetism, in terms of a self-driven dipole due to the
reflected field at the dipole position, or in the framework of
quantum electrodynamics, as emission stimulated by zero-
point fluctuations of the e.m. field, both descriptions yielding
the same results as long as the coupling between the atom and
the field is weak. In such a weak coupling regime, the SE
rate can be derived within first-order perturbation theory by

applying Fermi’s Golden Rule, and is proportional to the local
coupling of the atomic dipole moment to the allowed photon
modes, i.e. to the local density of states (LDoS) [2]: when the
LDoS vanishes, then the SE process is inhibited while, whereas
an increase in the density of states occurs, the rate of SE can be
enhanced over the free space value.

Extensive literature is available dealing with the analysis
of SE from various emitters (such as atoms, molecules or
electron–hole pairs) embedded in dielectric environments of
varying complexity. In a homogeneous medium with dielectric
constant ε, Glauber has shown [3] that the SE rate relative to
the free space value is enhanced (reduced) when ε > 1 (<1).
One of the most studied configurations is the single dielectric
interface [4–11] as it is the simplest model system where
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experimental and theoretical analysis can be performed in
order to get the basic understanding necessary to investigate
more complex structures. In more complicated systems both
the technology and the theory needed are more demanding, but
the expected effects turn out also to be more interesting. For
instance, among multiple dielectric layers structures, planar
microcavities have been intensively studied during the last few
years [12–15], due to their ability to considerably affect the
density of states and thus to strongly modify the emission
into a particular mode, which is of crucial importance for the
development of novel light-emitting devices.

In this work we study the spontaneous emission process
in a generic non-dispersive and lossless multilayer dielectric
structure and derive the SE rates by applying a fully
quantum-electrodynamical formalism. Our aim is twofold:
(i) to develop a model suitable for different configurations,
thus taking into account all the possible modes (and the
related SE rates) which can be excited in the examined
structure and (ii) to get a quantitative insight into the
modifications of the atomic radiative processes which occur
in realistic structures such as active silicon-based optical
waveguides. Such structures, which nowadays can be tailored
according to different geometries—from simple waveguides to
multilayer-like configurations—are characterized by an high-
index contrast and are able to confine and guide light very
efficiently in nanometer-size spatial regions as a result of
total internal reflection. These waveguiding and confining
properties, together with the low propagation losses typical of
silicon and the good compatibility with complementary metal
oxide semiconductor technology, make them very appealing
for the future development of highly integrated multifunctional
optoelectronic and photonic devices (see, e.g., [16–18]
and the review works by Kenyon [19] and Polman [20]).
Recently, slot configurations have been proposed to improve
the waveguiding/confining properties of silicon-based optical
waveguides [21, 22]. In this novel structure a very thin (a few
tens of nanometers thick) layer (slot) of low-index material is
bounded by two high-index material regions (typically silicon)
which form the core of an optical waveguide. The high-index
contrast interfaces at the slot are able to concentrate the e.m.
field in very narrow spatial regions (�λ), thus leading to an
enhancement of the radiation–matter interaction. Also, due to
the increase of vacuum e.m. field fluctuations, an enhancement
in the spontaneous emission rate is expected to occur, similarly
to what happens with the well-known Purcell effect [1] for
an emitter in an optical cavity. A theoretical study [23] of
the emission properties of a planar slot waveguide doped with
erbium ions, as well as the experimental evidence [24] of the
enhanced light–matter coupling, have already been reported.
Here we present a detailed study of the modifications induced
in the 1.54 μm transition of Er3+-doped SiO2 layers acting
as the active material in deposited polycrystalline silicon slot
waveguides. A combined analysis based on time-resolved
PL measurements and our model is consistent with a strong
increase of the radiative decay rate in the slot waveguide,
when compared with values obtained investigating three other
configurations. Furthermore, we estimate that the radiative
efficiency is marginally reduced with respect to the value of

Figure 1. Schematic view of the multilayer dielectric structure. The
semi-infinite lower (0) and the upper (M + 1) cladding layers with
dielectric constants ε0 and εM+1, respectively, surround a stack of M
dielectric layers, each one being d j thick and characterized by an
average dielectric constant ε j , j = 1, . . . , M .

Er3+ in a bulk of SiO2, so that radiative recombination is still
the dominant decay mechanism in these active slot waveguides.

This paper is organized as follows. In section 2 the
modes supported by the multilayer dielectric structure (leaky
and guided modes) are listed and described. In particular we
show that, when dealing with radiation emission problems,
a basis for leaky modes characterized by a single outgoing
component is more suitable than the standard one generally
used. In section 3, by using a second-quantized form for the
atom–field interaction Hamiltonian and perturbation theory, we
derive the analytical expressions for the SE rates as a function
of the dipole position. In section 4 we show the theoretical
and experimental analysis of the 1.54 μm transition of Er3+-
doped SiO2 layers acting as active material in deposited
polycrystalline silicon slot waveguides and in three other
configurations, namely after deposition on SiO2 and crystalline
Si (c-Si) substrates and embedded in an oxide bulk. A short
summary of the results is given in section 5.

2. Model system and field modes

We are interested in the evaluation of the SE rate from a dipole
embedded in a system like the one depicted in figure 1, i.e. a
stack of M dielectric layers which are parallel to the xy plane
and assumed to be infinite along the x and y directions. Each
layer has a thickness of d j ( j = 1, . . . , M) and the lower and
upper cladding layers (layers 0 and M + 1, respectively, in
figure 1) are semi-infinite. All the M + 2 layers are assumed
to be lossless, isotropic and homogeneous along the vertical
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(z) direction. The overall dielectric constant ε(r) = ε(ρ, z)
is thus a piecewise constant function in the z direction, i.e. we
use ε j = ε j(z), j = 0, . . . , M + 1. Hence, since the whole
system is homogeneous in the xy plane the field modes will be
factorized as E(r, t)[H(r, t)] = e−iωt+ik‖·ρE(z)[H(z)], where
k‖ = k‖k̂‖ = (kx, ky) is the in-plane propagation vector. The
classical modes supported by such a structure and needed to
set up a quantum theory for the spontaneous emission are the
solutions of the following eigenvalue problem:

∇ ×
[

1

ε(r)
∇ × H

]
= ω2

c2
H, (1)

which results from the homogeneous Maxwell equations for
the electric and magnetic fields E, H with harmonic time
dependence exp(−iωt), and the condition ∇ · H = 0 being
fulfilled. The modes form a complete and orthonormal set, i.e.

H(r) =
∑
μ

cμHμ(r), (2)

∫
H∗

μ(r) · Hν(r)dr = δμν. (3)

The electric field eigenmodes, which can be obtained from
E(r) = {[ic]/[ωε(r)]}∇ × H(r), are also orthonormal [25]:

∫
ε(r)E∗

μ(r) · Eν(r) dr = δμν. (4)

In a lossless multilayer dielectric structure, the complete and
orthonormal set of classical modes consists of an infinite
number of leaky modes and a finite number of guided (or
trapped) modes. Leaky modes can be either fully or partially
leaky. The former modes, similar to free space modes, radiate
in both the lower and upper cladding, while the latter ones
radiate only in the cladding with the higher refractive index and
propagate out of the smaller index cladding layer as evanescent
waves with exponentially decreasing amplitude. Guided
modes are in-plane traveling modes, trapped (confined) by the
highest refractive index layer (if there is any) and characterized
by an evanescent field profile across the z direction.

While guided modes are uniquely specified by the
Maxwell equations with the proper continuity conditions
across the dielectric boundaries, leaky modes are not, since
their asymptotic behavior (z → ±∞) has to be characterized,
such a characterization being not unique.

Usually the basis of leaky modes is described in terms of
the triplets incident–reflected–transmitted waves, with waves
incoming towards the multilayer stack either from the lower
or from the upper cladding layer (see figure 2(a)). This
set of modes, also known as Carniglia and Mandel modes
(as they originally introduced such a classification [25]),
has been widely employed to specify the leaky states in
structures like dielectric waveguides [26, 27] or planar
dielectric microcavities [13, 28]. Such a choice, however, is
not the most convenient when dealing with radiation emission
analysis. As shown in figure 2(a), both the reflected and the
transmitted components (the pairs {rl, tu} or {ru, tl}), which
belong to two different modes, contribute to the total emission
in a given direction. Hence, quantum interference between

z

(a) (b)

Figure 2. The leaky modes in a multilayer dielectric structure.
(a) The standard set of modes based on the triplets
incident–reflected–transmitted waves; {il, rl, tl} for waves incoming
from the lower cladding, {iu, ru, tu} for waves incoming from the
upper cladding. (b) The set of modes specified by a single outgoing
component and two incoming waves (towards the stack):
{X0, W0, X M+1} for states outgoing in the lower cladding,
{WM+1, W0, X M+1} for states outgoing in the upper cladding. The
notation is valid for TE-polarized modes; for TM polarization one
replaces W → Y and X → Z .

these two different outgoing modes has to be explicitly taken
into account in the definition of the local density of leaky
states [29, 30] and the calculation of the emission in either the
upper or the lower cladding layer turns out to be problematic.
To avoid this subtle interference problem and calculate in a
simple way the fraction of emission in either the upper or the
lower cladding layer or, in general, the SE patterns, we use a
set of leaky modes specified by a single outgoing wave. Within
this basis, the single outgoing component comes together with
two incoming waves propagating towards the structure, as
shown in figure 2(b) with the triplets {WM+1, W0, X M+1} and
{X0, W0, X M+1} for states outgoing in the upper and lower
cladding layers, respectively. The total emission signal is thus
completely specified by one outgoing mode only—either by
the component labeled as WM+1 for leaky modes outgoing in
the upper cladding or by the component X0 for states outgoing
in the lower cladding—and interference terms never arise. It is
worth noticing that this set of modes can be obtained from the
Carniglia and Mandel modes previously discussed (which is
specified in terms of the incoming waves) after application of a
time-reversal (TR) operator [23]. Since the algebraic properties
are invariant under time-reversal operations, this new set is
also orthonormal and complete. In the following a detailed
description of both guided and leaky field profiles is given.

2.1. Leaky modes

As previously discussed, the basis of leaky modes used in
our model is defined by a single outgoing component and
two ingoing ones. In each of the M layers the field is a
superposition of two counter-propagating modes. The modes
are defined by their propagation wavevector k = (k‖, q), with
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the z component q in each of the M + 2 media being

q j =
√

ε j
ω2

c2
− k2

‖, j = 0, . . . , M + 1. (5)

With ε̂k‖ = ẑ × k̂‖ we denote the unit vector orthogonal to both

k‖ = k‖k̂‖ and ẑ and set z1 = −d1/2, z j = z j−1 + d j−1 with
j = 2, . . . , M + 1. For TE polarization the field profiles are

ETE
k‖ (ρ, z) = eik‖·ρ

√
V

iε̂k‖ ETE(k‖, z), (6)

HTE
k‖ (ρ, z) = eik‖·ρ

√
V

i
c

ω
[H TE

⊥ (k‖, z)ẑ + H TE
‖ (k‖, z)k̂‖], (7)

where V is a normalization box volume which disappears in
the final expressions and the time dependence e−iωt is implicit.
The expressions for the amplitudes ETE, H TE

⊥ and H TE
‖ are as

follows:

ETE(k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WM+1eiqM+1(z−zM+1)

+ X M+1e−iqM+1(z−zM+1), z > zM+1

W j e
iq j (z−z j −d j /2)

+ X j e
−iq j (z−z j −d j /2),

z j < z < z j + d j

W0eiq0(z−z1) + X0e−iq0(z−z1), z < z1

(8)

H TE
⊥ (k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k‖[WM+1eiqM+1(z−zM+1)

+ X M+1e−iqM+1(z−zM+1)], z > zM+1

k‖[W j e
iq j (z−z j −d j /2)

+ X j e
−iq j (z−z j −d j /2)],
z j < z < z j + d j

k‖[W0eiq0(z−z1)

+ X0e−iq0(z−z1)], z < z1

(9)

H TE
‖ (k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qM+1[X M+1e−iqM+1(z−zM+1)

− WM+1eiqM+1(z−zM+1)], z > zM+1

q j [X j e
−iq j (z−z j −d j /2)

− W j e
iq j (z−z j −d j /2)],
z j < z < z j + d j

q0[X0e−iq0(z−z1)

− W0eiq0(z−z1)]. z < z1.

(10)

The amplitudes for leaky modes outgoing in the lower (upper)
cladding (see figure 2(b)) are found taking WM+1 = 0 (X0 =
0) in (8)–(10) and through the normalization condition (3)
which yields X0 = 1/

√
ε0 (WM+1 = 1/

√
εM+1); all the other

amplitudes are then obtained by applying a standard transfer-
matrix theory. It is worth noticing that the normalization
condition for leaky modes (leading to the values given above
for the amplitudes X0 and WM+1) is determined by the
cladding regions only: when L 	 d , L being the width of
the normalization box in the z direction and d the thickness of
the waveguide core (or the thickness of a stack of layers for a
generic multilayer structure), the contributions from the core
(stack) are of the order O(d/L) and thus negligibly small if

compared to the contributions from the semi-infinite cladding
regions.

When the dielectric constants of the upper and lower
claddings are different and the conditions for total internal
reflection are matched, the modes become partially leaky.
Without loss of generality, we now assume ε0 > εM+1.
In this case, when ω(

√
εM+1/c) � k‖ � ω(

√
ε0/c), the

emission occurs in the lower cladding layer only and the field is
evanescent in the upper cladding, the z component qM+1 being
purely imaginary. The field amplitudes can still be obtained
through the same conditions given above for the fully leaky
modes, but taking WM+1 = 0 and replacing qM+1 with its
complex conjugate in (8)–(10).

The field profiles for TM-polarized modes are

HTM
k‖ (ρ, z) = eik‖·ρ

√
V

iε̂k‖ H TM(k‖, z), (11)

ETM
k‖ (ρ, z) = eik‖·ρ

√
V

i
c

ε jω
[ETM

⊥ (k‖, z)ẑ + ETM
‖ (k‖, z)k̂‖], (12)

with amplitudes given by

H TM(k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

YM+1eiqM+1(z−zM+1)

+ Z M+1e−iqM+1(z−zM+1), z > zM+1

Y j e
iq j (z−z j −d j /2) + Z j e

−iq j (z−z j −d j /2),

z j < z < z j + d j

Y0eiq0(z−z1) + Z0e−iq0(z−z1), z < z1

(13)

ETM
⊥ (k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k‖[YM+1eiqM+1(z−zM+1)

+ Z M+1e−iqM+1(z−zM+1)],
z > zM+1

k‖[Y j e
iq j (z−z j −d j /2)

+ Z j e
−iq j (z−z j −d j /2)],
z j < z < z j + d j

k‖[Y0eiq0(z−z1) + Z0e−iq0(z−z1)],
z < z1

(14)

ETM
‖ (k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qM+1[Z M+1e−iqM+1(z−zM+1)

− YM+1eiqM+1(z−zM+1)],
z > zM+1

q j [Z j e
−iq j (z−z j −d j /2)

− Y j e
iq j (z−z j −d j /2)],
z j < z < z j + d j

q0[Z0e−iq0(z−z1) − Y0eiq0(z−z1)].
z < z1.

(15)

In this case, fully leaky modes outgoing in the lower (upper)
cladding have YM+1 = 0 (Z0 = 0) and the normalization
condition (3) yields Z0 = 1 (YM+1 = 1) for the amplitude of
the outgoing component. Similarly as done for TE-polarized
modes, all the other coefficients are straightforwardly found
after a standard transfer-matrix calculation. For modes which
are partially radiating in the lower cladding (and evanescent in
the upper cladding), one takes YM+1 = 0 and replaces qM+1

with its complex conjugate in (13)–(15).
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2.2. Guided modes

A multilayer dielectric structure like the one depicted in
figure 1 is able to support a set of guided modes if the relation
ε j = εmax > ε0, εM+1 holds for at least one of the inner layers
( j = 1, . . . , M) of the stack. Since guided modes are in-
plane propagating modes, they will be labeled by a joint index
μ = (k‖, α), k‖ = k‖k̂‖ being the in-plane wavevector and α

the mode index (�1). Also, by q j μ we denote the z component
of the guided mode wavevector:

q j μ =
√

ε j(ω2
μ/c2) − k2

‖ . j = 1, . . . , M, (16)

where ωμ = ωk‖α is the frequency of the αth guided mode. In
the upper ( j = M + 1) and lower ( j = 0) cladding layers
q j μ becomes purely imaginary, q j μ = iχ j μ with χ j μ =√

k2
‖ − ε j(ω2

μ/c2), and thus the field ∝ exp(±iq j μz) decays

exponentially along the z direction. In the following we give
their explicit form, obtained through a generalization of the
standard theory for slab waveguides (see, e.g., [31, 32]).

For TE polarization the modes are given by

ETE
k‖ (ρ, z) = eik‖·ρ

√
S

i
ωμ

c
ε̂k‖ ETE(k‖, z), (17)

HTE
k‖ (ρ, z) = eik‖·ρ

√
S

[H TE
⊥ (k‖, z)ẑ + H TE

‖ (k‖, z)k̂‖], (18)

where S is a normalization surface which cancels in the final
expressions and ETE, H TE

⊥ and H TE
‖ are as follows. The field

amplitudes for TE-polarized guided modes are

ETE(k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AM+1 μe−χM+1,μ(z−zM+1),

z > zM+1

A j μeiq j μ(z−z j −d j /2)

+ B j μe−iq j μ(z−z j −d j /2),

z j < z < z j + d j

B0 μeχ0 μ(z−z1), z < z1

(19)

H TE
⊥ (k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i AM+1 μk‖e−χM+1 μ(z−zM+1),

z > zM+1

ik‖[A j μeiq j μ(z−z j −d j /2)

+ B j μe−iq j μ(z−z j −d j /2)],
z j < z < z j + d j

i B0 μk‖eχ0 μ(z−z1), z < z1

(20)

H TE
‖ (k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AM+1 μχM+1 μe−χM+1 μ(z−zM+1),

z > zM+1

iq j μ[B j μe−iq j μ(z−z j −d j /2)

− A j μeiq j μ(z−z j −d j /2)],
z j < z < z j + d j

− B0 μχ0 μeχ0 μ(z−z1), z < z1

(21)

where S is a normalization surface which cancels in the
final expressions for the emission rates and the magnetic
field is found by application of the Maxwell equation

H(r) = −{(ic)/(ω)}∇ × E(r). The M + 2 coefficients
in the expressions (19)–(21) are obtained through a standard
transfer-matrix calculation together with the orthonormality
condition (3) (see [23] for details)

TM-polarized guided modes are given by

HTM
k‖ (ρ, z) = eik‖·ρ

√
S

ε̂k‖ H TM(k‖, z), (22)

ETM
k‖ (ρ, z) = eik‖·ρ

√
S

c

ωμ

[ETM
⊥ (k‖, z)ẑ + ETM

‖ (k‖, z)k̂‖], (23)

with

H TM(k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CM+1 μe−χM+1,μ(z−zM+1),

z > zM+2

C j μeiq j μ(z−z j −d j /2)

+ D j μe−iq j μ(z−z j −d j /2),

z j < z < z j + d j

D0 μeχ0 μ(z−z1), z < z1

(24)

ETM
⊥ (k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i/εM+1)CM+1 μk‖e−χM+1 μ(z−zM+1),

z > zM+1

(i/ε j)k‖[C j μeiq j μ(z−z j −d j /2)

+ D j μe−iq j μ(z−z j −d j /2)],
z j < z < z j + d j

(i/ε0)D0 μk‖eχ0 μ(z−z1), z < z1

(25)

ETM
‖ (k‖, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1/εM+1)CM+1 μχM+1 μe−χM+1 μ(z−zM+1),

z > zM+1

(i/ε j)q j μ[D j μe−iq j μ(z−z j −d j /2)

− C j μeiq j μ(z−z j −d j /2)],
z j < z < z j + d j

(1/ε0)D0 μχ0 μeχ0 μ(z−z1),

z < z1

(26)

where the electric field is obtained as E(r) = {[ic]/[ωε(r)]}∇×
H(r). As for TE-polarized modes, the M +2 coefficients in the
above expressions are derived within the transfer-matrix theory
together with the normalization integral (3).

3. Spontaneous emission rates

In this section the spontaneous transition rate of an excited
atom embedded in a non-uniform dielectric medium (like
the multilayer structure depicted in figure 1) is studied in
a quantum-electrodynamical framework. We assume that
the interaction between the excited two-level system and the
e.m. field in the dielectric medium is not too strong, so that
the transition between two states can be studied within the
framework of perturbation theory. A detailed description of
the canonical quantization of the e.m. field in a non-uniform
medium [ε = ε(r)] is given in [23] and references therein,
while here we recall the main results and provide the analytical
expressions of the SE rates.
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The starting point is an atom located at position z, which
is initially in the excited state |x〉 (with energy h̄ωx ) and
undergoes a spontaneous dipole transition to its ground state
|g〉 (with energy h̄ωg) by emitting a photon of energy h̄ω0 =
h̄ωx − h̄ωg . In the electric dipole approximation and near
the atomic resonance (ω ≈ ω0), the atom–field interaction
Hamiltonian for such a process is given by [33]

Ĥγ−A ≈ (σ̂+d + σ̂−d∗) · Ê(r, t), (27)

where σ̂− = |g〉〈x | (σ̂+ = |x〉〈g|) is the atomic down- (up-)
transition operator, d = dxg = 〈x |d̂|g〉 = |d|ε̂d is the dipole
matrix element, d̂ = er̂ being the atomic dipole operator of the
atom located at r and Ê(r) is the electric field operator:

Ê(r, t) = i
∑
k,n

(2π h̄ωkn)
1/2

× [âknEkn(r)e−iωkn t − â†
knE∗

kn(r)e
iωkn t ]. (28)

In the expression given above â†
kn (âkn) are Bose creation

(destruction) operators of field quanta with energies h̄ωkn

satisfying the usual commutation relations, n is a generic index
labeling the eigenmode Ekn and the following orthonormality
condition holds [3, 25, 34]:∫

V
ε(r)E∗

kn(r) · Ek′n′(r)dr = δk,k′δn,n′ . (29)

In the initial state |i〉 of the combined atom–radiation system
there are no photons and the atom is in the upper (excited) level,
i.e. |i〉 = |0〉 ⊗ |x〉; in the final state | f 〉 one photon is emitted
in any mode of the e.m. field of frequency ωkn and the atom
is in the lower (ground) level, | f 〉 = |1kn〉 ⊗ |g〉. By applying
Fermi’s Golden Rule (see, e.g., [35]) the spontaneous emission
rate � = �(r) of an atom located at position r is given by

�(r) = 2π

h̄2

∑
f

∣∣∣∣〈 f |Ĥγ−A|i〉
∣∣∣∣
2

δ(ωi − ω f ), (30)

where h̄ωi and h̄ω f are the energies of the initial and final state,
respectively. By insertion of (28) in the above expression, and
using the commutation rules for âkn and â†

kn, the spontaneous
decay rate then is

�(r) = 4π2|d|2
h̄

∑
k,n

|Ekn(r) · ε̂d|2ωknδ(ω0 − ωkn). (31)

As discussed in section 2, an excited dipole embedded in
a multilayer dielectric structure can decay either as a leaky
or a guided eigenmode and, for both decay channels, two
contributions to the total emission rate can be distinguished:
(i) the emission rate �‖ due to the decay of horizontal dipoles,
i.e. in-plane oriented dipoles (ε̂d = x̂ or ŷ), which couple to
both transverse electric (TE) and transverse magnetic (TM)
polarized fields, and (ii) the rate �⊥ due to the decay of vertical
dipoles (ε̂d = ẑ) which couple to TM-polarized modes only.
Hence, for the realistic case of randomly oriented dipoles,
the total emission rate averaged over the polarizations can be
written as � = (2/3)�‖ + (1/3)�⊥. Furthermore, since the
dielectric function ε(r) = ε(z) = ε j is homogeneous in each
layer, the spontaneous emission rate will be expressed as a
function of the z coordinate only. In the following part of this
section we provide the exact expressions for the SE rates into
leaky and guided modes.

3.1. Emission rates into leaky modes

As discussed in section 2.1, the leaky modes are specified
by the propagation vector (k‖, q) of the outgoing component.
Hence, in (31), k = (k‖, q) and n = (p, j) is a double index
specifying the parameters of the final state, namely the field
polarization p = TE, TM and the cladding layer j in which
the emission occurs, j = 0 for emission in the lower cladding
and j = M + 1 for emission in the upper cladding. The leaky
mode dispersion ω = ωγ (k) is given by ωγ = c√

ε j
(k2

‖ + q2)1/2

and for each propagation wavevector k = (k‖, q) the following
relation holds:

k2
‖ < k2

j = ε j

ω2
γ

c2
, j = 0, M + 1, (32)

i.e. the emission occurs within the light-cone in the {ω, k‖}
space and ε j = ε0 (εM+1) if the emission occurs in the lower
(upper) cladding. By replacing ωkn = ωγ in (30), the emission
rate into the leaky modes � = �(z) can be written as

�(z) = 4π2|d|2ω0

h̄
Jleaky(ω0, z), (33)

where the TE- and TM-polarized fields ETE
k‖ (ρ, z) and

ETM
k‖ (ρ, z) are given by (6) and (12), respectively, and

Jrad(ω0, z) is the LDoS:

Jleaky(ω0, z) = S

(2π)2

∑
p=TE, TM

∑
j=0, M+1

∫
|Ep

k‖(ρ, z) · ε̂d|2

× ρ j(k‖, ω) dk‖. (34)

In (34) ρ j(k‖, ω) is the one-dimensional (1D) photon DoS at a
fixed in-plane wavevector k‖, for leaky modes outgoing in the
medium j :

ρ j (k‖, ω) = 2ω0

c2

∑
q

δ

(
ω2

0

c2
− ω2

γ

c2

)

= L
√

ε jω0

2πc

�(ω2
0 − c2k2

‖
ε j

)√
ω2

0 − c2k2
‖

ε j

, (35)

where L = V/S is the width of the normalization box in
the z direction (which disappears in the final expression of
the SE rate) and �[�(x) = 1 (=0) if x > 0 (x < 0)]
is the Heaviside function. It is worth noticing at this point
that, by using (34) with the basis of leaky modes discussed
in section 2.1, the definition of the LDoS is unambiguous: for
each outgoing mode ( j = 0 or M + 1) the LDoS is defined
by one mode component only and the difficulty related to the
interference between components of different modes is thus
avoided. Furthermore, due to the Heaviside function in (35),
emission into partially leaky modes occurs only in the cladding
with the higher refractive index, as it has to be. After the
introduction of spherical coordinates in the (k‖, q) space:

k‖ = (k j sin θ cos φ, k j sin θ sin φ), φ ε[0, 2π],
θ ε[0, π/2], (36)
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the single contributions to the total emission rate � = �(z) due
to the decay of horizontal and vertical dipoles can be derived:

�TE
‖ (z) = |d|2ω3

0

2h̄c3

∑
j=0, M+1

ε
3/2
j

×
∫ π/2

0
|ETE(k‖ = k j sin θ, z)|2 sin θ dθ, (37)

�TM
‖ (z) = |d|2ω0

2h̄c[ε(z)]2

∑
j=0,M+1

ε
3/2
j

×
∫ π/2

0
|ETM

‖ (k‖ = k j sin θ, z)|2 sin θ dθ, (38)

�TM
⊥ (z) = |d|2ω0

h̄c[ε(z)]2

∑
j=0,M+1

ε
3/2
j

×
∫ π/2

0
|ETM

⊥ (k‖ = k j sin θ, z)|2 sin θ dθ, (39)

where the field amplitudes ETE, ETM
‖ and ETM

⊥ are given
by (8), (15) and (14), respectively.

3.2. Emission rates into guided modes

Guided modes travel along the dielectric planes with
propagation wavevector k‖, hence in (31) one takes k = k‖,
while n = (p, α), α is the guided mode index introduced in
section 2.2. The spontaneous emission rate as a function of the
2D LDoS for guided modes Jgui is

�(z) = 4π2|d|2ω0

h̄
Jgui(ω0, z), (40)

where the fields ETE
k‖ (ρ, z) and ETM

k‖ (ρ, z) are given by (17)
and (23), respectively, the sum extends over all the α guided
modes and Jgui(ω0, z) is given by

Jgui(ω0, z) = S

(2π)2

∑
p=TE, TM

∑
α

∫
|Ep

k‖α(ρ, z) · ε̂d|2 dk‖.

(41)
Integration over k‖ in (40) yields the following expressions for
the single contributions �TE

‖ , �TM
‖ and �TM

⊥ :

�TE
‖ (z) = |d|2πω3

0

h̄c2

∑
α

|ETE(k‖ = kα
0 , z)|2 kα

0

vα
0

, (42)

�TM
‖ (z) = |d|2πc2

h̄ω0

∑
α

|ETM
‖ (k‖ = kα

0 , z)|2 kα
0

vα
0

, (43)

�TM
⊥ (z) = |d|22πc2

h̄ω0

∑
α

|ETM
⊥ (k‖ = kα

0 , z)|2 kα
0

vα
0

, (44)

where ETE, ETM
‖ and ETM

⊥ are given by (19), (26) and (25),
respectively. In the expressions given above, kα

0 = kα
‖ (ω = ω0)

and vα
0 = (dωk‖α/dk‖)ωk‖α=ω0 are the in-plane wavevector and

the group velocity of the αth guided mode calculated at the
dipole emission frequency ω0, respectively. The wavevectors
kα

0 as functions of the frequencies are the poles (which are
real ones for guided modes) of the transmission amplitude
t = 1/T22 of the whole dielectric structure, T being the total

(a)

(b)

(c)

(d)

Figure 3. Schematic of the sample structures. Er-doped silicon oxide
films ds = 20 nm thick on silicon oxide (a), on silicon oxide and with
a 550 nm thick SiO2 layer on its top (b), on a crystalline silicon
substrate (c) and embedded in the core of a slot waveguide (d), with
d1 = 1.9 μm and d2 = d3 = 110 nm.

transfer matrix for the multilayer structure considered. Notice
that the total emission from planar dipoles is �‖ = �TE

‖ +�TM
‖ ,

while the emission from perpendicular dipoles is �⊥ = �TM
⊥ .

In an unpolarized experiment on randomly oriented dipoles,
the average decay rate �ave = (2/3)�‖ +(1/3)�⊥ is measured.

4. Analysis of the 1.54 μm transition in Er3+-doped
SiO2 layers

In this section we apply the model previously described to
study in detail the photoluminescence (PL) decay rate of
the 4I13/2 → 4I15/2 transition around 1.54 μm in Er3+-
doped SiO2 planar slot layers acting as the active material in
deposited polycrystalline silicon waveguides. As discussed
in section 1 the lifetime of erbium ions can be drastically
modified as a result of the confinement effects occurring in
these structures. For a quantitative evaluation of this effect,
we have analyzed the decay rates of Er-doped SiO2 layers
of the same thickness in three other configurations, namely
after deposition on SiO2 and Si substrates and embedded in an
SiO2 bulk. Furthermore, by combining the radiative SE rates
obtained from the quantum-electrodynamical formalism with
time-resolved PL measurements, we are also able to evaluate
the non-radiative decay rates and the radiative efficiency.

4.1. Structures and measurements

A schematic of the cross section of the four investigated
structures is depicted in figure 3. Er-doped silicon oxide thin
films, about ds = 20 nm thick, have been deposited by reactive
co-sputtering from SiO2 and Er2O3 targets. The depositions
have been realized in a reactive atmosphere (90% Ar and 10%
O2) by keeping the substrate heated at 300 ◦C. The films

7



J. Opt. A: Pure Appl. Opt. 11 (2009) 114011 C Creatore et al

are located on a 1.9 μm thick thermal SiO2 layer (structure
(a)), within bulk-like SiO2 (structure (b)) by depositing a
550 nm thick SiO2 layer on top of structure (a), on a (100)
crystalline silicon (c-Si) substrate (structure (c)) and within
the silicon core of a slot waveguide (structure (d)). The slot
waveguide consists of the sequence of Si(110 nm)/Er:SiO2

(20 nm)/Si(110 nm) layers deposited on top of a 1.9 μm thick
silicon dioxide layer thermally grown on a silicon substrate.
The silicon layers have been realized by sputtering an Si
cathode in a pure Ar atmosphere without heating the substrate.
Structures (a) and (b) also lie on a Si substrate (not shown
in figures 3(a) and (b) for the sake of clarity). After the
deposition all the films have been annealed at 900 ◦C for
1 h in a nitrogen atmosphere. The Er content, measured by
Rutherford backscattering spectrometry, is constant within the
thin SiO2 layers, with a concentration of 7.6 × 1019 cm−3 for
all the samples.

Time-resolved PL at room temperature was performed
by pumping with the 488 nm line of an Ar+ laser, the
laser beam being chopped through an acousto-optic modulator
at a frequency of 11 Hz. The laser was focused on the
sample’s surface at an angle of 60◦ and then the emitted light
was collected in the normal direction for all four structures
here examined and depicted in figure 3. The modulated
luminescence signal, unpolarized, was first spectrally resolved
by a single grating monochromator set at 1535 nm with a
resolution of 6 nm, detected with a Hamamatsu infrared-
extended photomultiplier tube, and then analyzed with a
photon counting multichannel scaler with an overall time
resolution of 30 ns. It is worth noticing that the PL decay
rate is independent of the detection direction. This can be
easily understood in terms of the expression giving the number
of dipoles n(t) decaying at a certain time t after the initial
excitation, i.e. n(t) = n0e−�tot t . The measured decay rate
τtot = 1/�tot is just the time constant of such a process
and is, of course, independent of the decay direction of the
excited dipoles. In the case of structure (d) (slot waveguide)
supporting guided modes, the total SE rate is the sum of the
contributions due to emission into guided and leaky modes,
i.e. �tot = �gui + �leaky, but again, detecting the PL signal
either from the top or from the waveguide edge, yields the
same result in terms of decay rate τtot = 1/�tot. The choice of
surface emission geometry for time-resolved PL measurements
is therefore appropriate in order to compare and reveal the
trends when going through structures (a)–(d), as we now
discuss.

The PL decay curves at 1.5 μm give a direct measurement
of the decay rate of the first excited multiplet (4I13/2) of Er3+
and are shown in figure 4: all of them are characterized by a
single exponential behavior, and the lifetimes were determined
to be τ a = 12.98 ± 0.03 ms, τ b = 10.37 ± 0.03 ms,
τ c = 4.02 ± 0.03 ms and τ d = 1.336 ± 0.008 ms for Er-
doped SiO2 deposited on SiO2, embedded in SiO2, deposited
on c-Si and embedded within the slot waveguide, respectively.
With respect to �a the measured decay rate � = 1/τ is thus
enhanced by a factor �b/�a = 1.25, �c/�a = 3.23 and
�d/�a = 9.71. The lifetime τ b of the Er-doped SiO2 film
embedded in SiO2 (structure (b) in figure 1), i.e. the bulk

Figure 4. Erbium PL intensity decay curves (in log scale) for the
structures depicted in figure 3. The intensities are normalized to their
corresponding maxima.

lifetime, is similar to the value of 9.5 ms reported in [36] for
films synthesized by e-beam deposition and of about 15 ms for
thermally grown silicon oxide layer [20, 37].

The decrease in the observed lifetime τ c relative to τ a

is consistent with the effect of the dielectric mismatch at
the Si/SiO2 interface which results in a concentration of the
e.m. field in a narrow spatial region across it and thus to
an enhancement of the radiative spontaneous emission rate.
However, to properly address the issue of the modified lifetime
of Er3+, both the radiative (�rad) and the non-radiative (�nrad)
recombination rates need to be estimated, since the measured
decay rate � = 1/τ = �rad +�nrad sums up both contributions.

4.2. Radiative and non-radiative decay rates

In a generic dielectric multilayer structure, the total radiative
decay rate �rad results from the emission into leaky and guided
modes (if any), �rad = �

leaky
rad + �

gui
rad , the latter being supported

by the slot waveguide only (structure (c)) among the structures
here considered and shown in figure 3.

The radiative SE rates �rad = 1/τrad can be easily
calculated within the quantum-electrodynamical formalism
described in section 3 through (37)–(39) and (42)–(44) with
the same parameters (thicknesses and refractive indices) of
the four considered structures and for the realistic case of a
randomly oriented Er3+ emitter in an SiO2 layer. It is worth
noticing at this point that, since the Er3+ ions are always
embedded in the same SiO2 dielectric material, local field
effects (see, e.g., [38] and references therein) are not relevant
and thus have not been involved in the present theoretical
analysis. The radiative decay rates are found to be in the
following ratios: �b

rad/�a
rad = 1.4, �c

rad/�a
rad = 2.4 and

�d
rad/�a

rad = 8.9. As expected, a significant increase of the
radiative decay rate occurs in the slot waveguide (�d

rad/�a
rad =

8.9): in this case the high-index-contrast which develops at
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Figure 5. The normalized (with respect to the vacuum emission rate
�0) radiative spontaneous emissions rates �rad = (2/3)�‖ + (1/3)�⊥
for a slot waveguide calculated as a function of the dipole position
z/λ (λ being the emission wavelength). The black and red lines refer
to the normalized emission rates into guided and leaky modes,
respectively. The refractive index of Si is taken to be n = 3.48 and
that of SiO2 (both undoped and Er-doped) is n = 1.45.

the Er:SiO2/Si interfaces of the slot leads to a strong field
confinement for TM modes, due to the discontinuity of the
z component of the electric field, and thus to an enhanced
radiative emission as a result of the increase of the local
density of optical states. Such an enhancement is mainly due
to the emission into guided modes as is clear from figure 5
which shows the separate emission rates into leaky and guided
modes (see the black and red lines) calculated as a function
of the Er3+ position (z/λ) in the slot waveguide (structure (d)
in figure 3), with a calculated ratio �

gui
rad/�

leaky
rad ≈ 9 when

the erbium ions are placed in the slot region. These results
are thus consistent with light confinement effects which have
been recently observed in similar active slot waveguides [24]
where an enhancement of TM- over TE-polarized guided
mode emission was demonstrated. In figure 6 we show the
calculated dispersion of guided modes supported by the slot
waveguide here considered (structure (d) in figure 3) and the
related SE rate (see the inset) as a function of the erbium
energy: it can be seen that the emission properties of erbium
are basically independent of the wavelength within its main
emission spectrum (depicted in figure 6 with the shadowed
region corresponding to the energy range (0.80–0.81) eV). It
can be interesting to establish the maximum enhancement of
radiative rate that can be obtained in these slot waveguides: as
the slot width goes to zero, the ratio �d

rad/�b
rad grows towards

the limiting value (εSi/εSiO2)
2 � 33.25 (εSi and εSiO2 being

the dielectric constants of Si and SiO2, respectively) for TM
polarization and � 12 when averaged over polarizations. Thus
the ratio �d

rad/�a
rad averaged over polarizations tends to �16.

For the present case of a 20 nm thick slot layer, the theoretical
ratio is �d

rad/�a
rad = 8.9, but a thinner slot layer would not

Figure 6. The dispersion of guided modes supported by the slot
waveguide with a core of thickness d = d2 + dS + d3 (see structure
(d) in figure 3). Blue-dashed and red-continuous lines refer to
TM- and TE-polarized modes, respectively. The shadowed region
around 0.8 eV shows the main erbium emission spectrum
(0.8–0.81) eV. The light lines of Si and SiO2 are also shown. Inset:
the normalized SE rates into guided modes as a function of the
erbium emission energy; the average emission
�ave = (2/3)(�TE

‖ + �TM
‖ ) + (1/3)�TM

⊥ and the emission rates
�TE = �TE

‖ and �TM = �TM
‖ + �TM

⊥ into TE and TM modes,
respectively, are shown.

necessarily yield better results for radiative lifetime reduction,
both because the emitter’s luminescence would be even weaker
and non-radiative processes due to interaction with defects at
slot interfaces would be enhanced.

The radiative and non-radiative contributions to the total
emission rates can be evaluated by combining the measured
PL decay rates and theoretical ratios β

a,c,d
b defined as

β
a,c,d
b = �

a, c ,d
rad /�b

rad. (45)

The procedure is the following. The emission rates �b
rad and

�b
nrad for Er-doped SiO2 in bulk SiO2 (structure (b) in figure 1)

have been first determined. This can be done by solving the
coupled equations for the variables �b

rad and �b
nrad = �a

nrad given
by

�a = �a
rad + �a

nrad = βa
b�

b
rad + �a

nrad,

�b = �b
rad + �b

nrad ≈ �b
rad + �a

nrad,
(46)

where �a,b = 1/τ a,b are the SE rates obtained from the PL
measurements, βa

b is given by (45), and we have assumed
�a

nrad ≈ �b
nrad, i.e. the non-radiative processes in structures (a)

and (b) being approximately the same. This assumption is fully
reasonable, since the non-radiative recombination processes in
SiO2 are due to short-range Förster energy transfer between
the Er3+ transition and the resonant hydroxyl groups [20] and
thus have the same efficiency in both structures (a) and (b).
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By solving (46), the radiative efficiency for Er:SiO2 in SiO2

bulk has been determined to be q = �b
rad/(�

b
rad + �b

nrad) =
0.74, a value very close to that given in [37] for similar
structures. Once �b

rad has been determined, the radiative
emission rates �

a,c,d
rad for structures (a), (c) and (d) are found

as �
a,c,d
rad = β

a,c,d
b �b

rad by using the ratios given in (45). Then,
the non-radiative rates �

a,c,d
nrad can be obtained as the differences

between the experimental decay rates �a,c,d = 1/τ a,c,d and the
theoretical radiative ones, i.e. �

a,c,d
nrad = �a,c,d − �

a,c,d
rad .

The measured decay rates and the calculated radiative and
non-radiative contributions are all shown in figure 7. First, it
can be clearly seen that, as the average refractive index at the
Er-doped SiO2 layer increases (see the structures from left to
right), so does the radiative decay rate of the Er3+ transition
and a strong lifetime reduction does occur when the layer is
embedded within the slot waveguide. Furthermore, the non-
radiative decay rate increases as well in the Er-doped SiO2 on
c-Si and in the slot waveguide structures ((c) and (d) in figure 3)
as a result of the interaction of the Er3+ transition with surface
defect states at the SiO2/Si interfaces and to Auger quenching
with free and bound carriers in silicon. This effect has been
thoroughly studied in the past, see, e.g., [39–41]. Notice that
the non-radiative decay rate in structures (c) and (d) can be
distributed quite inhomogeneously within the Er-containing
slab, so that the effective non-radiative decay rate is an average
over the active layer thickness. In spite of these complications,
the radiative quantum efficiency is estimated to be about 62%
in structure (d), this latter value being only slightly smaller than
in bulk SiO2. Hence, the radiative recombination is still the
dominant process in the slot waveguide.

5. Conclusions

We have described a quantum-electrodynamical formalism
which is particularly suitable to study the spontaneous
emission in generic lossless and non-dispersive multilayer
dielectric structures. The analytical expressions for the local
density of states and spontaneous emission rate into leaky and
guided modes have been derived as a function of the excited
dipole position in the considered structure. By describing
the leaky modes with a basis specified by a single outgoing
radiative component, the total emission rate as well as the
emission in the upper/lower claddings or, more generally,
the SE patterns, can be calculated in a straightforward
way, avoiding all the difficulties related to the treatment of
interference terms which arise when the standard (Carniglia
and Mandel) basis is used.

This model has been applied to study in detail the decay
rate of the 1.5 μm transition of Er3+-doped SiO2 layers
embedded in Si-based waveguides. We have shown that,
when a tiny layer of doped SiO2 is embedded within the
core of a silicon-based optical waveguide (slot waveguide
configuration), a strong reduction of the radiative lifetime of
Er3+ occurs. This result can be regarded as the analog of
the Purcell effect in an optical cavity and can be a major
step towards achieving gain and stimulated emission in Er-
doped silicon-based slot waveguides. Moreover, by combining
the theoretical results and time-resolved PL measurements,

Figure 7. Erbium photoluminescence decay rates (in log scale).
Black continuous line: the measured decay rates �tot = �rad + �nrad.
Blue dashed and red dash-dotted lines: the radiative and
non-radiative rates, respectively, evaluated using the measured PL
decay rates and the theoretical ratios β

a,c,d
b = �

a,c,d
rad /�b

rad. The error
bars for the experimental decay rates (black continuous line) are
those associated with the lifetimes derived from the PL decay curves
(see figure 2). The uncertainties in the radiative and non-radiative
rates have been obtained by applying error propagation.

we have also estimated the non-radiative contributions to
the total decay rate, which has been found to be strongly
increased when the Er:SiO2 layer is deposited on a silicon
substrate and embedded in the slot waveguide. This is
probably due to recombination with surface defects at the
SiO2/silicon interface and to Auger quenching. However, since
the estimated radiative efficiency is about 62% in the slot
waveguide, radiative recombination is still the dominant decay
mechanism thanks to the increase of radiative decay rate in the
slot that more than compensates the increase of non-radiative
decay rate.
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