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Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation
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We calculate the normalized second-order correlation function for a system of two tunnel-coupled photonic
resonators, each one exhibiting a single-photon nonlinearity of the Kerr type. We employ a full quantum
formulation: The master equation for the model, which takes into account both a coherent continuous drive
and radiative as well as nonradiative dissipation channels, is solved analytically in steady state through a
perturbative approach, and the results are compared to exact numerical simulations. The degree of second-order
coherence displays values between 0 and 1, and divides the diagram identified by the two energy scales of the
system—the tunneling and the nonlinear Kerr interaction—into two distinct regions separated by a crossover.
When the tunneling term dominates over the nonlinear one, the system state is delocalized over both cavities, and
the emitted light is coherent. In the opposite limit, photon blockade sets in, and the system shows an insulatorlike
state with photons locked on each cavity, identified by antibunching of emitted light.
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I. INTRODUCTION

Recent advances in cavity quantum electrodynamics
(CQED) have led to the demonstration of a number of striking
phenomena related to the fundamental properties of light-
matter coupling, when single or few quantum emitters interact
with the mode of an electromagnetic resonator [1–3]. The
experimental realization of the Jaynes-Cummings (JC) model
[4], which predicts a strong light-matter coupling regime
when the Rabi frequency between the oscillators exceeds their
respective loss rates [5,6], has been achieved in both atomic [1]
and solid-state [7,8] CQED with single two-level emitters in
high-Q resonators. In the strong coupling regime, the CQED
system is intrinsically anharmonic at the level of single quanta,
which is derived from the underlying anharmonic nature of the
emitter’s eigenstates [9–14].

Following these early works, the ultimate limit of nonlinear
optics i.e., the ability to control the nonlinear response of
a system by the injection of single photons through the so-
called photon blockade effect [15] has recently been reached.
Inhibition of the resonant transmission of a single photon
because of the presence of another one within the cavity has
been experimentally demonstrated with both single atoms in
optical cavities [16] and semiconductor quantum dots strongly
coupled to photonic nanocavities [17]. In all these experiments,
the statistical properties of the resonant light beam transmit-
ted through the nonlinear system gives precise information
on the nature of the effective photon-photon interaction within
the cavity. Photon blockade has been shown to be strictly
characterized by conversion of a classical coherent field at
the input into a nonclassical antibunched photon stream at
its output [15]. Similar effects have also been predicted
for other types of coherent fields [18–20]. More recently,
there has been an intense effort toward the exploitation of
nonlinearities that arise from Coulomb interaction in confined

electron and photon systems [21]. In such a case, mixed
light-matter states (polaritons) arise from the strong-coupling
regime of quantum well excitons and microcavity photons,
which are three-dimensionally confined thanks to the progress
in lithographic techniques. The polariton quantum blockade
has been predicted for such highly nonlinear light-matter states
[22], and first evidence of nonlinear behavior has been reported
experimentally [23]. These systems are likely to provide a
further playground for single-photon nonlinear optics in the
near future.

Motivated by the great level of control achieved in
CQED experiments with single cavities, recent theoretical
work has explored multicavity nonlinear systems. Initial
work was mainly aimed at studying the superfluid-insulator
quantum phase transition [24–26] of the effective Bose-
Hubbard Hamiltonian [27–33], or the JC-Hubbard model
[34–40] for arrays of CQED systems under quasiequilibrium
conditions. Subsequent work that deals with coupled nonlinear
cavity systems has addressed the dynamics in a two-site JC
model [41,42], soliton physics [43], a proposal for observing
fractional quantum Hall states [44], the possible realization of a
Tonks-Girardeau gas in different one-dimensional geometries
[45–47], the study of effective spin models [48,49] and
of entanglement generation [50], the use of coupled cavity
systems as efficient single-photon sources even in the presence
of weak photon nonlinearities [51], and the signatures of
superfluid-insulator quantum phase transition for an infinite
CQED array under pulsed coherent driving [52].

In a recent work [53], a proposal has been made to observe
signatures of strong photon correlations in a system of three
coupled nonlinear cavities, with the central one displaying
single-photon nonlinearity, through the measurement of its
degree of second-order coherence. In addition to being a
readily realizable system with state-of-the art technology with

1050-2947/2010/82(1)/013841(8) 013841-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.013841
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FIG. 1. (Color online) The system of two coupled nonlinear
cavities. The relevant parameters of the model are indicated, namely,
the coherent pumping (F ) and the dissipation (γp) rates, respectively.
The cavities are supposed to be nonlinear, with an interaction energy
U , and they are tunnel coupled by evanescent overlap of their
cavity modes with a coupling constant J . We assume symmetric
cavity parameters in this paper.

both atomic and solid-state CQEDs [8,11,54,55], this system
is a possible quantum photonic device in which information
encoded in classical field states can be controlled by the
presence or absence of single-photon quanta (a single-photon
transistor).

In order to extend and to generalize the latter work, here,
we present a systematic theoretical analysis of a model of
two coupled cavities, both of them assumed to be nonlinear at
the single-photon level. The model takes coherent driving as
well as global dissipation channels within a master equation
treatment into account (see a sketch of the system in Fig. 1).
The dynamical equilibrium reached by the system is due to
the balance between pumped and dissipated photons, and
it is analyzed in steady state. By following previous work
[53], we mainly concentrate on calculating the second-order
correlation function for the light emitted from each cavity, both
analytically and numerically. Interplay of coherent tunneling
and on-site interactions is clearly identified in the crossover
from Poissonian to sub-Poissonian light statistics of the
emitted light.

The paper is organized as follows: We first introduce the
model and the master equation in Sec. II. In Sec. III, we provide
a description of the analytical solution for the master equation
that can capture the second-order correlation function for this
model, and compare it to a full numerical solution.

II. THEORETICAL FRAMEWORK

Here, we will investigate the photon correlations in the
two-site Kerr-Hubbard model (Fig. 1) given by (h̄ = 1)

ĤKH =
∑
i=1,2

(ωip̂
†
i p̂i + Uip̂

†
i p̂

†
i p̂i p̂i + Fie

−iωLt p̂
†
i

+F ∗
i eiωLt p̂i) + J (p̂†

1p̂2 + p̂
†
2p̂1), (1)

where p̂i (p̂†
i ) destroy (create) generic bosonic excitations in

each of the two cavities at their fundamental frequencies ωi ,
Ui is the nonlinear Kerr-type interaction in each cavity, J is the
intercavity tunneling rate, and Fie

−iωLt is the coherent driving
amplitude at laser frequency ωL.

There are several ways to realize the model in Eq. (1), with
either atomic or solid-state cavity QED technology. All these
realizations principally rely on the formation of well-defined
quasiparticles, polaritons, of mixed light-matter nature, for the
availability of the required effective quasiparticle interactions

Ui . One possible way is, for example, to start from two atoms
or quantum dots strongly coupled to their respective cavity
modes, with the two cavities in optical contact with each
other. While the single-photon nonlinearity derives from the
light-matter coupling in the framework of a JC model, the
tunnel coupling is due to photon tunneling, and the coherent
pump acts directly on the photonic degrees of freedom. In
the absence of losses or spontaneous emission decay, such a
system would be described by a two-site JC-Hubbard Hamil-
tonian, extensively discussed in recent literature [34,38–42].
In the weak pumping limit and the dispersive regime, the
JC nonlinearity can be reduced to an effective Kerr-type
nonlinearity between polaritons [56].

A more straightforward and conceptually simple way to
obtain a Kerr-type nonlinearity that is effective at the single-
photon (or polariton) level is to consider solid-state systems in
which the Coulomb interaction is strong enough. In particular,
here, we refer to excitons in quantum wells coupled to a single
photonic mode of a microresonator, where excitons interact
via their dipole field [22]. In such a case, the Hamiltonian for
the two-site system in the rotating wave and electric dipole
approximations is given by Ĥ = Ĥ0 + Ĥ1 with [51]

Ĥ0 =
∑
i=1,2

[ωcav,i â
†
i âi + ωx,iX̂

†
i X̂i + �i(â

†
i X̂i + X̂

†
i âi)],

(2)

Ĥ1 =
∑
i=1,2

[ViX̂
†
i X̂

†
i X̂iX̂i + Ei(t)e

−iωLt â
†
i + E∗

i (t)eiωLt âi]

+ j (â†
1â2 + â

†
2â1). (3)

Here, â†
i (âi) creates (destroys) a photon in cavity i at frequency

ωcav,i , while the operators X̂i (X̂†
i ) describe excitonic quasi-

particles with energy ωx,i . We assume an interaction energy Vi

between excitons that derive from a contact-type Coulomb
interaction, and the exciton-photon interaction strength is
given by the Rabi frequency �i . Cavity photons are coherently
pumped into each cavity with amplitudes Eie

−iωLt , and j is the
tunneling amplitude for photons between neighboring cavities.

With respect to the latter model, polaritonic excitations
can be defined as linear combination of excitons and cavity
photons as (

P̂−,i

P̂+,i

)
=

(
ui −vi

vi ui

)(
X̂i

âi

)
, (4)

where the coefficients are [57]

ui = 1√
1 + (

�i

ω−,i −ωcav,i

)2
, vi = 1√

1 + (ω−,i −ωcav,i

�i

)2
. (5)

This transformation then diagonalizes Ĥ0,

Ĥ0 =
∑
σ=±

∑
i=1,2

ωσ,i(P̂σ,i)
†P̂σ,i , (6)

with the lower and upper polariton energies, respectively,
given by ω±,i = (ωcav,i + ωx,i)/2 ± √

�2
i + (�i/2)2, where

�i = ωcav,i − ωx,i . By assuming quasi-resonant pumping of
the lower polariton level (ωL ∼ ω−), �i < 0 and by neglecting
nonresonant contributions, the resulting effective Hamiltonian
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Ĥ can be written in the form of Eq. (1) with p̂i = P̂−,i , ωi =
ω−,i , Fi = viEi , J = v1v2 j , and Ui = u4

i Vi . Throughout this
paper, we will assume identical sites for simplicity and will
drop the site indices on the parameters of the system.

Losses that result, for example, from spontaneous emission
decay of the excitons or cavity photon leakage can be taken
into account within the quantum master equation in the
Born-Markov approximation for the density matrix of the
quasiparticles in the system, which is expressed in the usual
Lindblad form

∂

∂t
ρ = i[ρ,H̃KH] + L(ρ), (7)

where H̃KH is the Kerr-Hubbard Hamiltonian written in the
rotating frame with respect to the pump frequency resonant
with the lower polariton mode (ω− − ωL = 0),

H̃KH = R̂(t)ĤKHR̂†(t) =
∑
i=1,2

(Up̂
†
i p̂

†
i p̂i p̂i + Fp̂

†
i + F ∗p̂i)

+ J (p̂†
1p̂2 + p̂

†
2p̂1), (8)

with R̂(t) = exp{iωL(p̂†
1p̂1 + p̂

†
2p̂2)t}. The Liouvillian can be

expressed in the usual Lindblad form [58]

L = γp

2

∑
i=1,2

(2p̂iρp̂
†
i − p̂

†
i p̂iρ − ρp̂

†
i p̂i), (9)

where γp is the polariton dissipation rate in each cavity [59].
We will discuss the possible realistic implementation of this
model and the required tolerances in Sec. IV.

III. RESULTS

The aim of the present paper is to assess the second-order
correlation function as a quantitative probe of the interplay
between tunneling and interactions in a two-site CQED system
described by Eq. (7). To this end, we calculate the steady-state
normalized degree of second-order coherence [60] for the light
emitted from the system, which is defined as

g(2)
ss (τ ) = g(2)(t → ∞,τ ) = 〈p̂†(t)p̂†(t + τ )p̂(t + τ )p̂(t)〉

〈p̂†(t)p̂(t)〉2
.

(10)

In the following, we will only be concerned with the zero-
time delay correlation function in steady state g(2)

ss (0) =
〈p̂†2p̂2〉/〈p̂†p̂〉2. This correlation function of the polaritons
can be straightforwardly related to the correlation function of
cavity photons via Eq. (4), which is the quantity ultimately
measured in a typical experiment [53].

In the weak pumping limit, an analytic solution to the
steady-state master equation for our model can be found in
the following way. We write Eqs. (7) and (9) in the Fock basis
{|n1,n2〉}, where n1 and n2 indicate polariton occupations in
cavities 1 and 2, respectively. We consider the low-energy
excitations of the Hamiltonian Eq. (8), Ntot = n1 + n2 �
2. The corresponding energy-level diagram and rates are
schematically shown in Fig. 2. The resulting equations of
motion for the 36 elements of the density matrix can be
solved by using perturbation theory and a recursive procedure
in F/γp, as described in Appendix A.

F

2U

I0,0〉

I1,0〉

I2,0〉

I0,1〉

I1,1〉

I0,2〉

F
F

F
F

F
γ

γ
γ

γγ

γp p
p

p

p p

FIG. 2. (Color online) Schematic energy-level diagram and rates
for the coupled cavity system. We use the following shorthand
notation for the eigenstates: |0,0〉 → |1〉, |1,0〉 → |2〉, |0,1〉 → |3〉,
|2,0〉 → |4〉, |1,1〉 → |5〉, |0,2〉 → |6〉.

The steady-state second-order correlation function g(2)
ss (0)

for the ith cavity can be calculated as

g
(2)
i (0) = Tr {p̂†

i p̂
†
i p̂i p̂iρss}

(Tr {p̂†
i p̂iρss})2

=
∑

m,m′ ρ
ss
m,m′ 〈m|p̂†

i p̂
†
i p̂i p̂i |m′〉( ∑

m,m′ ρ
ss
m,m′ 〈m|p̂†

i p̂i |m′〉)2 , (11)

where |m〉 ≡ |n1n2〉 is a collective notation for the eigenstates
of the coupled cavity system and ρss

m,m′ is the steady-state
density matrix calculated from Eq. (7). We will, henceforth,
drop the subscript ss. In the weak pumping limit F/γp 	 1,

g
(2)
1 (0) = g

(2)
2 (0) = g(2)(0) ∼= 2ρ4,4

ρ2
2,2

. (12)

The calculations are lengthy but straightforward (see
Appendix A), and the analytic expressions for the matrix
elements ρ4,4 and ρ2,2 are given in Eqs. (A49) and (A29),
respectively. Notice that the explicit analytic expression for
ρ4,4 is recursively obtained through the analytic expression for
the elements in Eqs. (A29), (A33), (A34), (A41), and (A42).
The procedure can be generalized [e.g., to perturbatively
calculate g(2)(0) for generic multisite CQED systems] either
analytically or numerically through the implementation of this
recursive algorithm. We notice that by setting J = 0 in the
preceding elements, Eq. (12) gives the correct limit of the
single cavity photon blockade:

g(2)(0) ∼= 1

1 + 4(U/γp)2
. (13)

For J 
= 0, the resulting behavior of g(2)(0) is shown
in Fig. 3 as a function of dimensionless quantities U/γp

and J/γp. The most striking feature of this plot is the
sharp boundary that divides regions where g(2)(0) ≈ 0 and
g(2)(0) ≈ 1. As clearly seen in Fig. 3, when the tunneling
term dominates over the on-site interaction energy, the emitted
light is Poissonian g(2)(0) ≈ 1. This reflects the statistics of
the coherent driving fields imposed on the system due to the
dominance of the linear tunneling terms over the nonlinear
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FIG. 3. (Color online) The second-order correlation function for
the two coupled nonlinear cavities g(2)(0), as a function of U/γp

and J/γp (a) as derived analytically from Eq. (12) and (b) from the
numerical solution of Eq. (7), calculated for F/γp = 0.1. The dashed
lines in both (a) and (b) show the boundary curve Ub(J ) defined by
the condition 2ρ4,4/ρ

2
2,2 = 0.5.

interaction terms in the Hamiltonian. Hence, the system state
is coherently delocalized over both cavities with symmetric
and antisymmetric combinations of the bare polariton modes.
In the opposite limit, the emitted photons are antibunched
g(2)(0) ≈ 0, which is a clear indication that the number of
quasiparticles in each cavity can only fluctuate between zero
and one. The latter is the photon-blockade regime that would
be present for J = 0 (i.e., individual cavities) for U � γp

[See Eq. (13)]. Note that, for J 
= 0, the crossover takes place
for larger values of U as J is increased thus showing the
interplay of tunneling and interactions in the steady state. The
boundary of the crossover in U , Ub(J ) can clearly be identified
by following the g(2)(0) = 0.5 contour (see the red dashed line
in the plot) and is found to increase approximately linearly
with J for J,U > γp.

In order to check the accuracy of the analytical solution
presented earlier, we have numerically solved Eqs. (7)–(9). The
second-order correlation function is numerically calculated
through Eq. (11), by using up to six photons in the Fock basis to
ensure full convergence (a small F/γp is assumed to compare
with the perturbative analytic solution). The result is shown in
Fig. 3(b) with a color scale plot, which displays g(2)(0) as a
function of U/γp and J/γp to be directly compared to Fig. 3(a).
To better show the agreement and the accuracy of the analytical
procedure provided in this paper, in Fig. 4, we give several cuts
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FIG. 4. (Color online) A direct comparison of numerical and
analytic results for g(2)(0): (a) fixed U/γp and varying J/γp , and
(b) fixed J/γp and varying U/γp . The full lines represent the analytic
solutions, while numerical ones are shown by symbols.

of the color plots of Fig. 3. The quantitative behavior of g(2)(0)
is very well reproduced by the analytic solution over several
decades considered in the parameter space.

IV. PHYSICAL REALIZATION

The Kerr-Hubbard Hamiltonian Eq. (1) can be realized with
a number of systems, which include strongly coupled atom-
cavity systems [28], circuit QED systems [38], or quantum
dots coupled to semiconductor resonators [34].

Here, we discuss possible realizations with semiconductor-
based optical microcavities. Efficient coupling of optical
modes in photonic resonators in evanescent contact with
each other has already been demonstrated in a number of
different systems, which include micropillars [61], microdisks
[62], and photonic-crystal cavities [54,55]. For the latter, the
constant improvement of post-fabrication techniques allows
to realize the regime of symmetric sites that is studied here,
by deterministically tuning both the cavity mode energies
and their couplings [63,64]. Note that the tolerance in the
parameters for qualitatively observing the phenomena studied
here in the symmetric limit is given by the loss rate γp. A wide
range of tunability has been experimentally demonstrated in
such systems (e.g., for tunnel coupling rates (J ∼ 0 − 1 meV)
[55]), and Q-factor engineering allows cavity loss rates to be
limited to few microelectron volts [65].

Concerning the nonlinearity, as we have seen in Sec. II,
the effective Kerr-Hubbard model can be realized either
with strongly coupled two-level systems (qubits) and cavity
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modes, or through coupled light-matter states (polaritons)
with contact-type interaction of Coulomb nature. In the first
case, sizable values of the nonlinearity have already been
shown experimentally in solid-state systems [11,13,17], and
tunability might be achieved through external control of the
qubit-cavity detuning (see, e.g., supplementary information
section of Ref. [53]). In the second case, for which pho-
tonic crystals represent an ideal platform for a prospective
implementation [66], very large values of exciton-exciton
interactions in confined systems have been predicted for
single resonators [22], and recently, have been measured [67]
experimentally.

Finally, detection of emitted radiation and subsequent
measurement of correlation functions would be performed
by the standard Hanbury-Brown-Twiss technique, details
depending on the geometry of the system under consideration.
For example, in the case of photonic-crystal slab cavity
systems, emitted light might either be guided through access
waveguides and then detected in an in-plane geometry, or
be directly imaged in a camera above the slab as in usual
microphotoluminescence experiments. Recently, improved
far-field collection from high-Q photonic-crystal cavity modes
has been reported [68], which might also be crucial for the
present proposal.

V. CONCLUSIONS

The two-site Kerr-Hubbard model represents a paradig-
matic system for investigating the interplay of tunneling
and strong correlations in a CQED system driven out of
equilibrium. We have analyzed this system under coherent
drive and dissipation and showed that, in the weak-pumping
limit, a simple perturbative-recursive approach can be used
to analytically compute the system density-matrix elements
as well as the correlation functions. Such a procedure can, in
principle, be generalized to CQED arrays with more than two
sites. The analytical solution was shown to be highly accurate
over several decades of system parameters by being compared
with the numerical solution of the master equation for the
system density matrix.

Our results show that the zero-delay second-order correla-
tion function provides an effective probe that can discriminate
between coherent and strongly correlated regimes of a two-site
CQED system. An interesting extension of the present paper
is the generalization of the techniques and concepts used here
to larger multisite systems.
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APPENDIX A: DENSITY-MATRIX ELEMENTS

In the following, we provide the analytic solution of
Eqs. (7)–(9) in the small F/γp limit, where we can truncate
the polaritonic Hilbert space to Ntot = 2 and assume that
the vacuum state approximately has unit occupancy (i.e.,

ρ1,1 
 1). The rest of the density-matrix elements in steady
state (see Fig. 2 caption for the labeling of the basis states) is
given as follows:

ρ1,1 
 1, (A1)

ρ1,2 = ρ∗
2,1 = 2i

γp

[Jρ1,3 + F (
√

2ρ1,4 + ρ1,1 + ρ1,5

− ρ2,2 − ρ3,2)] + 2
√

2ρ2,4 + 2ρ3,5, (A2)

ρ1,3 = ρ∗
3,1 = 2i

γp

[Jρ1,2 + F (ρ1,5 +
√

2ρ1,6 + ρ1,1

− ρ2,3 − ρ3,3)] + 2ρ2,5 + 2
√

2ρ3,6, (A3)

ρ1,4 = ρ∗
4,1 = i

γp − 2iU
[
√

2Jρ1,5

+F (
√

2ρ1,2 − ρ2,4 − ρ3,4)], (A4)

ρ1,5 = ρ∗
5,1 = i

γp

[
√

2J (ρ1,4 + ρ1,6)

+F (ρ1,3 + ρ1,2 − ρ2,5 − ρ3,5)], (A5)

ρ1,6 = ρ∗
6,1 = i

γp − 2iU
[
√

2Jρ1,5

+F (
√

2ρ1,3 − ρ2,6 − ρ3,6)], (A6)

ρ2,2 = i

γp

[J (ρ2,3 − ρ3,2) + F (
√

2ρ2,4 + ρ2,1 + ρ2,5

− ρ1,2 −
√

2ρ4,2 − ρ5,2)] + 2ρ4,4 + ρ5,5, (A7)

ρ2,3 = ρ∗
3,2 = i

γp

[J (ρ2,2 − ρ3,3) + F (
√

2ρ2,6 + ρ2,1 + ρ2,5

− ρ1,3 −
√

2ρ4,3 − ρ5,3)] + 2ρ4,4 + ρ5,5,

(A8)

ρ3,3 = i

γp

[J (ρ3,2 − ρ2,3) + F (
√

2ρ3,6 + ρ3,1 + ρ3,5

− ρ1,3 −
√

2ρ6,3 − ρ5,3)] + 2ρ4,4 + ρ5,5, (A9)

ρ2,4 = ρ∗
4,2 = i

3
2γp − 2iU

[J (
√

2ρ2,5 − ρ3,4)

+F (
√

2ρ2,2 − ρ1,4 −
√

2ρ4,4 − ρ5,4)],

(A10)

ρ2,5 = ρ∗
5,2 = 2

3

i

γp

[J (
√

2ρ2,4 +
√

2ρ2,6 − ρ3,5)

+F (ρ2,3 + ρ2,2 − ρ1,5 −
√

2ρ4,5 − ρ5,5)],

(A11)

ρ2,6 = ρ∗
6,2 = i

3
2γp − 2iU

[J (
√

2ρ2,5 − ρ3,6)

+F (
√

2ρ2,3 − ρ1,6 −
√

2ρ4,6 − ρ5,6)],

(A12)

013841-5
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ρ3,4 = ρ∗
4,3 = i

3
2γp − 2iU

[J (
√

2ρ3,5 − ρ2,4)

+F (
√

2ρ3,2 − ρ5,4 − ρ1,4 −
√

2ρ6,4)],

(A13)

ρ3,5 = ρ∗
5,3 = 2

3

i

γp

[J (
√

2ρ3,4 +
√

2ρ3,6 − ρ2,5)

+F (ρ3,3 + ρ3,2 − ρ5,5 − ρ1,5 −
√

2ρ6,5)],

(A14)

ρ3,6 = ρ∗
6,3 = i

3
2γp − 2iU

[J (
√

2ρ3,5 − ρ2,6)

+F (
√

2ρ3,3 − ρ5,6 −
√

2ρ6,6 − ρ1,6)],

(A15)

ρ4,4 = i

2γp

[
√

2J (ρ4,5 − ρ5,4) +
√

2F (ρ4,2 − ρ2,4)], (A16)

ρ4,5 = ρ∗
5,4 = i

2γp + 2iU
[
√

2J (ρ4,4 + ρ4,6 − ρ5,5)

+F (ρ4,3 + ρ4,2 −
√

2ρ2,5)], (A17)

ρ4,6 = ρ∗
6,4 = i

2γp

[
√

2J (ρ4,5 − ρ5,6)

+
√

2F (ρ4,3 − ρ2,6)], (A18)

ρ5,5 = i

2γp

[
√

2J (ρ5,4 + ρ5,6 − ρ6,5 − ρ4,5)

+F (ρ5,3 + ρ5,2 − ρ3,5 − ρ2,5)], (A19)

ρ5,6 = ρ∗
6,5 = i

2γp − 2iU
[
√

2J (ρ5,5 − ρ6,6 − ρ4,6)

+F (
√

2ρ5,3 − ρ3,6 − ρ2,6)], (A20)

ρ6,6 = i

2γp

[
√

2J (ρ6,5 − ρ5,6) +
√

2F (ρ6,3 − ρ3,6)], (A21)

We simplify the preceding equations as follows. First, we
consider the equations with a first-order dependence on F/γp,
and we neglect all the higher-order terms. We get

ρ1,2 = ρ∗
2,1 = 2i

γp

(Jρ1,3 + Fρ1,1), (A22)

and

ρ1,3 = ρ∗
3,1 = 2i

γp

(Jρ1,2 + Fρ1,1). (A23)

This yields

ρ1,2 = ρ1,3 = ρ∗
2,1 = ρ∗

3,1 =
2i
γp

(
1 + 2iJ

γp

)
1 + (

2J
γp

)2 Fρ1,1. (A24)

Next, we insert these expressions into the remaining equations
to obtain equations at a higher order in F/γp. Thus, the
elements of ρ with a second-order dependence on F/γp give
the following set of closed equations:

ρ2,2 = i

γp

[J (ρ2,3 − ρ3,2) + F (ρ2,1 − ρ1,2)]

= i

γp

F (ρ2,1 − ρ1,2), (A25)

ρ2,3 = i

γp

[J (ρ2,2 − ρ3,3) + F (ρ2,1 − ρ1,3)]

= i

γp

F (ρ2,1 − ρ1,3), (A26)

ρ3,2 = i

γp

[J (ρ3,3 − ρ2,2) + F (ρ3,1 − ρ1,2)]

= i

γp

F (ρ3,1 − ρ1,2), (A27)

ρ3,3 = i

γp

[J (ρ3,2 − ρ2,3) + F (ρ3,1 − ρ1,3)]

= i

γp

F (ρ3,1 − ρ1,3), (A28)

from which we can calculate a solution in terms of ρ1,1 as

ρ2,2 = ρ2,3 = ρ3,2 = ρ3,3 = 4

1 + (
2J
γp

)2

(
F

γp

)2

ρ1,1. (A29)

Now, we consider the equations of order (F/γp)3:

ρ1,4 = ρ∗
4,1 =

√
2iJ

γp − 2iU
ρ1,5 +

√
2iF

γp − 2iU
ρ1,2, (A30)

ρ1,6 = ρ∗
6,1 =

√
2iJ

γp − 2iU
ρ1,5 +

√
2iF

γp − 2iU
ρ1,3, (A31)

ρ1,5 = ρ∗
5,1 = 2

√
2i

J

γp

ρ1,4 + 2i
F

γp

ρ1,2. (A32)

Again, we can solve the set of coupled equations previously
reported by isolating the explicit dependence on ρ1,1, which
gives the solutions:

ρ1,4 = ρ1,6 = ρ∗
4,1 = ρ∗

6,1

=
−2

√
2
(
1 + 2iJ

γp

)2

[γp(γp − 2iU ) + 4J 2]
[
1 + (

2J
γp

)2]F 2ρ1,1, (A33)

ρ1,5 = ρ∗
5,1 = − 4iJ + 2(γp − 2iU )

4J 2 + γp(γp − 2iU )

2
γp

(
1 + 2iJ

γp

)
1 + (

2J
γp

)2 F 2ρ1,1.

(A34)

We analyze the other set of equations of order (F/γp)3,

ρ2,4 = i
3
2γp − 2iU

[J (
√

2ρ2,5 − ρ2,6) + F (
√

2ρ2,2 − ρ1,4)],

(A35)

ρ2,6 = i
3
2γp − 2iU

[J (
√

2ρ2,5 − ρ3,6) + F (
√

2ρ2,3 − ρ1,6)],

(A36)

ρ3,4 = i
3
2γp − 2iU

[J (
√

2ρ3,5 − ρ2,4) + F (
√

2ρ3,2 − ρ1,4)],

(A37)

013841-6



PHOTON CORRELATIONS IN A TWO-SITE NONLINEAR . . . PHYSICAL REVIEW A 82, 013841 (2010)

ρ3,6 = i
3
2γp − 2iU

[J (
√

2ρ3,5 − ρ2,6) + F (
√

2ρ3,3 − ρ1,6)],

(A38)

ρ2,5 = 2

3

i

γp

[J (
√

2ρ2,4 +
√

2ρ2,6 − ρ3,5)

+F (ρ2,3 + ρ2,2 − ρ1,5)], (A39)

ρ3,5 = 2

3

i

γp

[J (
√

2ρ3,4 +
√

2ρ3,6 − ρ2,5)

+F (ρ3,3 + ρ3,2 − ρ1,5)], (A40)

and we get a solution that depends on the elements ρ2,2, ρ1,4,
ρ1,5, which, in turn, depend on ρ1,1 as shown earlier. The
solutions for ρ2,4 and ρ2,5 read

ρ2,4 = ρ3,6 = ρ2,6 = ρ3,4 = ρ∗
4,2 = ρ∗

6,3 = ρ∗
6,2 = ρ∗

4,3 = iF
(3γp + 2iJ )(

√
2ρ2,2 − ρ1,4) + 2

√
2iJ (2ρ2,2 − ρ1,5)(

3
2γp − 2iU

)
(3γp + 2iJ ) + 3iγpJ + 6J 2

, (A41)

ρ2,5 = ρ3,5 = ρ∗
5,2 = ρ∗

5,3 = iF
4
√

2iJ (
√

2ρ2,2 − ρ1,4) + 2
[(

3
2γp − 2iU

) + iJ
]

(2ρ2,2 − ρ1,5)(
3
2γp − 2iU

)
(3γp + 2iJ ) + 3iγpJ + 6J 2

. (A42)

We finally consider the terms that depend on (F/γp)4,

ρ4,5 = ρ∗
5,4 = i

2γp + 2iU
[
√

2J (2ρ4,4 − ρ5,5)

+F (2ρ4,2 −
√

2ρ2,5)], (A43)

ρ5,5 = i

γp

[
√

2J (ρ5,4 − ρ4,5) + F (ρ5,2 − ρ2,5)], (A44)

ρ4,4 = i

2γp

[
√

2J (ρ4,5 − ρ5,4) +
√

2(ρ4,2 − ρ2,4)], (A45)

ρ4,6 = i

2γp

[
√

2J (ρ4,5 − ρ5,6) +
√

2(ρ4,3 − ρ2,6)], (A46)

ρ6,4 = i

2γp

[
√

2J (ρ6,5 − ρ5,4) +
√

2(ρ6,2 − ρ3,4)], (A47)

ρ6,6 = i

2γp

[
√

2J (ρ6,5 − ρ5,6) +
√

2(ρ6,3 − ρ3,6)]. (A48)

From these closed sets of equations, we get a solution for ρ4,4 as

ρ4,4 = ρ6,6 = ρ4,6 = ρ6,4 = F

2γp[(2γp)2 + (2U )2 + (4J )2]

× [
Im(ρ2,4)8

√
2
(
γ 2

p + U 2 + 2J 2 + JU
)

− Re (ρ2,4)8
√

2γpJ + Im (ρ2,5)8J (2J + U )

+ Re (ρ2,5)8γpJ
]
, (A49)

where Re and Im indicate real and imaginary parts of the
respective elements. The explicit analytic expression for ρ4,4

can be calculated from those of the elements ρ2,2, ρ1,4, ρ1,5,
ρ2,4, and ρ2,5, which have been obtained before. We notice
that the described recursive procedure can also be properly
generalized to calculate the relevant density-matrix elements
for generic multisite CQED systems.

APPENDIX B: NUMERICAL SOLUTION

To solve Eqs. (7)–(9), we use the finite-size Fock-state
matrix representation of all the operators. For any given set
of model parameters, the steady-state density matrix can be
obtained by numerically searching for the eigenvector |ρ〉〉ss,
which corresponds to the eigenvalue λss = 0 of the linear
operator equation:

L̂|ρ〉〉 = λ|ρ〉〉. (B1)

In the latter, |ρ〉〉 is the density operator mapped into
vectorial form, and L̂ is the linear matrix that corresponds
to the Liouvillian superoperator on the right-hand side of the
master equation. If it exists, as is always the case for the
parameters considered, the steady-state solution is unique [69].
After recasting the vector |ρ〉〉ss in matrix form, the relevant
observable quantities can be calculated as 〈O〉ss = Tr {Ôρss}.
In this paper, we kept up to six photons per cavity in the basis,
which is sufficient for convergence due to the weak driving
conditions. Steady-state results obtained in this way have been
successfully compared to the ones obtained from a full time
evolution of Eq. (7) as a further check.
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S. Reitzenstein, L. V. Keldysh, V. D. Kulakovkii, T. L. Reinecke,

and A. Forchel, Nature (London) 432, 197 (2004); T. Yoshie,
A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G.
Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, ibid. 432, 200
(2004); E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours,
J.-M. Gérard, and J. Bloch, Phys. Rev. Lett. 95, 067401 (2005).

[8] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[9] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.
Kimble, Phys. Rev. Lett. 75, 4710 (1995).

[10] I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. H.
Pinkse, K. Muss, and G. Rempe, Nat. Phys. 4, 382 (2008).

013841-7

http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1103/RevModPhys.73.565
http://dx.doi.org/10.1126/science.1078446
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1103/PhysRevA.40.5516
http://dx.doi.org/10.1103/PhysRevB.60.13276
http://dx.doi.org/10.1103/PhysRevB.60.13276
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1103/PhysRevLett.95.067401
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/PhysRevLett.75.4710
http://dx.doi.org/10.1038/nphys940
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[19] S. Rebić, A. S. Parkins, and S. M. Tan, Phys. Rev. A 69, 035804

(2004).
[20] I. Carusotto, T. Volz, and A. Imamoğlu, Europhys. Lett. 90,
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and A. Imamoğlu, Phys. Rev. Lett. 103, 033601 (2009).
[48] D. G. Angelakis, M. F. Santos, and S. Bose, Phys. Rev. A 76,

031805(R) (2007).
[49] M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, Phys.

Rev. Lett. 99, 160501 (2007).
[50] J. Cho, D. G. Angelakis, and S. Bose, Phys. Rev. A 78, 022323

(2008).
[51] T. C. H. Liew and V. Savona, Phys. Rev. Lett. 104, 183601

(2010).
[52] A. Tomadin, V. Giovannetti, R. Fazio, D. Gerace, I. Carusotto,
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