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Linear photonic crystal waveguides with different channel widths realized in silicon membranes are inves-
tigated by means of attenuated-total-reflectance �ATR� measurements. The dispersion of line-defect modes with
both parities with respect to a vertical plane bisecting the waveguide channel is determined, thereby allowing
one to distinguish between multimode and single-mode behavior. The presence of a single-mode frequency
window in the guided-mode region below the light line is established not only for standard W1 waveguides
with channel width w0=�3a �i.e., a missing row of holes in the triangular lattice with lattice constant a�, but
also for W1.5 waveguides where the channel width is increased to w=1.5w0. The results agree with theoretical
predictions and might be important for the realization of linear photonic crystal waveguides with single-mode
behavior and ultralow propagation losses.
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I. INTRODUCTION

Linear photonic crystal �PhC� waveguides for the control
of light propagation can be realized either in fully three-
dimensional �3D� structures with a complete band gap,1 or in
quasi-3D systems like PhC slabs.2,3 In the latter structures, a
two-dimensional �2D� photonic lattice is defined in a planar
waveguide and confinement of light in the third dimension is
obtained by means of total internal reflection within the slab.
Introducing defects in the periodic array of the 2D pattern
enables to create propagating defect modes within the pho-
tonic band gap. For high-index PhC slabs like the self-
standing membrane or air bridge, truly guided-wave propa-
gation with very low losses can be obtained for modes lying
below the air light line in the k-� plane.4–8 In this region,
propagation losses are purely extrinsic as they are deter-
mined only by roughness, or disorder-induced scattering. The
most thoroughly studied system is the so-called W1 wave-
guide, consisting of a missing row of holes in the �-K sym-
metry direction of the triangular lattice �see Fig. 1�. Very low
propagation losses have been demonstrated for W1
waveguides defined in silicon9–11 and GaAs12 membranes.
Recent theoretical predictions based on a model for disorder-
induced out-of-plane scattering13 indicate that the losses
could be further reduced by increasing the channel width of
the linear waveguide.14,15 Furthermore, it is also important to
have a high group velocity region in the guided-mode dis-

persion in order to reduce propagation losses.16,17

In addition to the goal of achieving low propagation
losses, a very important requirement is that of having single-
mode behavior in a given frequency region. Recently, scat-
tering of light into modes with different symmetries has been
demonstrated in straight line defects.18 Indeed, when bent
waveguides or more complex 2D interconnections are real-
ized, the existence of two or several modes at the same fre-
quency can give rise to modal coupling, thus limiting the
device performance. Increasing the channel width of a linear
waveguide tends to give multimode behavior, as several
modes may be supported by the wider channel structure. It is
therefore quite important to establish the best parameters for

FIG. 1. Schematic structure of a linear waveguide along the
�-K direction of the triangular lattice, defined in a self-standing
membrane of thickness d. For a W1.0 waveguide, the channel width
w equals w0=�3a, where a is the lattice constant.
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linear PhC waveguides, which yield at the same time single-
mode behavior in a high group velocity region and the low-
est possible propagation losses. From a fundamental point of
view, it is also important to demonstrate experimentally that
a structure realized according to the theoretical design does
indeed have the required characteristics.

In this work we show that a convenient region of single-
mode behavior exists in linear waveguides with increased
channel width. We determine the dispersion of line-defect
modes for PhC waveguides in silicon membranes by means
of variable-angle attenuated-total-reflectance �ATR� mea-
surements from the slab surface. This technique was recently
shown19 to yield the dispersion of photonic modes below the
light line in silicon-on-insulator �SOI� PhC slabs. For a W1.5
waveguide �i.e., when the channel width is increased to w
=1.5w0: see Fig. 1� we establish the presence of a high group
velocity frequency region below the light line in which only
the fundamental defect mode exists. These results are in
agreement with theoretical predictions for the dispersion of
defect modes in increased-width waveguides. In particular, it
is shown here that ATR measurements for different orienta-
tions of the sample allow probing the parity symmetry of the
waveguide modes with respect to a vertical plane bisecting
the waveguide channel, thus allowing a direct determination
of the single-mode propagation window. Furthermore, the
group index of the defect modes is determined and is shown
to reach very high values in the region of flat dispersion.

Experimental studies of increased-width waveguides in
high-index contrast PhC slabs were previously performed for
SOI systems,20 where the phase-space region below the light
line is limited because of the presence of the lower SiO2
cladding. Indeed, a better tailoring of the defect-mode dis-
persion and a reduction of the losses in SOI PhC slabs is
obtained by using reduced-width waveguides.11,16,20 The de-
fect mode dispersion of reduced-width PhC waveguides has
been measured in silicon air bridges by using the Fabry-Pérot
interference technique on samples of definite lengths.21 For
self-standing high-index membranes, experimental studies of
waveguides with increased channel width have not been per-
formed yet. Increased-width waveguides are commonly stud-
ied in low-index contrast PhC slabs based on GaAs22,23 or
InP,24 where the physical behavior is quite different from that
discussed here since all modes lie above the light line of the
cladding material �therefore being subject to intrinsic diffrac-
tion losses� and the mode dispersion is close to that of the
corresponding 2D photonic structure.

The paper is organized as follows. In Sec. II we present
theoretical calculations of the defect-mode dispersion in
increased-width waveguides and discuss the selection rules
for excitation of the modes in surface-reflectance experi-
ments. In Sec. III we show and discuss the experimental
results for ATR spectra, defect-mode dispersion and group
index. Section IV, finally, contains concluding remarks. We
point out that this work extends the one previously published
by us19 in several respects: �i� the present experiments are
performed on single line-defect waveguides in self-standing
Si membranes �instead of periodically repeated defects in
SOI slabs�; �ii� the capability to measure the dispersion be-
low the light line by ATR is greatly enhanced by the use of a
silicon �instead of a ZnSe� prism; �iii� the focus here is a

systematic study of the defect-mode dispersion as a function
of the PhC waveguide channel width.

II. THEORETICAL MODELING

The dispersion of line-defect modes in PhC slabs is cal-
culated by means of the guided-mode expansion �GME�
method introduced in Ref. 25. Briefly, the magnetic field is
expanded in a finite basis set consisting of the guided modes
of an effective homogeneous waveguide with an average di-
electric constant in each layer. The second-order equation for
the magnetic field becomes a linear eigenvalue problem con-
taining the Fourier components of the inverse dielectric ten-
sor, which is responsible for band folding and splittings. The
method allows calculating the dispersion of photonic modes
below and above the light line and also the radiative losses
due to out-of-plane diffraction. Results concerning photonic
band dispersion and intrinsic as well as extrinsic out-of-plane
losses in PhC slabs with either 1D or 2D patterns in the slab
plane have been published elsewhere.13,14,26–28 The accuracy
of the GME method has been tested by comparisons with
exact scattering matrix calculations25 as well as with experi-
mental measurements of photonic mode dispersion.19,29

We consider here a triangular lattice of holes with lattice
constant a, with a line-defect consisting of a missing row of
holes in the �−K direction, realized in a slab of thickness d
with dielectric constant �=12 �see a schematic picture of the
structure in Fig. 1�. In Fig. 2 we present the calculated dis-
persion of line-defect modes for channel width increasing
from w=w0��3a �W1.0 waveguide� to w=1.5w0 �W1.5
waveguide�, assuming d /a=0.575 and hole radius r /a
=0.32. Taking the origin of the z axis to be at the middle of
the slab, specular reflection with respect to the �x ,y� plane is
a symmetry operation, which we denote by �̂xy: we consider
only modes with �xy = +1 �sometimes called TE-like modes�,
for which the triangular lattice has a band gap in all direc-
tions. Furthermore, defect modes are classified according to
reflection symmetry with respect to the plane bisecting the
channel, denoted as �̂kz� �̂xz operation: odd �even� modes
with respect to vertical reflection symmetry have �kz=−1
��kz= +1�. Dark grey regions represent bulk modes of the
PhC slab with a triangular lattice outside the band gap. In
this case, the upper band edge is determined by the presence
of a second-order mode cutoff for the effective slab wave-
guide, and is shown as a flat boundary in the figure.

It can be seen from Fig. 2 that, in the case of the W1.0
waveguide, a region of single-mode propagation below the
light line occurs for the �kz=−1 mode at frequencies
�a / �2�c� between 0.268 and 0.281 �highlighted region in
figure�, as it is well known.7,16,21 For this case, the �kz=−1
defect mode is to a good approximation an index-guided
mode, whose dispersion is close to that of a slab mode folded
by the lattice periodicity. The single-mode region becomes
narrower for the W1.1 waveguide and disappears almost
completely for the W1.2 waveguide, due to the red shift of
the gap-guided defect mode with symmetry �kz= +1. How-
ever, another region of single-mode propagation occurs on
increasing the channel width beyond w=1.3w0. For the W1.5
waveguide, single-mode propagation below the light line oc-
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FIG. 2. �Color online� Dispersion of defect modes in linear waveguides with channel width increasing from w=w0 �W1.0 waveguide, top
left� to w=1.5w0 �W1.5 waveguide, bottom right�. Modes with �kz=−1 ��kz= +1� parity are represented by solid �dashed� lines. The dotted
line represents the light dispersion in air. Parameters of calculation: dielectric constant �=12, slab thickness d /a=0.575, and hole radius
r /a=0.32. The frequency regions outside the photonic gap of the triangular lattice are represented by dark gray areas. The frequency window
of single-mode propagation is highlighted for the W1.0 and W1.5 structures.

FIG. 3. �Color online� Profile of the field components Ex, Ey, and Hz in a W1.0 waveguide for the line-defect modes with �kz=−1 and
�kz= +1, respectively. The field profiles are shown in the �y ,z� plane at x=0. A scheme of the PhC waveguide in the �x ,y� plane is also
shown �top panels�.
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curs for dimensionless frequencies between 0.261 and 0.268
with group velocity close to c /n, where n is the refractive
index of the core material. Single-mode propagation does not
occur for waveguides with channel widths larger than 1.5w0
�not shown in Fig. 2�. Therefore, the W1.5 waveguide is
found to be the optimal structure that allows achieving
single-mode propagation below the light line with a high
group velocity and with the largest possible value for the
channel width, implying very low propagation losses.14 No-
tice that even though the W1.0 waveguide has a larger
single-mode frequency region than the W1.5 waveguide, the
useful range where the mode group velocity has a weak de-
pendence on frequency, leading to small propagation losses,
is almost as wide as in the W1.5 waveguide.15

In Fig. 3 we show the spatial profiles of the field compo-
nents Ex, Ey and Hz �which are the dominant ones for �xy =
+1 or TE-like states� in the �y ,z� plane for the �kz=−1 and
�kz= +1 modes of a W1.0 waveguide. It is seen that Ey and
Hz have qualitatively similar profiles, being spatially even
�i.e., no nodes� with respect to the plane bisecting the chan-
nel for the �kz=−1 mode, whilst they are spatially odd �a
node at y=0� for �kz= +1. On the other hand, the field profile
of the Ex component is spatially odd for �kz=−1 and spa-
tially even for �kz= +1. Considering that E is a vector while
H is a pseudovector, it can be verified that the �kz=−1 mode
is globally odd with respect to symmetry operation �̂kz, while
the �kz= +1 mode is globally even. Obviously, the global
symmetry properties of an electromagnetic state are the same
when derived from any of the electric- or magnetic-field
components. These properties will be important for interpret-
ing the optical experiments discussed in the next section.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Free-standing silicon membranes patterned with a triangu-
lar lattice of air holes �lattice constant a=0.4 �m� and con-
taining single line defects were fabricated by electron beam
lithography and reactive ion etching techniques on Smart-
Cut™ SOI wafers.30 After lithographic definition and pattern
transfer into the Si core, the underlying SiO2 layer was re-
moved by selective wet-etching in HF-based solution. The
resulting 0.23-�m-thick free-standing Si membranes were
20 �m wide by 500 �m long, with a single line defect cen-
tered on the short side and extending along the full length of
the membrane. Several samples with channel widths ranging
from w=w0 to w=1.5w0 and nominal hole radius r /a=0.32
were prepared. In Figs. 4�a� and 4�b� close-up micrographs
of the W1.0 and W1.5 samples are shown, respectively.

Angle-resolved ATR from the sample surface is measured
in the spectral range 0.73–1.2 eV, at a spectral resolution of
0.5 meV, by means of a homemade microreflectometer
coupled to a Fourier-transform spectrometer �Bruker
IFS66s�. The angle of incidence � is varied in the range
20°–60° with an angular resolution of ±0.5° defined by the
small aperture of the beam that is focused on the sample.
Measurements are performed in transverse-electric �TE� po-
larization with respect to the plane of incidence, which is
selected by means of a calcite Glan-Taylor polarizer.

The experimental geometry of ATR measurements is
sketched in Fig. 5, where � defines the incidence angle while

� is the �azimuthal� rotation angle between the direction of
the line defect and the plane of incidence. In order to excite
the guided modes by ATR, a Si hemisphere acting as a prism
is suspended over the membranes at a very small distance
�typically t�0.2 �m� by means of three piezoelectric actua-
tors. These allow both a precise alignment between hemi-
sphere and sample surfaces and a fine control of the separa-
tion distance t �as indicated in Fig. 5�. In fact, due to the
exponential decay of the evanescent field in the air layer
between the hemisphere and the sample surface, both these
adjustments are extremely critical in the measurement.
Moreover, the coupling strength to the guided modes of the
membranes is strongly influenced by the separation distance
t, which thus determines the visibility of the ATR signal.
Care has been taken in keeping the sample and prism surface
as clean as possible, in order to achieve the small values for
the separation distance needed in the experiments. We per-
form angle-resolved ATR measurements by focussing light
through the Si hemisphere onto the membrane samples. An

FIG. 4. Scanning electron micrographs of �a� W1.0 and �b�
W1.5 samples, respectively. Lattice constant is a=0.4 �m and
membrane thickness is 0.23 �m.

FIG. 5. �Color online� Schematic plot of the geometry used in
ATR experiments. The silicon prism is kept at a distance t above the
PhC; � is the incidence angle while � is the azimuthal angle be-
tween the direction of the line defect and the plane of incidence.
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infrared vidicon camera is used to visualize the sample
through the Si hemisphere, allowing a careful alignment of
the line defect with respect to the plane of incidence. In order
to avoid spurious contributions in the optical response, only
the patterned region of the membranes containing a single
line-defect was illuminated, thus resulting in a spot area of
about 20 �m	50 �m. We remark that Si hemisphere on the
sample surface acts as a high-index solid immersion lens,
thereby allowing to focalize the incident light well below the
diffraction limit in air while keeping the very small numeri-
cal aperture needed for angular resolution.

The conceptual framework enabling the photonic mode
dispersion to be mapped from ATR spectra at varying angles
is similar to that employed to determine the dispersion of
quasiguided modes in standard transmittance or reflectance
experiments.31,32 In these techniques the resonant structure
observed in the experimental spectra are plotted versus the
wave vector component parallel to the sample surface �which
is conserved�, therefore yielding the photonic band disper-
sion above the light line. Under the experimental conditions
of the present ATR measurements, the wave vector parallel
to the sample surface is also conserved, and takes the value
k� = �n� /c�sin � �modulo a reciprocal lattice vector�, where n
is the refractive index of the prism. Therefore, apart from
achieving very small spot sizes, the choice of silicon as a
high-index material for ATR measurements follows from the
need to access high wave vector regions of the k-� space for
an efficient excitation of the defect modes. In fact, as already
pointed out in Sec. II, the �kz=−1 defect mode is character-
ized by a very steep dispersion, which is close to that of the
unpatterned Si membrane. This means that even though the
guided mode is folded back into the first Brillouin zone by
lattice periodicity, its dominant wave vector component lies
in the second Brillouin zone. Therefore, an efficient coupling
to external radiation is expected only for sufficiently high
values of the wave vector component parallel to the slab
surface. This situation is represented in Fig. 6, where the
calculated defect mode dispersion for the W1.0 waveguide is
repeated in the first and second Brillouin zones, within an
extended zone scheme. The light lines in a Si hemisphere at
varying incidence angles are also shown �dotted lines� in the
figure. We notice that the �kz= +1 mode is characterized by a
relatively smooth dispersion over the whole extended zone,
whilst the �kz=−1 mode develops almost parallel to the light
line of the effective core layer for sufficiently high k values.
As previously discussed, this region of strong dispersion is
the most interesting one for application purposes, due to the
reduced losses expected for a mode with high group velocity.
Then, the use of silicon as ATR material is very convenient
because it allows covering �virtually� all the frequency-wave
vector range available for guided modes in the extended
zone. In particular, we notice that the dispersion of the �kz
=−1 mode is fully mapped with ATR measurements at inci-
dence angles ranging from about 35° to 60°.

In Fig. 7 �left and central panels� we show the variable-
angle TE-polarized ATR spectra of samples W1.0, W1.2, and
W1.5, measured at two different values of the azimuthal
angle �.33 All the curves are characterized by relatively sharp
features arising from excitation of the defect and bulk modes
lying mostly below the light-line �guided modes�, which dis-

play a marked dispersion as a function of the incidence
angle. According to symmetry considerations �see Fig. 3�,
since the coupled components Ey, Hz of the incoming beam
have a symmetric profile with respect to the plane of inci-
dence, when this plane is oriented along the line defects �i.e.,
for �=0°� only modes with symmetry �kz=−1 should be
observable in the spectra. On the other hand, for ��0° the
mirror reflection with respect to the incidence plane is no
longer a good symmetry operation, and both �kz=−1 and
�kz= +1 modes should appear in TE-polarized ATR spectra.

The selection rule that determines the excitation of guided
modes is indeed fulfilled in the experiment. In particular, for
�=0° �left panels� all the samples display a strong and
weakly dispersive resonance around 0.81 eV, together with a
weaker but strongly dispersive feature at higher energies.
While the former has to be attributed to the lower-edge state
of the band-gap opening in the �-K direction, the latter cor-
responds to the excitation of the �kz=−1 defect mode inside
the gap. Notice that the higher intensity of resonances corre-
sponding to bulk modes with respect to those of the defect
modes follows from measuring a single line defect that is
surrounded by many periods of bulk photonic crystal. A
higher signal is detected for the bulk modes of the periodic
2D structure, against a weaker signal coming from the single
line defect. The linewidth associated to the ATR resonances
will be discussed later in this section.

The ATR spectra measured for �=15° show up additional
features with respect to the �=0° case, corresponding to the
excitation of both odd ��kz=−1� and even ��kz= +1� modes,
respectively. Notice also that the strong resonance corre-
sponding to the band-edge photonic mode is now redshifted
�not shown in the figure� due to the fact that for �=15° we
are no longer aligned to a high symmetry direction of the
Brillouin zone. Therefore, even though the measurements at
�=15° yield the dispersion of modes of both parities at a
glance, the measurements at �=0° are necessary in order to
properly evaluate the photonic band edge along �-K.

FIG. 6. Calculated dispersion of the two defect modes ��kz

= ±1� for the W1.0 waveguide with nominal parameters a
=0.4 �m, d=0.23 �m, and r /a=0.32, repeated in the first and in
the second Brillouin zones. The dispersion of the light lines in a Si
hemisphere at different angles of incidence � are shown as dotted
lines. The light lines in air and in the Si core layer �short dots� are
indicated by arrows.
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Notice that, by symmetry considerations, the same infor-
mation on the �kz= +1 modes could in principle be obtained
by performing TM-polarized ATR measurements with �
=0°. However in this case the coupled component is Ex,

whose field profile along the y direction is oscillating with
several nodes as shown in Fig. 3, thereby yielding a very
weak coupling with the incoming beam. Moreover, the ex-
perimental configuration with TE polarization and tilted

FIG. 7. �Color online� Left and central panels: experimental angle-resolved ATR spectra for samples W1.0, W1.2, and W1.5 measured at
two different azimuthal angles �=0° and �=15°, respectively. The curves are slightly shifted horizontally for clarity �Ref. 33�. Right panels:
measured dispersion of �kz=−1 �closed circles� and �kz= +1 �open circles� photonic modes as derived from ATR spectra, compared to
calculated dispersion �solid and dashed lines�. The single-mode energy window is highlighted for the W1.0 and W1.5 waveguides.
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sample results to be more convenient, since it yield the dis-
persion of guided modes of both parities simultaneously.
This allows to immediately recognize the single-mode spec-
tral region.

A comparison between the dispersion of the defect modes
as derived from ATR spectra and the calculated band struc-
ture for the different samples is presented in Fig. 7, right
panels. Here the energies of the resonances observed for both
experimental conditions with �=0° and �=15° at various
incidence angles are plotted versus the corresponding wave
vector component along the �-K direction. The correct
wavevector component parallel to the sample surface for �
=15° is obtained simply by taking k� = �n� /c�sin � cos �. For
all samples we find a very good agreement between the mea-
sured and calculated dispersion of the bulk modes and defect
modes of both parities. Notice that the only adjustable pa-
rameter in the calculation is the hole radius r /a, which is
found to be slightly different from the nominal one. The
best-fit to experimental data is obtained by setting r /a
=0.335 for samples W1.0 and W1.2, and r /a=0.322 for
sample W1.5. Moreover, in order to precisely fit experimen-
tal data, the calculations assume nearby holes surrounding
the linear defect to have a smaller radius �with a reduction up
to 10% with respect to the holes of the perfect lattice�. This
result is in agreement with the observed reduction of the
nearby holes’ diameter due to the lower electron dose re-
ceived during the lithography process.

We notice that in the present ATR measurements the mode
dispersion both below and above the air light line is mea-
sured. Making reference to Fig. 6, the portion of the defect-
mode dispersion that lies above the light line when folded in
the first Brillouin zone is probed by ATR measurements at a
large angle of incidence, in which the incident beam couples
to the dominant mode component lying in the second Bril-
louin zone. Thus the ATR technique with the use of a Silicon
hemisphere enables to map the dispersion of both quasi-
guided and truly-guided defect modes at the same time.

We can now trace the evolution in the dispersion proper-
ties of the defect modes on increasing the channel width, and

validate the theoretical predictions presented in Sec. II. For
the sample W1.0 we find the well known behavior7,16,21 with
a single-mode region for the �kz=−1 defect mode below the
light line. In our sample this single-mode propagation occurs
between 0.825 eV and 0.865 eV, as shown in Fig. 7. We
notice that previous transmission measurements were able to
map the dispersion of the �kz=−1 defect mode,21 but the
�kz= +1 defect mode was not accessible to the measurements
due to its much higher propagation losses. We also notice the
very large group velocity dispersion associated with the
W1.0 waveguide, in which the defect mode exhibits high
group velocity values just below the light line and vanish-
ingly small ones on approaching the Brillouin zone edge.
Upon increasing the channel width, the �kz=−1 mode gradu-
ally shifts to lower energies and merges with the lower band-
gap edge. Simultaneously, an even more pronounced redshift
is also observed for the �kz= +1 mode. This causes the
single-mode window experienced by the �kz=−1 mode to
progressively close and completely disappear for the sample
W1.2, as shown in Fig. 7. However, with a further increase
of the channel width the �kz= +1 mode completely merges
with the continuum of states outside the photonic gap, and a
new single-mode window opens up for the �kz=−1 mode
around 0.8 eV. As shown in Fig. 7, for sample W1.5 this new
single-mode region extends over 18 meV, between 0.8 and
0.818 eV, and it is characterized by a strong dispersion that
is very close to the Si light line, giving rise to a high group
velocity. Due to the lower losses associated to guided modes
with high group velocities, this result may be of considerable
interest in the realization of linear PhC waveguides with ul-
tralow losses and single-mode behavior. We stress here that
the ability of the ATR technique to probe the dispersion of
guided defect modes of both parities with respect to a verti-
cal plane bisecting the waveguide channel is of fundamental
importance for the experimental verification that a given
structure actually satisfies single-mode requirements.

It is important to discuss the origin of the linewidths of
the waveguide modes in the ATR measurements of Fig. 7. To
this purpose, in Fig. 8�a� we show a blowup of selected

FIG. 8. �Color online� �a� Selected ATR spectra of the W1.0 and W1.5 waveguides for an azimuthal angle �=0°, �b� corresponding
dispersion of the �kz=−1 defect modes in the second Brillouin zone and light lines in the silicon prism at an angular separation 
�=1° �the
gray area denotes the bulk continuum�, and �c� derivative of the energy dispersion with respect to the incidence angle.
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defect-mode resonances in ATR spectra, referring to the
W1.0 and W1.5 waveguides for an azimuthal angle �=0°,
compared to the corresponding dispersions in Fig. 8�b�. �In
the �=53° spectrum the defect mode overlaps the strong
bulk resonance at the band edge, which is also shown for
comparison.� The spectra of Fig. 8�a�, which have a pro-
nounced variation as a function of incidence angle, rule out
any possible role of propagation losses in determining the
ATR linewidths. Indeed propagation losses are known to be
minimum in the region of high group velocity and to in-
crease rapidly in the flat dispersion region of low group
velocity:10,15,17,20 thus they should follow an opposite trend
as compared to what is shown in Fig. 8�a�. The origin of the
ATR linewidths of defect modes lies in the angular spread of
the incident beam, as well as in the prism-induced coupling
of guided modes to the radiative region. The first effect can
be appreciated by looking at the intersection between the
defect-mode dispersion and the light lines at different angles
of incidence, shown in Fig. 8�b�. Notice that the dispersion is
plotted in the second Brillouin zone, i.e., in region of the k
-� plane where the defect modes are more evident in ATR
spectra �see Fig. 6 and related discussion�. The light lines are
plotted at an angular separation of 1°, which corresponds to
the estimated resolution of ±0.5°. When the defect mode
dispersion is nearly flat, the energy of the intersection de-
pends weakly on the incidence angle and the linewidth is
small �e.g., spectra corresponding �=43° and �=56° for
W1.0 and W1.5, respectively�. However, when the defect-
mode dispersion is steep with a high group velocity, the in-
tersection point is a very sensitive function of the incidence
angle, leading to a much larger linewidth. In Fig. 8�c� we
show the derivative of the defect-mode dispersion with re-
spect to the incidence angle: if the angular resolution is ±0.5°
�
�=1° �, the derivative dE /d� is also a measure of the ex-
pected energy broadening in eV. The linewidths �in eV/
degree� of both W1.0 and W1.5 defect modes are shown in
Fig. 8�c� to have a strong energy dependence and to reach
values higher than 25 meV for a 1° angular spread. It is
interesting to notice that the experimentally observed behav-
ior of the ATR linewidths in Fig. 8�a� follows the same trend
as predicted by the function dE /d�. Furthermore, the asym-
metric lineshape observed for the W1.5 defect mode at �
=54° can be associated to different linewidths in the high-
and low-energy regions of the intersection point between the
light line and the defect-mode dispersion �see Fig. 8�b��. This
comparison shows that even a small angular spread of the
incoming beam may produce a sizeable linewidth enlarge-
ment, especially when the light lines in the Silicon prism are
nearly parallel to the defect-mode dispersion in the Si PhC
waveguides measured in the second Brillouin zone. The
small residual linewidths observed for �=43° and �=56° are
related to prism-induced coupling to radiative modes, as al-
ready observed and calculated in our previous work.19 We do
not pursue a more quantitative analysis of the ATR line-
widths, since this would require a precise knowledge of the
incoming beam profile, as well as of the prism-sample sepa-
ration at all incidence angles. Nevertheless, we emphasize
that the linewidths observed in ATR spectra are unrelated to
propagation losses, and they are an artifact of the present
experimental observation technique. Hence, they do not

jeopardize our conclusions about the presence of a single-
mode propagation region in both W1.0 and W1.5
waveguides.

The ATR measurement of the photonic mode dispersion
allows determining the group velocity from the derivative
vg=d� /dk. The group index ng=c /vg is displayed in Fig. 9
for the �kz=−1 defect modes of the W1.0 and W1.5
waveguides. The theoretical predictions are also shown for
comparison. In the region where the defect modes are
strongly dispersive, the group index approaches that of sili-
con, as expected. On the other hand, in the region where the
defect-mode dispersion is flat, the group velocity is strongly
reduced and the group index is increased. The effect is par-
ticularly prominent for the W1.0 waveguide, where the group
index reaches values of the order of 2000. Recently there has
been strong interest for slow-light phenomena in photonic
crystals structures,11,21,34,35 especially in linear waveguides in
which propagation losses are very small. The present very
high values for the group index can be measured thanks to
the experimental technique, which allows determining the
defect-mode energy at a specified value of the wave vector.
Thus the present ATR experiments prove to be very useful
for a precise determination of slowing down of light in linear
PhC devices.

IV. CONCLUSIONS

We performed a systematic study of defect-mode disper-
sion in Silicon photonic crystal waveguides with increased

FIG. 9. �Color online� Group index of the �kz=−1 guided modes
extracted from experimental dispersion �open circles� and derived
from theoretical calculations �continuous lines� for �a� W1.0 and �b�
W1.5 waveguides.
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channel widths. Angle-resolved ATR from the sample sur-
face has been successfully employed for the excitation of
truly guided modes by means of a silicon hemisphere, yield-
ing the photonic band dispersion below the light line in a
very wide frequency–wave-vector range. The high sensitivity
of the technique allows the measurement of membrane-type
waveguides containing a single line-defect, thereby yielding
the dispersion of defect modes with both parities with respect
to a vertical plane bisecting the waveguide channel. This is
crucial in order to distinguish the regions of single-mode and
multimode propagation.

Results for membranes containing line-defects with vari-
ous channel widths with respect to the standard W1.0 con-
figuration �one missing row of holes along the �-K direction�
confirm our theoretical predictions that a convenient single-
mode frequency window below the light line exists also for
increased-width membrane waveguides. In particular, we ob-
serve that as the channel width is increased from w=1.0w0 to
w=1.5w0 a single-mode window first closes, then opens up
again. The W1.5 waveguide is the optimum situation in

which an increased-width line defect sustains a single truly
guided mode with a high group velocity. The group index
associated with the defect modes is experimentally deter-
mined and reaches values up to 2000 for the flat dispersion
region of the W1.0 waveguide. The results are in very good
agreement with the theoretical calculations and should be
important for the realization of linear photonic crystal
waveguides with single-mode behavior and ultralow losses.
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