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Extracavity quantum vacuum radiation from a single qubit
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We present a theory of the quantum vacuum radiation that is generated by a fast modulation of the vacuum
Rabi frequency of a single two-level system strongly coupled to a single cavity mode. The dissipative dynam-
ics of the Jaynes-Cummings model in the presence of antirotating-wave terms is described by a generalized
master equation including non-Markovian terms. Peculiar spectral properties and significant extracavity quan-
tum vacuum radiation output are predicted for state-of-the-art circuit cavity quantum electrodynamics systems

with superconducting qubits.
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Cavity quantum electrodynamics (CQED) is a very excit-
ing and active research field of fundamental quantum phys-
ics, characterized by an unprecedented control of light-matter
interaction down to the single-quantum level [1]. A number
of different systems and a wide range of electromagnetic
frequencies are presently being explored in this context, in-
cluding Rydberg atoms in superconductor microwave cavi-
ties [1], alkali metal atoms in high-finesse optical cavities
[2,3], single-quantum dots in semiconductor optical nano-
cavities [4,5], and superconductor Cooper pair quantum
boxes in microwave strip-line resonators [6-9].

Most of the research in CQED has so far concerned sys-
tems whose properties are slowly varying in time with re-
spect to the inverse resonance frequency of the cavity mode.
Only very recently, experiments with semiconductor micro-
cavities [10] have demonstrated the possibility of modulating
the vacuum Rabi coupling on a time scale comparable to a
single oscillation cycle of the field. For this novel regime,
theoretical studies have anticipated the possibility of observ-
ing a sizeable emission of quantum vacuum radiation [11]
via a process that is closely reminiscent of the still elusive
dynamical Casimir effect [12]: the modulation of the Rabi
coupling provides a modulation of the effective optical
length of the cavity, and it is analogous to a rapid displace-
ment of the cavity mirrors.

A recent paper [13] has applied this general scheme to a
Jaynes-Cummings (JC) model in the presence of a fast
modulation of the artificial atom resonance frequency. How-
ever, as the theoretical model did not include dissipation, the
predictions were limited to short times and were not able to
realistically describe the system steady state. In particular, no
quantitative estimation of the extracavity radiation intensity
was provided.

In the present article, we introduce a full quantum theory
to describe the nonadiabatic response of a JC model includ-
ing both the antirotating-wave terms of the light-matter in-
teraction and a realistic dissipative coupling to the environ-
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ment. While the former terms are responsible for the
generation of photons out of the nontrivial ground state
[11,14], radiative coupling to the external world is essential
to detect the generated photons as emitted radiation. Our
attention will be focused on the most significant case of har-
monic temporal modulation of the vacuum Rabi coupling of
superconducting qubits in circuit CQED systems: for fast,
yet realistic [15,16] modulations of the vacuum Rabi cou-
pling, the photon emission turns out to be significant even in
the presence of a strong dissipation. Furthermore, in contrast
to other systems that have been proposed in view of observ-
ing the dynamical Casimir effect [17-20], the intrinsic quan-
tum nonlinear properties of the two-level system should al-
low experimentalists to isolate the vacuum radiation from the
parametric amplification of pre-existing thermal photons.

In addition to its importance concerning the observation
of the dynamical Casimir effect, the theory developed here
appears of great interest also from the general point of view
of the quantum theory of open systems [21]. As a conse-
quence of the antirotating-wave terms in the Hamiltonian,
even the ground state of the system contains a finite number
of photons. In order for the theory not to predict unphysical
radiation from these bound virtual photons [22], the theoret-
ical model has to explicitly take into account the colored
nature of the dissipation bath. This suggests circuit CQED
systems as unique candidates for the study of non-Markovian
effects in the dissipative dynamics of open quantum systems.

A sketch of the system under consideration is shown in
the left panel of Fig. 1. The theoretical description of its
dynamics is based on the Jaynes-Cummings Hamiltonian

H(t) = hwgd'a + hogdTé + g (@ +a"@é +¢h, (1)

whose ladder of eigenstates is schematically drawn in the
right panel. Here, 4 is the bosonic creation operator of a
cavity photon and ¢' is the raising operator describing the
excitation of the two-level system (qubit), ¢7|g)=|e), where
|g) and |e) are its ground and excited states, respectively; ay
is the bare frequency of the cavity mode and w, is the qubit
transition frequency. The term proportional to g(¢) describes
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FIG. 1. (Color online) Left panel: sketch of the system under
consideration. A single two-level system (qubit) is strongly coupled
to a single cavity mode. A possible realization of such a device
consists of a Cooper pair quantum box embedded in a microwave
resonator. Right panel: schematic representation of the JC ladder of
eigenstates of the isolated system in the absence of modulation,
dissipation and anti-rotating-wave terms. In this limit, the
cigenstates _|n,*)= *+ln—-1,e))/\2 have energies
E, r=nwyx \ngo.

the vacuum Rabi coupling between the two-level system and
the cavity mode and fully includes those antiresonant non-
rotating-wave processes that are generally neglected in the
so-called rotating-wave approximation (RWA). Namely, the
antiresonant (non-rotating-wave) part of the interaction
Hamiltonian is %g()(aé+a’é").

While the RWA has provided an accurate description of
most physical CQED systems [1-9], it becomes inaccurate as
soon as one enters the so-called ultrastrong coupling regime,
i.e., when the Rabi coupling, g, is comparable to the reso-
nance frequencies, w, and . This regime has been recently
achieved in a solid-state dev1ce consisting of a dense two-
dimensional electron gas with an intersubband transition
coupled to a microcavity photon mode [23]. Values of the
g/ w, ratio of the order of 0.01 (approaching the so-called
fine- structure constant limit) have been recently observed
also in circuit CQED systems, and even larger values have
been predicted for more recent unconventional coupling con-
figurations [24]. While the non-rotating-wave terms only
provide a quantitative correction in the static case with a
constant g, their effect is essential in the experimentally
novel [10,15] regime, where the Rabi frequency g(r) is
modulated in time at frequencies comparable or higher than
the qubit transition frequency. In fact, a nonadiabatic modu-
lation of the non-rotating-wave terms can in this case lead to
the emission of quantum vacuum radiation, a phenomenon
which would be completely absent if these terms were ne-
glected. In the absence of antiresonant terms, the light-matter
Hamiltonian interaction does not couple states with different
excitation number n (light+matter) even in presence of tem-
poral modulation. In particular, if the antiresonant terms are
not included in the Hamiltonian, no photons can excited if
the initial state is the vacuum. As we show in this article, a
significant amount of quantum vacuum radiation with pecu-
liar spectral features can be already expected for moderate
values of g/ wg, i.e., compatible with already existing circuit
CQED samples.

In order to fully describe the quantum dynamics of the
system, the JC model has to be coupled to its environment. A
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simple description involves two thermal baths, correspond-
ing to the radiative and nonradiative dissipation channels.
The non-Markovian nature of the baths is taken into account
by means of a so-called second-order time-convolutionless
projection operator method [21], which gives a master equa-
tion of the general form,

Lo liple S (048

if Jj=cav,ge

fi
- 8;Ujp - pU]S)),

2)

where S.,,=(a+a"/#, §ge=(é+éT)/ﬁ, and Uj are given by

integral operators as

0j(t) = J vj(T)e_iH(’)TS‘jeiH(’)TdT, (3)
0

()

vi(7) = l/2?{11.,-(w)e"“”+ [nj(w) +1]e"Ydw. (4)

The energy-dependent loss rates, y;(w), for the cavity (i.e.,
Jj=cav) and for the qubit transition (j=ge) are related to the
density of states at energy fiw in the baths, and thus they
must be set to zero for w<<0. In the numerical simulations,
we used the simple form y,(w)=7v;0(w) for the nonwhite
loss rates, where O (w) is the Heaviside step function. In the
following, the background number of thermal excitations at
energy fiw in the corresponding bath will be set as
n(w)=0. The usually employed master equation (see, e.g.,
Ref. [25]) is recovered from Eq. (2) if one assumes the baths
to be perfectly white, i.e., y,(w)=7;. However, by doing so,
one implicitly introduces unphysical negative-energy radia-
tive photon modes, which incorrectly lead to the unphysical
emission of light out of the vacuum state even in absence of
any modulation [25].

In the present article, we shall focus on the steady state of
the system under a harmonic modulation of the form

g(t) = go+ Ag sin(wpeqt) s (5)

where Ag and w4 are the modulation amplitude and fre-
quency, respectively. Direct application to the present JC
model of the input-output formalism, e.g., discussed in Ref.
[22], leads to the following expression for the spectral den-
sity of extracavity photons emitted per unit time:

ycav( w)

Slw)= 2

G(w) (6)
in terms of the intracavity field spectrum, G(w). As a conse-
quence of the (harmonic) modulation g(7), the spectrum
G(w) involves a temporal average over the modulation pe-
riod Tm0d=27T/ Wiods

1 Tmod * .
Glw) = T dtJ dre T Tr{a" (t + Da(n)p}. (7)

mod < 0

The cavity field operators d(z) are defined here in the
Heisenberg picture. The total number of extracavity photons
emitted per unit time is given by the spectral integral
Ren=J" . dwS(w). This formula is to be contrasted with the
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FIG. 2. (Color online) Extracavity photon emission rate R.p,
(units of w) as a function of the modulation frequency, w4, for a
modulation amplitude of the vacuum Rabi frequency Ag/y=0.1.
Parameters: wp=wge; Y= Yeay= Yee=0.0020; g¢=0.02wy. For com-
parison, the dashed line shows the extracavity emission rate y., N,
(where Ny, is the steady-state intracavity photon number) that would
be predicted by the Markovian approximation: note the unphysical
prediction of a finite value of the emission even far from resonance.
The inset shows the dependence of the photon emission rate on the
modulation amplitude, calculated both numerically and analytically
(see later in the text), for wye=w, _.

one giving the time average of the intracavity photon num-
bet, Nyy=T,L Jimesdr Tr{a*(r)a(r)p}.
The master Eq. (2) is numerically solved by representing

a and ¢ on a basis of Fock number states. The operators S

and U are also numerically built and all the time evolutions
are performed by a Runge-Kutta algorithm. Examples of nu-
merical results are shown in Figs. 2 and 3 for the resonant
case (w=wy,), but we have checked that the qualitative fea-
tures do not change when we introduce a finite detuning.
Realistic parameters for circuit CQED systems are consid-
ered, as indicated in the caption.

In Fig. 2 we show the steady-state rate of emitted photons
as a function of the modulation frequency, w4, for the case
of a weak modulation amplitude, Ag/y<<1. In this regime,
the spectra are dominated by two resonant peaks close to
Onoa= Wy + =20y = V2g,. Thanks to the relatively small
value of g/ wy=0.02 considered here, the position of the two
peaks can be interpreted within the standard RWA in terms of
transitions from the vacuum state to the doubly-excited states
of the JC ladder in the isolated system, |2,%); the non-
rotating-wave terms in the Hamiltonian that are responsible
and essential for the quantum vacuum radiation instead pro-
vide only a minor correction to the spectral position of
the peaks [26]. Stronger modulations lead to quadratically
larger emission intensities, then (not shown) to the
appearance  of additional =~ weaker  peaks  around
Opmod=2w = \2/ng, as a consequence of higher (n=2) or-
der processes, and finally (not shown) to a distortion of the
whole spectrum as a result of significant spectral shifts and
mixing of the dressed states.

As typical of the dynamical Casimir effect, the periodic
modulation of the system parameters is only able to create
pairs of excitations out of the vacuum state. However, in
contrast to the usual case of (almost) noninteracting photons
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FIG. 3. (Color online) Spectral density S(w) of extracavity pho-
tons emitted per unit time for given values of the modulation fre-
quency: wye=w,_ (top panel), wy,g=w,, (bottom panel). The
modulation amplitude is Ag/y=0.1. The insets illustrate the optical
transitions responsible for the different emission lines that are vis-
ible in the main panels. For the sake of clarity, the level spacings in
the insets are not in scale.

or bosonic polaritons [17-19], the nonlinear saturation of the
two-level system is crucial here to determine the position of
the peaks. This remarkable fact provides a unique spectral
signature to separate the vacuum radiation from spurious
processes such as the parametric amplification of thermal
radiation. In fact, due to the anharmonicity of the Jaynes-
Cummings spectrum, the resonant modulation frequency for
the process having the ground state (vacuum) as initial state
is different from other processes having a (thermal) excited
state as initial state.

The conceptual difference between the emission rate R,
and in-cavity photon number N, is illustrated in Fig. 2: stan-
dard Markovian theories would in fact predict the emission
rate to be rigorously proportional to the intracavity photon
number. Even though a reasonable agreement is observed
around the peaks, this approximation leads to the unphysical
prediction of a finite emission even in the absence of a
modulation (Ag=0) or for a modulation very far from reso-
nance. Inclusion of the non-Markovian nature of the baths is
able to eliminate this pathology by correctly distinguishing
the virtual bound photons that exist even in the ground state
from the actual radiation [11,22].

The emission spectra S(w) at a fixed and resonant value
of the modulation frequencies w,,q=w, + are shown in the
two panels of Fig. 3. Thanks to the relatively weak value
Ag/go=0.01 (Ag/y=0.1) of the modulation amplitude con-
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sidered here, the position of the main emission lines can be
again understood in terms of transitions between eigenstates
of the JC ladder. As shown in the insets, two spectral lines
(full lines in the schemes) correspond to radiative decay
(emission) of the |2, *) states into the lower |1, %) states of
the JC ladder, while the other two emission peaks (dashed
lines) correspond to the radiative decay of the |1, *) states
into the ground state. This interpretation is confirmed by the
observation that the position of the former (latter) lines de-
pends (does not depend) on the specific value of the modu-
lation frequency w,,,q chosen. The significant difference of
spectral weight between the lines is due to interference ef-
fects in the radiative matrix element between JC eigenstates,
(1,%lal2, +).

In the weak modulation intensity regime, the behavior of
the exact numerical results can be understood in terms of a
simplified two-state model. When the modulation frequency
is close to resonance with one of the w,,,q=w, + peaks, the
dynamics of the system is mostly limited to the |0) and
2, =) states, all other states in the JC ladder being far off-
resonant [3]. The non-rotating-wave terms proportional to
the modulation of the vacuum Rabi coupling in Eq. (5) are
responsible for an effective coupling between such two
states, quantified by Qz=Ag/\2 [19]. As a result, the prob-
ability of being in the excited state has the usual Lorentzian
line shape

(Ag)’2
P N = S 5 . 8
S e ®
Here, I'=[ve+37%,]/2 is the total (radiative

+nonradiative) decay rate of the excited |2, =) state (in the
CaSe Weyy=Wye), AN &5 +=Wpoq— W, + is the detuning of the
modulation frequency. By considering all the possible emis-
sion cascades (see insets of Fig. 3), the radiative emission
rate in the neighborhood of a peak is then approximately
given by
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This analytical expression is in excellent agreement with the
exact numerical results for o= w, -+, as shown in the inset
of Fig. 2. It is interesting to note that for typical parameters
taken from state-of-the art circuit CQED devices, such as a
resonance frequency vy=wy/27~7 GHz [9] and (overesti-
mated) decay rates y/27=14 MHz, a resonant, yet quite
small modulation amplitude Ag/y=0.1 can already lead to a
sizeable emission intensity, R,,=4 X 10* photons/second.
As clearly shown by the analytical expression in Eq. (9), a
further enhancement of the emission rate can be obtained for
much smaller decay rates, such as y/2m=<1 MHz recently
measured in the latest experiments [7-9].

In conclusion, we have presented and solved a complete
theory of the quantum vacuum emission that is generated
from a single mode cavity with an embedded two-level sys-
tem when the vacuum Rabi frequency of the light-matter
interaction is modulated at frequencies comparable to the
cavity (emitter) resonance frequency. Our theory fully takes
into account the non-rotating-wave terms of the light-matter
interaction that are responsible for the quantum vacuum
emission, as well as the radiative and nonradiative dissipa-
tion channels. This has required extending the standard
master-equation treatment to include non-Markovian effects
due to the necessarily colored nature of any realistic dissipa-
tion bath. The sizable value of the emission intensity that
results from our theoretical predictions suggests the promise
of superconductor Cooper quantum boxes in microwave
resonators for studies of quantum vacuum radiation phenom-
ena.

Note added in proof. Recently, another, similar investiga-
tion on quantum vacuum radiation and the dynamical
Casimir effect has been published [27].
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