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Analog Hawking radiation from an acoustic black hole in a flowing polariton superfluid
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We theoretically study Hawking radiation processes from an analog acoustic black hole in a flowing superfluid
of exciton-polaritons in a one-dimensional semiconductor microcavity. Polaritons are coherently injected into
the microcavity by a laser pump with a suitably tailored spot profile. An event horizon with a large analog surface
gravity is created by inserting a defect in the polariton flow along the cavity plane. Experimentally observable
signatures of the analog Hawking radiation are identified in the scattering of phonon wave packets off the horizon,
as well as in the spatial correlation pattern of quantum fluctuations of the polariton density. The potential of
these tabletop optical systems as analog models of gravitational physics is quantitatively confirmed by numerical
calculations using realistic parameters for state-of-the-art devices.
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I. INTRODUCTION

The quantum mechanical properties of the vacuum state
in quantum field theories are presently attracting the attention
of researchers from very different communities, from astro-
physics and gravitation to quantum optics and condensed-
matter physics. A central idea of all these studies is the
possibility of converting zero-point quantum fluctuations into
observable quantum vacuum radiation by some spatial and/or
temporal dependence of the background over which the
quantum field is propagating.1,2 A number of fundamental
physical effects belong to this category, from the dynamical
Casimir effect when the boundary conditions of the quantum
field are rapidly varied in time3,4 to the Hawking radiation
when it propagates on a curved space-time showing a black-
hole horizon.5,6

In the wake of the pioneering work by Unruh,7 researchers
have started investigating condensed-matter systems where
the propagation of some low-energy excitation field follows
an effectively curved space-time geometry. In suitable con-
figurations showing a black-hole horizon for this low-energy
excitation, a quantum vacuum emission is expected to appear
via a mechanism analogous to Hawking radiation. Among the
many systems that have been investigated in this perspective,8,9

low-temperature superfluids and nonlinear optical systems are
nowadays considered the most promising ones.

Dilute superfluids such as Bose-Einstein condensates of
ultracold atoms join a very simple spectrum of elementary
excitations with sonic dispersion, with the possibility of
pushing the sensitivity of measurements down to the quantum
limit. Their potential as analog models was first proposed
in Refs. 10–12 and later confirmed by ab initio numerical
simulations of the condensate dynamics.13 Even if acoustic-
black-hole configurations have been experimentally realized,14

no evidence of Hawking radiation has been reported yet.
Analog models based on nonlinear optical systems were

pioneered in Ref. 15: A strong pulse of light propagating in
a Kerr nonlinear medium can be used to generate a moving
spatial interface separating regions of different light velocity.
For suitably chosen parameters, the interface then behaves as

a horizon that can be crossed by light in one direction only,
which should result in Hawking radiation being emitted. An
experimental claim in this direction was recently reported16

and has raised a number of interesting questions concerning
the interpretation of the observed radiation in terms of analog
Hawking processes.17–19

A completely new perspective to analog models based
on nonlinear optical systems was opened by Marino,20 who
first proposed the use of quantum fluids of light to generate
acoustic-black-hole configurations and, then, to look for the
Hawking radiation of Bogoliubov phonons on top of the
photon fluid. In the following years, this idea has been
pushed forward by a number of authors, who have considered
different geometrical configurations21,22 and material systems
and, very recently, exciton-polariton fluids in semiconductor
microcavities.23

In the present work, we present a comprehensive study
of analog Hawking radiation effects in quantum fluids of
light, specifically exploiting the quantum fluid properties
of an exciton-polaritons condensate. Our theoretical model
fully includes their intrinsically nonequilibrium nature24 and
describes quantum fluctuations of the polariton field within the
so-called truncated-Wigner formalism of degenerate quantum
gases.25,26 As a result, our numerical calculations are able to
provide quantitative predictions for the observable quantities
and to point out clear and accessible signatures of analog
Hawking radiation in the emitted light from the cavity. Even
if our discussion is mostly focused on the specific case
of semiconductor microcavity devices24,27–29 where polariton
superfluidity has been first demonstrated,30 all our conclusions
straightforwardly extend to generic planar cavity devices filled
with or made of a Kerr nonlinear medium.

The article is organized as follows. In Sec. II we introduce
the physical system under consideration and we summarize
the theoretical tools that are used to describe it. In Sec. III
we describe the original laser-beam configuration with which
we propose to generate an analog black-hole horizon with a
large surface gravity. The observable consequences of Hawk-
ing mode-conversion processes are illustrated in the following
sections. In Sec. IV we discuss the scattering of a coherent
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phonon wave packet on the horizon: The signature of classical
Hawking processes is visible as an additional wave packet
emerging from the horizon on a negative-norm branch. In
Sec. V, we present the numerical evidence of the Hawking
radiation due to the conversion of zero-point quantum fluc-
tuations into observable radiation, and we compare it with
the theoretical expectations. Conclusions are finally drawn in
Sec. VI.

II. PHYSICAL SYSTEM AND THEORETICAL MODEL

We consider a polariton wire device where cavity photons
propagating along one dimension are resonantly coupled to
the fundamental exciton transition in one or more quantum
wells embedded in the cavity layer (in-plane polarized heavy
hole to conduction band transition). Starting from a planar
microcavity where light is confined along the growth axis z

by a pair of distributed Bragg reflectors, a suitable etching
procedure is used to laterally pattern the device in the y

direction, and create the ridge structure that is schematically
shown in Fig. 1(a). Provided the losses are weak enough, the
bosonic excitations that result from the strong coupling of
the cavity photon with the quantum well exciton have the
typical mixed light-matter nature of one-dimensional exciton-
polaritons, free to propagate along the wire axis according to
the dispersion law that is plotted in Fig. 1(b). A high-quality
experimental realization of this polariton wire concept was
reported in Ref. 31.

A. The quantum field Hamiltonian

A theoretical description of the dynamics of this system can
be developed in terms of the standard Hamiltonian for the two
coupled bosonic fields describing the quantum well exciton
and the cavity photon,29

H =
∫

dx ��†(x)H0 ��(x)

+ h̄g

2

∫
dx ψ̂†

x(x)ψ̂†
x(x)ψ̂x(x)ψ̂x(x)

+
∫

dx h̄E(x,t)ψ̂†
c (x) + H.c., (1)

where x is the longitudinal coordinate along the wire axis
and the two-component operator vector �� = (ψ̂x,ψ̂c)T sum-
marizes the quantum fields describing the exciton ψ̂x(x) and
photon ψ̂c(x) fields. Each of them satisfies one-dimensional
bosonic commutation rules, for example, [ψ̂i(x),ψ̂†

j (x ′)] =
δi,j δ(x − x ′), with i,j = {x,c}. Throughout the paper, we
restrict ourselves to the case where the system is pumped on
a single spin state, so that the spin degrees of freedom can be
neglected in the theoretical model.

The single-particle Hamiltonian H0 describing the evolu-
tion of the noninteracting exciton and cavity photon fields has
the simple representation

H0 =
(
h̄ωx(−i∂x) + Vx(x) h̄�R

h̄�R h̄ωc(−i∂x) + Vc(x)

)
(2)

in terms of the bare cavity photon and exciton dispersion law
ωc,x(kx) ≈ ω(o)

c,x + h̄2kx
2/(2mc,x) in a spatially homogeneous

one-dimensional system. The rest frequency ω(o)
c and the

subsonic 
flow 

supersonic 
flow horizon 

laser pump 

analog Hawking emission 

x 

FIG. 1. (Color online) (Top) Sketch of the polariton wire device
under consideration. (Bottom) Energy-dispersion of the upper and
lower polariton branches as a function of the wave vector kx along
the wire axis. The thin dashed and dash-dotted lines indicate the bare
cavity photon and exciton dispersions, respectively. The thick dashed
line indicates the parabolic approximation of the lower polariton
dispersion. System parameters are inspired from Ref. 31: h̄ω(o)

x =
h̄ω(o)

c = 1580 meV, h̄�R = 7.5 meV, mc = 1.2 × 10−5m0 (with m0

the free electron mass), mx � mc.

effective mass mc of the cavity photon are determined by the
spatial confinement along the z and y axis by the distributed
Bragg reflector (DBR) mirrors and by the total internal
reflection at the etching interfaces, respectively. In practical
calculations the exciton dispersion can be safely neglected,
ωx(kx) = ω(o)

x , as the exciton mass mx is orders of magnitude
larger than the photon mass. The strength of the light-matter
coupling is quantified by the Rabi frequency �R , proportional
to the square root of the oscillator strength per unit area of the
excitonic transition.28

In spatially homogeneous systems, for which the external
potentials acting on the cavity photon and the quantum well
exciton vanish [Vx,c(x) = 0], diagonalization of the single-
particle Hamiltonian H0 as a function of wave vector kx leads
to the well-known upper and lower polariton branches of
dispersions ωUP (kx) and ωLP (kx). As it is shown in Fig. 1(b)
the bottom part of the lower polariton dispersion is accurately
approximated by a parabolic form,

ωLP (kx) � ω
(o)
LP + h̄k2

x

2mLP

, (3)
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where the ω
(o)
LP and mLP parameters have the clear physical

meaning of a rest frequency and an effective mass for the
(lower) polariton. In the resonant case ω(o)

x = ω(o)
c , one has the

simple relation mLP � 2mc.
Several methods to generate external potentials Vx,c(x)

with almost arbitrary spatial shapes along the x direction
have been experimentally demonstrated in the last years,
from the in-plane patterning of the microcavity layer,32 to
the all-optical potential created by a strong pump laser with
opposite polarization,33 to the application of a mechanical
stress to the device.34

Exciton-exciton interaction, due to the Coulomb interac-
tions between the electrons and holes forming the excitons,
are the main source of optical nonlinearity in this prob-
lem. Experimental measurements35,36 report values ranging
from h̄g2D ≈ 2 μeV · μm2 to h̄g2D ≈ 9 μeV · μm2 for the
exciton-exciton interaction constant in planar microcavities.
For weak-enough interactions,37 the reduced one-dimensional
interaction parameter g to be used in the Hamiltonian (1) is
obtained from the two-dimensional one g2D via the overlap
formula g = g2D

∫
w dy|�x(y)|4, where the integral is over the

transverse wire width (−Lw/2 < y < Lw/2), and the fourth
power of the exciton wave function comes from the Kerr-type
nature of the nonlinearity. Assuming the transverse confine-
ment of the exciton envelope function to be described by
�x(y) = √

2/Lw cos (πy/Lw), a good estimate is then given
to be g = 3g2D/(2Lw). Taking into account the exciton weight
in the polariton, this translates in the resonant ω(0)

x = ω(0)
c case

into a one-dimensional polariton-polariton interaction constant
gLP � g/4.

Polaritons are coherently injected into the system by an
external laser drive coupled to the cavity photon via the
nonperfect reflectivity of the DBR mirrors. In the theoretical
model, such processes are described by the terms in the
last row of Eq. (1), where E(x,t) is the spatiotemporal
profile of the coherent pump beam including the coupling
coefficient proportional to the DBR transmission amplitude.
Correspondingly, photons (excitons) are subjected to radiative
losses at a rate γc (γx) that have to be described at the level of
the master equation for the density matrix, ρ, for the coupled
quantum fields,

dρ

dt
= 1

ih̄
[H,ρ] + L[ρ]. (4)

Assuming the baths to be at zero temperature and performing
the standard Born-Markov approximation,38 the dissipation
superoperator can be cast into the Lindblad form

L =
∑
i=x,c

γi

2

∫
dx[2ψ̂i(x) ρψ̂

†
i (x) − ψ̂

†
i (x) ψ̂i(x) ρ

− ρ ψ̂
†
i (x) ψ̂i(x)]. (5)

The resulting decay rate of polaritons is a weighted average of
the exciton and photon ones γx,c: In the vicinity of the bottom
of the lower polariton branch of Fig. 1(b), it has an almost
momentum-independent value γLP ≈ (γx + γc)/2.39

B. The generalized Gross-Pitaevskii equation

In a regime of weak exciton-exciton interactions, the dy-
namics of the system can be accurately captured by the mean-
field approximation: The quantum fields ψ̂x,c are replaced by
the classical fields corresponding to their expectation values

φx,c(x) = 〈ψ̂x,c(x)〉 (6)

and evolving according to the pair of nonlinear partial
differential equations

ih̄
d

dt

(
φx(x,t)

φc(x,t)

)
=

(
0

h̄E(x,t)

)

+
[
H0 +

(
h̄g|φx(x,t)|2 − ih̄

γx

2 0

0 −ih̄
γc

2

)] (
φx(x,t)

φc(x,t)

)
,

(7)

which generalize to the nonequilibrium context of polaritons
the well-known Gross-Pitaevskii equation (GPE) of dilute
Bose condensed gases.41

In the simplest case of a spatially homogeneous system
under a coherent pump in a plane wave form

E(x,t) = Fp exp[i(kpx − ωpt)] (8)

of frequency ωp, wave vector kp, and amplitude Fp, the analog
of the equation of state can be obtained by simply injecting the
same plane-wave ansatz φx,c(x,t) = φss

x,c exp[i(kpx − ωp)t]
into the generalized GPE (7).

This leads to the simple form∣∣∣(
cp − i
γc

2

) (

xp + gnx − i

γx

2

)
− �2

R

∣∣∣2
nx

= �2
R |Fp|2 (9)

for the steady-state excitonic density nx = |φss
x |2 as a function

of the pump parameters and to an analogous expression for the
cavity-photon density.42,43 The pump detuning from the cavity
photon and exciton modes at wave vector kp are indicated here
as 
cp = ωc(kp) − ωp and 
xp = ωx(kp) − ωp.

In the quantum fluid language, this equation plays the role
of the equation of state for the polariton fluid under a coherent
pump in a plane-wave form: While the polariton flow speed
is controlled by the incident wave vector kp, the density has
a more complex dependence on the pump intensity |Fp|2 and
frequency ωp. A most remarkable example is illustrated in
Fig. 2(a): The choice of a pump frequency slightly above the
lower polariton branch leads to an optical bistable behavior.

For reasons that will soon become clear, we concentrate
our attention on the case where the pump intensity is tuned on
the upper branch of the hysteresis loop in the close vicinity of
its end point.44 In order to reach this working point [indicated
as F2 in Fig. 2(a)] in a given spatial region, a pump with a
nontrivial spatial envelope, Fp(x), multiplying the plane wave
can be used, as shown in Fig. 2(b). Upstream of the region
of interest (i.e., for 10 μm < x < 50 μm the pump amplitude
is tuned to a value F1 higher than the switch-on point of the
hysteresis loop (i.e., the end point of the lower branch), so
to switch the system to the upper branch of the hysteresis
loop.45 In the long region of interest (50 μm < x < 350 μm),
the pump amplitude is then maintained at a spatially constant
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FIG. 2. (Color online) (Top) Hysteresis loop in the polariton
density vs incident laser amplitude for a plane-wave pump of
wave vector kp = 0.2 μm−1, and frequency h̄ωp = 1574 meV tuned
slightly above the lower polariton branch at ωLP (kp) � 1572.56 meV.
Equal loss rates are assumed for the exciton and the photon fields,
h̄γx,c = 0.02 meV. The value h̄g = 5 μeV · μm of the nonlinearity
corresponds to a Lw = 3-μm-wide polariton wire (see text). (Bottom)
Spatial intensity profile of the coherent pump along the wire axis,
with excitation parameters: h̄F1 = 24.7487 meV · μm−1/2, h̄F2 =
1.1314 meV · μm−1/2, kp = 0.2 μm−1, h̄ωp = 1574 meV.

value F2, so to keep the system at the desired working point
with the desired in-plane flow wave vector kp.

In order to improve stability of the configuration, the pump
amplitude F2 is tuned at a value slightly above the turning
point of the upper hysteresis branch: While this choice indeed
makes it possible to avoid that the system jumps to the lower
branch of the hysteresis loop under the effect of quantum
fluctuations, the final results for the actual observables do not
seem to depend on the exact working point.46

The behavior of the density n(x) and the wave vector k(x)
in the downstream region (350 μm < x) is determined by a
complex interplay of propagation and losses. First numerical
and analytical studies of this regime have appeared in Refs. 47
and 48: The spatial drop of the polariton density away from
the pump results in an increase of the polariton speed under
the effect of the interactions. The lower the losses, the slower
is this acceleration effect.

C. Bogoliubov dispersion of collective excitations

The dispersion of collective excitations on top of the
steady state of the coherently pumped condensate is obtained,
as usual, by linearizing the GPE around the steady-state
solution.41 A complete discussion of the many different

behaviors that are possible depending on the pump frequency
and intensity can be found in Refs. 42 and 43. Here, we restrict
our attention to the two cases of present interest, namely
(i) a coherent pump whose intensity is tuned right at the turning
point of the upper branch of the hysteresis loop and (ii) the
ballistic flow regime in the downstream region.

If the polariton population is restricted to the lower polariton
branch and we perform a parabolic approximation of the
branch bottom with effective mass mLP , the dispersion of
the collective excitations on top of a condensate of polariton
density nLP in uniform flow at speed vLP has, in both cases,
the usual Bogoliubov form,

ωBog(kx) − ωp

�
√

h̄(kx − kLP )2

2mLP

(
h̄(kx − kLP )2

2mLP

+ gLP nLP

)

+ vLP (kx − kLP ) + i γLP

2
. (10)

In the first (i) case, the local wave vector kLP is fixed to the
in-plane component kp of the pump wave vector. In the second
(ii) case, hydrodynamic effects23,47,48 cause the local wave
vector kLP (x) to slowly vary in space. In both cases, the local
in-plane flow speed vLP is related to the local wave vector by
vLP = h̄kLP /mLP .49

For small wave vectors, |kx − kp| ξ 
 1, the Bogoliubov
dispersion tends to a (lossy) sonic dispersion,

ωBog(kx) − ωp � cs |kx − kp| + vLP (kx − kp) + i
γLP

2
,

(11)

with a sound speed cs of fluid excitations such that mLP c2
s =

h̄gLP nLP , and a Doppler shift term due to the background
fluid flow at vLP . For large wave vectors, it recovers a (lossy)
parabolic single-particle dispersion,

ωBog(kx) − ωp � h̄(kx − kp)2

2mLP

+ vLP (kx − kp)

+ gLP nLP + i
γLP

2
, (12)

with a Hartree energy shift h̄nLP gLP due to the interactions
with the condensate. Plots of the Bogoliubov dispersion at
different spatial positions are shown in the small panels of
Figs. 3 and 4. In the following, they are used to interpret the
numerical results for the evolution of excitation wave packets
and for the density-density correlations.

Before proceeding, it is important to emphasize the
conditions underlying the dispersion (10) of the collective
excitations. In the coherent pump case (i), this form only holds
at the end point of the upper branch of the hysteresis loop,
while gaps and/or branch sticking regions appear in all other
cases because of the coherent pump locking the condensate
phase.42,43 As we mentioned in the previous section, good
stability of the configuration against fluctuations requires that
we keep the pump amplitude at a value slightly above the
turning point: Even if, rigorously speaking, the Bogoliubov
dispersion is in this case gapped rather than sonic,42,43 the
gap amplitude remains, however, smaller than the polariton
linewidth γLP and does not appear to have any influence on
the final results.
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On the other hand, the presence of a soft excitation branch
of sonic nature is guaranteed in the ballistic case (ii) by the fact
that the condensate phase is completely free to evolve both in
space and time.47 However, as the density is spatially varying,
the very concept of dispersion relation holds only locally and is
limited to excitations whose wavelength is small as compared
to the characteristic length scale of the density profile.

D. Truncated Wigner method

A standard technique to go beyond the mean-field approx-
imation and include the fluctuations of the polariton field
around its mean value is based on the Wigner representation of
quantum fields. Within the truncated Wigner approximation,
the dynamics of the quantum field problem can be described
by a stochastic partial differential equation that can be
numerically solved. This technique was first introduced in
the context of quantum fluids in Ref. 50 and its application

to atomic condensates was fully developed and characterized
in Ref. 25. Its extension to the polariton case was developed in
Ref. 26: remarkably, the presence of loss and pump terms in the
stochastic equations suppresses some of the difficulties of the
truncated Wigner method and guarantees its accuracy as long
as interactions between individual polaritons are weak enough.
If a spatial grid of real-space spacing 
x is used to numerically
solve the stochastic partial differential equation, the weak
interaction condition can be formulated as |g| 
 γ 
x. While
this condition rules out the possibility of using the truncated
Wigner method to study strongly correlated polariton states,
for example, in the polariton blockade regime,51–54 it does not
hinder the study of quantum hydrodynamics effects such as the
analog Hawking radiation, which originate from the collective
dynamics of a large number of polaritons.

The stochastic partial differential equations of the truncated
Wigner method for the coupled exciton and polariton fields has
the explicit form26

ih̄

(
dφx

dφc

)
=

{(
0

h̄E(x,t)

)
+

[
H0 +

(
h̄g

(|φx|2 − 1

x

) − ih̄
γx

2 0
0 −ih̄

γc

2

)] (
φx

φc

)}
dt + h̄√

4 
x

(√
γx dWx√
γc dWc

)
, (13)

where 
x is the spacing of the real-space grid and dWx and
dWc are complex valued, zero-mean, independent Gaussian
noise terms, with white noise correlation in both space and
time,

dW ∗
i (x,t) dWj (x ′,t) = 2δx,x ′ δij dt, (14)

with i,j = {x,c}. In the numerical simulations, we reconstruct
the equilibrium Wigner distribution by first letting the system
evolve to its steady state under the monochromatic pump and
then taking a large number of independent configurations by
sampling the stochastic evolution at different times spaced
by Tsam. In order to ensure statistical independence of the
different realizations, a large-enough Tsam has to be taken
such that Tsamγx,c � 1. In practice, a number of realizations
on the order of 105 is used, taken at time intervals on the
order of Tsam = 10 γ −1

x,c . As usual in Wigner approaches,26,38

the stochastic averages over the configurations of different
functions of the fields provide the expectation value of the
corresponding symmetrically ordered operator.

Inspired from previous numerical studies of acoustic black
holes in atomic condensates,13 we shall look for the signature
of analog Hawking radiation in the normalized, zero-delay
correlation of the cavity field intensity defined as

g(2)
c (x,x ′) = 〈ψ̂†

c (x)ψ̂†
c (x ′)ψ̂c(x ′)ψ̂c(x)〉

〈ψ̂†
c (x)ψ̂c(x)〉〈ψ̂†

c (x ′)ψ̂c(x ′)〉
. (15)

Within the Wigner formalism, the different contributions to
Eq. (15) have the form26

〈ψ̂†
c (x)ψ̂c(x)〉 = 〈|φc(x)|2〉W − 1

2 
x
(16)

and

〈ψ̂†
c (x)ψ̂†

c (x ′)ψ̂c(x ′)ψ̂c(x)〉
= 〈|φc(x)|2|φc(x ′)|2〉W + 1

4 
x2
(1 + δx,x ′ )

− 1

2 
x
(1 + δx,x ′ )〈|φc(x)|2 + |φc(x ′)|2〉W, (17)

where the 〈· · · 〉W averages indicate the classical averages over
the different stochastic configurations of the field sampled at
interval times Tsam.

III. CREATING THE ACOUSTIC BLACK HOLE

After having reviewed the technical tools to study the
dynamics of the polariton quantum fluid, we can now proceed
to discuss realistic configurations that can be used to generate
an analog acoustic black hole with a large surface gravity. All
simulations are performed by solving the generalized GPE (7)
using experimental parameters taken from the recent literature
and summarized in Table I.

The most straightforward configuration to generate an
acoustic horizon was proposed by Solnyshkov et al.23 and
is illustrated in Fig. 3(b): The presence of losses is responsible
for a spatially decreasing density profile of a ballistically
flowing polariton condensate and a correspondingly increasing
velocity profile. Eventually, the polariton density tends to zero
and the flow becomes necessarily supersonic. The polariton
density and speed in the pumped region is fixed by the pump
beam parameters: If these are suitably chosen to have an
initially subsonic flow, a horizon must necessarily appear at
some point.

In spite of the simplicity of this configuration, some care
has to be paid to the value of Hawking temperature that can
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TABLE I. Physical parameters of the semiconductor microcavity
device used in the simulations, as (directly or indirectly) obtained
from the cited literature works. m0 indicates the free electron mass.

Parameter Symbol Value Ref.

Photon linewidth h̄γc 0.02 meV 36
Exciton linewidth h̄γx 0.02 meV
Exciton energy h̄ω(o)

x 1.58 eV
Photon rest energy h̄ω(o)

c 1.58 eV
1D photon effective mass mc 1.2 × 10−5m0

Exciton-photon coupling h̄�R 7.5 meV 31
1D polariton mass mLP 2.4 × 10−5m0 31
Exciton-exciton interaction h̄g2D 9 μeV·μm2 35
Transverse size of 1D wire Lw 3 μm 31
1D effective exc.-exc. interact. h̄g 5 μeV·μm

be expected. For smooth horizons within the hydrodynamic
limit,9,13 the Hawking temperature TH is determined by the
surface gravity

κ ≡ 1

2cs(x)

d

dx

[
v2

LP (x) − c2
s (x)

]∣∣
xhor

(18)

according to TH = h̄κ/kB , with kB the Boltzmann con-
stant. According to our numerical simulations and analytical
approximations,48 the characteristic length scale of the varia-
tion of the flow parameters (density and flow speed) is inversely
proportional to the loss rate � ∝ vLP /γLP . Direct combination
of these two general facts shows that the achievable values of
the Hawking temperature is limited from above by the loss
rate: for the case in the figure, one indeed has a rather small
surface gravity, h̄κ � 0.04 meV.

A possible solution to overcome this difficulty is to insert a
narrow repulsive potential in the ballistic flow region, close to
the edge of the pump spot. This technique was proposed and
characterized for atomic condensates in Ref. 55; its efficiency
for polariton fluids is illustrated by the numerical calculations
shown in Fig. 4(b). Flow across the defect mostly occurs
via tunneling processes through the potential barrier: This
produces a sudden drop of the condensate density and a
corresponding sudden increase of the flow speed. As a result,
a horizon appears in the vicinity of the defect center, separating
a subsonic upstream region from a supersonic downstream one,
with a surface gravity as high as h̄κ � 1.2 meV, that is, about a
factor of ∼30 larger than the purely ballistic flow case of Fig. 3.

Another difficulty of the purely ballistic flow configuration
of Fig. 3(b) was the significant spatial variation of the polariton
density on both sides of the horizon, which may strongly
distort the geometrical structure Hawking signal. The defect
configuration of Fig. 4(b) appears to be favorable also in this
respect: As the flow in the upstream region is subsonic, no
Bogoliubov-Cerenkov emission can take place from the defect
in this direction24 and the polariton density remains almost
flat across the whole flat-top region. The slow spatial variation
of the density in the downstream supersonic region is hardly
avoided unless more complex laser configurations are used, but
does not seem to prevent identification of the Hawking effect.

On the other hand, the use of a coherent pump raises
the crucial issue of avoiding all those branch-sticking and
gap effects typical of nonequilibrium condensates42,43 that

FIG. 3. (Color online) (a) Scheme of the purely ballistic flow
configuration to create a flowing polariton superfluid with an acoustic
horizon. (b) Spatial profiles of the flow vLP and the sound cs speeds
at steady state. The parameters and the spatial shape of the pump
laser are the same as in Fig. 2. (c) Dispersion of the collective
excitations at two spatial positions: point xp (left) is chosen to
be in the subsonic flat-top region; point xprobe (right) is located
downstream of the horizon in the supersonic region. Red solid
(blue dashed) lines refer to positive (negative) norm Bogoliubov
modes. (d) Spatial profile of the exciton density at a time t = 50 ps
after the arrival of the probe pulse. The probe laser parameters are
chosen so to resonantly excite the Bogoliubov branch indicated as
d1,in in panel (c): frequency h̄(ωs − ωp) = 0.13 meV, wave vector
ks − kLP (xprobe) = −1.55 μm−1. The probe spot has a Gaussian
shape centered at xprobe = 450 μm with a waist ws = 20 μm and
a peak amplitude h̄Fs = 0.35 meV·μm−1/2. Its temporal shape is
also Gaussian of duration τ = 10 ps. All numerical calculations are
performed in a 800-μm simulation box with 2048 lattice points and
absorbing boundary conditions at the edges of the box.

would spoil the analogy with gravitational systems. As we
have reviewed in Sec. II C, choosing the value of the laser
amplitude in the flat-top region in the vicinity of the end point
of the upper branch of the hysteresis loop is enough to have an
(approximately) sonic dispersion of the form (10) at all spatial
positions around the horizon, which supports the interpretation
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FIG. 4. (Color online) (a) Scheme of the ballistic flow config-
uration with a defect so to create an acoustic horizon with a large
surface gravity. Panels (b)–(d) are analogous to the corresponding
ones of Fig. 3. The parameters and the spatial shape of the pump
laser are again the same as in Fig. 2. The defect consists of a
square potential barrier of thickness Ldef = 2.5 μm and is located
at a position xdef = 354 μm close to the flat-top edge. The height of
the defect potential is Vdef = 1 meV and acts on both exciton and
photon components of the polariton field. The horizon appears in the
close vicinity of the defect with a large surface gravity. The probe
laser parameters are chosen so to resonantly excite the Bogoliubov
branch indicated as d1,in in panel (c): frequency h̄(ωs − ωp) = 0.5
meV; wave vector ks − kLP (xprobe) = −1.9 μm−1. The shape and the
amplitude of the pump spot are the same as in Fig. 3(d).

of our flow configuration in terms of an acoustic black hole. In
the future, it will be extremely interesting to investigate how
the Hawking processes are modified if one considers a different
configuration with a diffusive rather than sonic shape of the
Goldstone mode dispersion as in the cases of incoherent56 or
optical parametric oscillator (OPO) pumping schemes.57

IV. WAVE-PACKET SCATTERING

The numerical simulations that we presented in the previous
section demonstrate the possibility to create configurations of a
polariton flow through a horizon-separating regions of sub- and

supersonic regimes with a sizable surface gravity. This config-
uration will be a powerful workbench for studies of Hawking
phenomena. Inspired by related theoretical work on atomic
condensates58 and experiments in classical hydrodynamics,59

in this section we first consider the scattering of a phonon
wave packet off the horizon, a process where the classical
counterpart of the Hawking effect manifests itself as an
additional reflected wave packet. This discussion will be the
starting point for the next section, where we investigate the very
Hawking effect, namely the conversion of zero-point quantum
fluctuations into observable radiation by the horizon.

The scattering dynamics of Bogoliubov phonons hitting the
horizon can be studied in terms of the generalized GPE (7):
Far from the horizon, the propagation of weak wave packet
perturbations follows the Bogoliubov dispersion discussed in
Sec. II C, albeit with spatial dependent flow and sound speeds.
Figures 3 to 6 illustrate the different aspects of this physics
for the two previously mentioned cases, namely a smooth flow
with a low surface gravity, a defect configuration with a sizable
surface gravity. For each configuration, the structure of the flow
is illustrated in Figs. 3(b) and 4(b), while the smaller [(c) and
(d)] panels show the Bogoliubov dispersion at different spatial
positions.

Once the system is in its steady state, a low-frequency
wave-packet perturbation is generated in the downstream
supersonic region by means of an extra coherent laser pulse
with a spatiotemporal shape of the form

E(x,t) = Fs e−(x−xs)2/w2
s e−(t−ts)2/τ 2

ei(ksx−ωst). (19)

The probe wave vector (ks) and frequency (ωs) are chosen to
be resonant with the Bogoliubov branch labeled as d1,in in
the (c) panels. The probe beam is centered at xprobe; its waist
ws determines the spatial size of the generated wave packet
(and its inverse width in k space). The temporal duration τ

has to be long enough not to excite the upper polariton branch
or the negative-norm Bogoliubov branch. Its amplitude Fs is
chosen weak enough to remain within the validity domain of
a linearized description of excitations.

The generated wave packet shown in Figs. 3(d) and 4(d)
then propagates in the leftward direction against the horizon.
A series of snapshots of this evolution are presented in Figs. 5
and 6. The difference between the behaviors of the weak and
of a large surface gravity cases is apparent: In the former case,
only two wave packets visibly emerge from the horizon at long
times, located on the uout and d1,out Bogoliubov branches. On
the other hand, in the latter case, an extra wave packet appears
on the d2,out branch. Remarkably, the Bogoliubov norm of
this wave packet is negative, which signals the occurrence
of Hawking conversion processes. The identification of the
different wave packets in terms of their Bogoliubov branch
is confirmed by the numerical measurement of their group
velocity and of their wave vector.

Of course, the physical reason why we did not observe
a d2,out wave packet in Fig. 5 is that the low value of
the surface gravity strongly suppresses the amplitude of the
Hawking process. As was expected on general grounds9 and
then explicitly verified,60,61 the Hawking scattering amplitude
for a Bogoliubov wave packet of given carrier frequency ω

scales down exponentially with the surface gravity according
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(a)

(b)

(c)

FIG. 5. (Color online) Snapshots of the spatial profile of the density modulation due to the propagating phonon wave packets at different
times (a) t = 50 ps, (b) t = 100 ps, and (c) t = 175 ps after the arrival of the probe pulse. Each panel displays the excitonic density modulation
with respect to the time-independent steady state. The pump and probe parameters are the same as for the purely ballistic flow shown in
Fig. 3(d). The labels on the wave packets refer to the Bogoliubov dispersions of Fig. 3(c), while the arrows indicate the propagation direction
of each wave packet.

to the Boltzmann factor exp(−2πω/κ). On the other hand,
excitation of the d2,out branch would be totally forbidden if the
flow was everywhere subsonic and no horizon was present: In
this case, in fact, energy could not be conserved in the Hawking
scattering process.

V. SPATIAL CORRELATIONS OF DENSITY
FLUCTUATIONS

The process studied in the previous section provides a solid
evidence of the classical counterpart of the Hawking effect,
namely the possibility of interconverting positive and negative
norm waves at the horizon. Now we proceed with the study
of the Hawking effect stricto sensu, that is, the emission of
radiation by the horizon via the interconversion of zero-point
quantum fluctuations into observable radiation.

To this purpose, one has to fully include in the model
the quantum fluctuations of the fields around the mean-field
value predicted by the GPE. In this work, we adopt the
truncated Wigner approach described in Sec. II D, where
expectation values of quantum operators are calculated as
classical averages over a suitably chosen stochastic partial
differential equation. Inspired from previous theoretical62 and
numerical13 work, we shall consider the spatial correlation
function of the quantum fluctuations of the fluid density: The
smoking gun of Hawking radiation consists of a negative long-
range correlation signal between points located on opposite
sides of the horizon.

Numerical plots of the normalized density-density corre-
lation function g(2)

c (x,x ′) − 1 are shown in the two panels of
Fig. 7 for the two cases of a weak and strong surface gravity
κ , respectively. While in the top panel [Fig. 7(a); weak surface
gravity, h̄κ ≈ 0.04 meV] there is no clear feature emerging
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(a)

(b)

(c)

(d)

FIG. 6. (Color online) Snapshots of the spatial profile of the density modulation due to the propagating phonon wave packets at different
times (a) t = 50 ps, (b) t = 100 ps, and (c) t = 175 ps after the arrival of the probe pulse. Each panel displays the excitonic density modulation
with respect to the time-independent steady state. The pump and probe parameters correspond to the defect configuration shown in Fig. 4(d).
The labels on the wave packets refer to the Bogoliubov dispersions of Fig. 4(c), while the arrows indicate the propagation direction of each
wave packet.

over noise, the bottom panel [Fig. 7(b); strong surface gravity,
h̄κ ≈ 1.2 meV] shows several features that can be interpreted
as a direct consequence of the analog Hawking radiation58,60:
The two Bogoliubov excitations forming the Hawking pair
are simultaneously emitted from the horizon. At later times,
the temporal correlation between the emission time of the

Hawking partners reflects into a long-distance correlation
in the density fluctuations due to each member of the pair.
While in the atomic case this correlation extends at long
times to indefinitely large distances from the horizon, the
finite decay rate of Bogoliubov excitations in polariton fluids
predicted in Eq. (10) restricts the correlation signal to a finite
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(a)

(b)

FIG. 7. (Color online) Color scale plot of the normalized spatial
correlation function of photon density fluctuations g(2)

c (x,x ′). This
quantity directly reflects in the intensity correlations of a near-field
image of the emitted light from the microcavity. The top (a) panel
refers to the case of a purely ballistic flow considered in Figs. 3 and
5. The bottom (b) panel refers to the case with a defect in the ballistic
flow considered in Figs. 4 and 6. The colored dashed lines in (b)
indicate the different Hawking features as discussed in the text.

region of size vg/γLP around the horizon, vg being the group
velocity of the Bogoliubov branch under consideration. Away
from this region around the horizon, the Hawking phonons
have decayed and the corresponding density fluctuations have
disappeared.63 The dashed lines in Fig. 7(b) indicate the
location at which one would expect the maximal density
correlations due to the quantum vacuum emission process
into the uout − d2,out (white), the uout − d1,out (purple), and
the d1,out − d2,out (yellow) pair of modes.

The first process is the traditional Hawking emission
process where the two quanta are emitted into opposite
directions from the horizon. The main properties of the density
correlation pattern due to this process is well captured by the
nondispersive quantum field theory on curved space-time as
proposed in Ref. 62. For x − xhor > 0 and x ′ − xhor < 0, the
correlation is peaked along the half line,

x − Xhor

vd − cd

= x ′ − Xhor

vu − cu

. (20)

Here, vd,u and cd,u are the flow speed and speed of sound
in the upstream and downstream regions, so that vd − cd and
vu − cu are the group velocity of the d2,out and uout modes
in the low-k, sonic region. While in the atomic BEC case of
Ref. 13 their value did not depend on space in the asymptotic
regions away from the horizon, the driven-dissipative nature
of polaritons is responsible for the spatial dependence of the
flow vLP and sound cs speeds that is visible in Fig. 4(b),
mostly in the downstream region. However, as the space
dependence remains moderate within the regions of thickness
|vu − cu|/γLP and |cd − vd |/γLP on either side of the horizon
where correlations are significant, no appreciable curvature of
the Hawking tongues is visible in Fig. 7(b).

The orientation of the purple and yellow dashed lines in
Fig. 7(b) is analogously obtained from the group velocity of
the corresponding modes, namely

x − Xhor

vd + cd

= x ′ − Xhor

vu − cu

(21)

and

x − Xhor

vd − cd

= x ′ − Xhor

vd + cd

. (22)

The excellent agreement of the geometrical location of the
numerically observed features with the analytical predictions
[Eqs. (20)–(22)] confirms our interpretation. Remarkably,64

the peak value of the uout − d2,out Hawking correlation signal
is on the order of g(2)

c − 1 � 0.92 × 10−5, which is not too
far from the analytical prediction of Ref. 62. As the surface
gravity is here comparable to the interaction energy h̄gLP nLP ,
the quantitative discrepancy can be easily traced back to the
breakdown of the hydrodynamical approximation underlying
the analytical model.13 Thanks to the continuous-wave nature
of the proposed experimental setting, the quantitatively
low-value signal to be observed can be overcome by a
sufficiently long integration time.

While agreement with the atomic case is good also for
the uout − d1,out feature, the d1,out − d2,out one has a different
sign. A possible explanation of this behavior can be traced
back to the nonuniversality of the uout → d1,out backscattering
effect that is responsible for the conversion at the horizon of
the standard uout − d2,out Hawking correlation into the d1,out −
d2,out one.

Before concluding, it is important to note that throughout
the whole discussion, we have implicitly assumed that the
g(2)

c (x,x ′) correlation function is assumed to be measured at
the same time: A rough estimate of the required temporal
resolution of the detector is given by δt ≈ δx/cu,d , where
cu,d is the speed of sound in the polariton gas (on the order
of 2 μm/ps from Figs. 4) and δx is the spatial width of the
correlation signal. Using the value δx ≈ 8 μm taken from
Fig. 7, one can estimate the needed temporal resolution to
be on the order of δt ≈ 4 ps, which is within the state of the
art of optical technology.

VI. CONCLUSIONS

In this article we have presented a comprehensive
study of classical and quantum hydrodynamic properties of
acoustic black holes in superfluids of exciton-polaritons in

144505-10



ANALOG HAWKING RADIATION FROM AN ACOUSTIC . . . PHYSICAL REVIEW B 86, 144505 (2012)

semiconductor microcavities. Inspired from ongoing exper-
imental research, we have identified and characterized one-
dimensional polariton wire devices as model systems, where
the polaritons injected by a single monochromatic laser beam
with a suitable spot profile generate a flow configuration
showing an acoustic-black-hole horizon. Inserting a repulsive
potential defect provides a dramatic enhancement of the analog
surface gravity at the horizon. Even if our calculations have
been performed for the specific case of a semiconductor
microcavity in the strong-coupling regime, all conclusions
straightforwardly extend to a generic planar cavity filled by a
nonlinear optical medium, as originally suggested in Ref. 20,
or even to photonic crystal polaritons.65,66 The modifications
to the Hawking effect that might stem from a diffusive rather
than sonic dispersion of the Goldstone mode56,57 will be the
subject of future work.

In analogy with previous works on acoustic black holes in
atomic condensates and classical hydrodynamics of surface
waves, two experiments have been proposed and numerically
simulated to assess the efficiency of Hawking wave-conversion
processes at the horizon. When a coherent wave packet of
Bogoliubov phonons is incident on the horizon, the Hawking
effect is visible as the production of an extra emerging wave
packet on the negative-norm branch. This is the classical
evidence for the Hawking process taking place at the horizon.
On the other hand, the usual Hawking radiation is a purely
quantum effect consisting of the conversion of zero-point

fluctuations into a stream of observable phonons at the horizon:
The correlation between the emission times of a phonon and
its Hawking partner is visible as a long-distance correlation
between the density fluctuations on either side of the horizon.
The density correlations provide the clearest experimental
signature of Hawking radiation in superfluids: In the present
polariton case, the intra-cavity density correlations directly
transfer into the secondary emission from the cavity photons
and can be observed as analogous correlations in the intensity
fluctuations of the near-field emission. As soon as a sufficient
signal-over-noise ratio is achieved, an experiment along the
proposed lines will hopefully provide a clear evidence of a
fundamental effect of quantum field theory that so far has
eluded all experimental observation, overcoming the barrier to
direct observation imposed by the negligibly small Hawking
temperature of astrophysical black holes.
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