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Abstract

In the present work we report on a theoretical investigation of electromag-
netic radiation modes in planar dielectric waveguides periodically textured
with either one- or two-dimensional patterns. This kind of systems, com-
monly called photonic crystal slabs, allow for a three-dimensional control
of light propagation or confinement owing to the in-plane photonic band
gap properties added to the vertical dielectric confinement. These systems
are currently much studied owing not only to their interesting applicative
perspectives, but also for their fundamental physical peculiarities. The anal-
ysis is carried out by using a recently developed theoretical method, called
Guided-Mode Expansion. The light line issue, which allows for a distinc-
tion between truly guided, quasi-guided and leaky modes, is presented and
discussed. Systems either completely periodic or with controlled defects are
considered, in order to study the main physical properties of either delo-
calized or confined photonic modes. In particular, we consider both cavity
modes in one-dimensional photonic crystal slabs, addressing the problem of
the efficient determination of their quality factors, and line-defect waveguides
in two-dimensional photonic crystal slabs, for which we study the propaga-
tion losses induced by intrinsic as well as extrinsic scattering mechanisms.
It is shown that propagation losses comparable to high refractive index strip
waveguides can be achieved with state-of-the-art fabrication technology of
photonic crystal waveguides, which promises to be an important issue in
view of prospective applications of such systems to integrated optics. Com-
parisons with recent experimental results are also provided throughout the
work, which put our theoretical analysis on a solid basis. Finally, the problem
of the strong coupling between radiation modes in photonic crystal slabs and
material dipole-active excitations in semiconductors is theoretically treated
by using a quantum mechanical formalism. It is shown that the interplay
between light and matter can lead to the formation of mixed states, or a new
kind of quasi-particles, which we call photonic crystal polaritons.





Introduction

The understanding of fundamental physical mechanisms underlying phenom-
ena such as the propagation of light and its interaction with matter is one of
the major conquests of human thinking. The classical theory of electromag-
netism has allowed to explain, substantially, all electromagnetic phenomena
since 18641. The fusion of relativistic electromagnetic theory, where electric
and magnetic fields are intended as components of a unique electromagnetic
tensor, and Quantum Mechanics led, in the middle of the past century, to
the most powerful theoretical construction that we have in Physics, namely
Quantum Electrodynamics2. This theory brought a great insight on how
things really go at the microscopic level, when electromagnetic radiation and
ordinary matter manifest their pure quantum nature. Anyway, classical elec-
tromagnetism has not gone out of fashion during these decades. On the
contrary, Maxwell’s equations still represent a priceless source of information
in many everyday problems.

It was, in some sense, a surprise for many scientists that at the end of
XX century Maxwell’s equations could still predict new physical phenom-
ena. Indeed, every non scalar electromagnetic problem is a very complicated
one, and many problems still have no exact analytical solution owing to the
intrinsic vectorial nature of Maxwell’s equations. The main source of new
physical discoveries during the last decades in low-energy physics has been
the understanding that radiation-matter interaction is not an unchanging
property of material systems. Indeed, the spontaneous emission of photons
from electronic excited states of atoms and molecules can be modified, e.g,
by modifying the density of radiation modes interacting with those states
[1]. Things began to be interesting for many physicists when the possibilities
to artificially manipulate electromagnetic density of states in real systems
grew together with the advances in nano-fabrication technology, allowing for

1This is the year in which James Clerk Maxwell published his seminal treatise on
the “dynamic theory of the electromagnetic field,” setting up the basis of fundamental
equations for the evolution of electric and magnetic fields bringing his name.

2It is still the theory best verified experimentally.
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Figure 1: A schematic view of (a) one-dimensional, (b) two-dimensional and
(c) three-dimensional photonic crystal structures, made by the periodic al-
ternation of two different dielectric materials. Drawings taken from Ref. [5].

the tailoring of radiation-matter interaction at optical wavelengths. A fruit-
ful source of discoveries in the last decades has been the proposal to modify
the radiation properties of materials by fabricating artificial structures called
photonic crystals.

In 1987 two seminal papers by Yablonovitch [2] and John [3] appeared
almost simultaneously, giving rise to a new field of research concerning the
study of physical properties of periodic dielectric media in one, two and three
dimensions. In analogy with the periodic arrangement of atoms in ordinary
crystals, these meta-materials were generically addressed to as photonic crys-
tals. Schematic illustrations of such systems are given in Fig. 1. They are
commonly constituted by two dielectric (non-magnetic) materials arranged in
space with a certain periodic lattice. Indeed, one-dimensional (1D) photonic
crystals have been studied for a long time as they provide far better reflection
properties than metallic mirrors at optical wavelengths, and are commonly
known as Bragg mirrors [4]. The electromagnetic problem for Bragg mirrors
can be reduced to a scalar wave equation, whose solution is known for the
majority of practical cases. On the contrary, the vectorial nature of the elec-
tromagnetic field leads to additional complication for two-dimensional (2D)
or three-dimensional (3D) structures. The great interest of scientific commu-
nity over the potential applications of photonic crystals is witnessed also by
the huge amount of papers published in the last years on these topics (see
also Refs. [5, 6, 7] and references therein).

The great intuition, which gave rise to new research efforts all over the
world, has been to exploit the analogies between photonic and ordinary mat-
ter crystals. It was understood that the periodic dielectric function acts for
photons in a way analogous to the periodic crystalline potential for elec-
trons. From Solid State Physics, it is known that this periodic potential
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is at the origin of the electronic band structure and band gaps [8]. Thus,
one can reasonably expect that the dispersion of photons is greatly modified
in photonic crystals as compared to homogeneous media. In particular, it
seemed very interesting since the beginning of this active field of research
the possible existence of photonic band gaps, i.e. frequency regions in which
no photonic modes are allowed to propagate in the meta-material. Owing
to the vectorial nature of the electromagnetic field, a photonic band gap is
complete only if it exists in a given frequency range for all possible polar-
ization states. Anyway, the photonic band gap may be truly complete only
for three dimensional photonic crystals, because light propagation would be
inhibited in any direction. This, added to the unique properties of Maxwell’s
equations that have no fundamental length scale (unlike, e.g., Schrödinger’s
equation in which there is the Planck constant), which gives rise to pho-
tonic band structures scalable according to the lattice constant [5], makes
three dimensional photonic crystals very attractive for the control of the
light propagation at optical wavelengths. Furthermore, if we introduce a
structural defect in the otherwise periodic lattice of a photonic crystal, mid-
gap modes whose eigenfunctions could be strongly localized may be obtained,
giving rise to intra-gap defect modes in close analogy to impurity states in
semiconductors or insulators. Thus, the potential importance of researching
on photonic crystals is twofold. On one side, it is intuitive that the proper
design of structural defects (linear or localized) into photonic crystals would
allow to fabricate lossless waveguides or very high-Q cavities. Such waveg-
uides would allow, e.g., to create optical interconnects with very sharp bends,
thus going beyond the intrinsic curvature limits imposed by total internal re-
flection in commonly used dielectric waveguides [5]. These concepts clearly
points at all-optical integration of many components (such as waveguides,
resonators, add/drop filters, splitters, combiners, etc.) on a single photonic
crystal chip. On the other hand, the spontaneous emission of atoms em-
bedded in a 3D photonic crystal can be inhibited, if its resonance frequency
lies within the photonic band gap, or enhanced and reshaped by photonic
band structure (whose dispersion can be substantially different from the dis-
persion of light in a homogeneous medium). The latter aspect is concerned
mostly with the fundamental understanding of radiation-matter interaction
properties. After these first proposals made on a theoretical basis, the great
challenge in the last years has been the fabrication of structures with mini-
mum degree of imperfections, in order to reproduce the results predicted by
theoretical calculations. Unfortunately, this challenge has proven too hard
for current technology possibilities when dealing with 3D photonic crystals at
sub-micrometric scales. In particular, there are many difficulties in introduc-
ing controlled line or point defects into 3D structures with robust photonic
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(a) (b) (c)
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Figure 2: (a) Schematic picture of a planar waveguide patterned with a
periodic lattice in the plane, or photonic crystal slab. SEM images (courtesy
of D. Peyrade and M. Belotti) of Silicon-on-Insulator (b) 1D photonic crystal
slab of Silicon stripes and (c) 2D photonic crystal slab with a triangular
lattice of air holes in a Silicon background.

gaps.

In the last few years two-dimensional photonic crystal structures embed-
ded in a planar dielectric waveguide geometry, commonly known as photonic
crystal slabs, have been receiving much attention because they allow for a
three dimensional control of light and retain or approximate many of the
desired properties of 3D photonic crystals, but they are much more easily
realized at sub-micron lengths. In these systems, the propagation or confine-
ment of electromagnetic field is controlled by the photonic crystal structure in
the 2D plane, and by the dielectric discontinuity provided by the slab waveg-
uide in the vertical direction. A typical system is schematically displayed in
Fig. 2a. Photonic crystal slabs are usually fabricated on a substrate made of
a semiconductor or an insulator material. Many sophisticated technologies
such as electron beam lithography and thin layer growing have been devel-
oped in the field of microelectronics and optoelectronics, and can be applied
to their fabrication. Examples of fabricated structures are given in Figs. 2b
and c for one- and two-dimensional in-plane periodicity, respectively. Both
1D and 2D samples shown in the figures were fabricated at the “Laboratoire
de Photonique et Nanostructure,” CNRS, Paris-Marcoussis, France, within a
collaboration with the group of Prof. Y. Chen, “Ecole Normale Superieure,”
Paris. Silicon layers of thickness 260 nm were deposited on Silicon dioxide
substrates and patterned by using electron-beam lithography and reactive
ion etching to design the sub-micrometer periodic lattices. These photonic
crystal slabs are commonly known as Silicon-on-Insulator (SOI) structures.

Most experimental investigations of photonic crystal slabs with a one-
or two-dimensional periodic lattice concern in-plane transmission [9–12] or
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surface reflectance/transmittance measurements [13–19] with the purpose of
determining the photonic gaps and the band dispersion. Structures contain-
ing defect states like microcavities in 1D systems [20–22] or linear waveg-
uides in 2D lattices [23–26] were also experimentally investigated. On the
theoretical side, the study of photonic crystal slabs has been undertaken
with plane-wave expansion method [27–30], scattering-matrix or grating the-
ory approaches [31, 32], exact finite-difference time-domain (FDTD) calcula-
tions [33–36], modal methods [37–40], and perturbative approaches [41–43].
Most of these papers concern 2D structures, either periodic or with linear
defects, though each theoretical method has its drawbacks and limitations.
The theoretical study of 1D structures is restricted to a few papers and
mostly focused onto the optical response in both in-plane [38, 40] and out-
of-plane [18, 19, 22, 32, 43] configurations. For a thorough historical review
of past research on photonic crystals and photonic crystal slabs see also [44].
Recent research developments and guidelines in these fields can be found in
Ref. [45].

The present work aims at giving an original contribution to the devel-
opment of some “hot” research topics within the photonic crystal scientific
community, concerning the study of 1D and 2D photonic crystal slabs. Theo-
retical research has been carried out by using a recently developed numerical
method [46–48], which allow for a fast and accurate calculation of the main
physical properties, such as photonic band dispersion and out-of-plane losses
of leaky modes, for photonic crystal slabs with one- and two-dimensional in-
plane periodicity and strong refractive index contrast out of the slab plane.
Objects of the present work are photonic crystals patterned in core layers of a
high index material (such as Silicon or GaAs) between low index semi-infinite
media, e.g. photonic crystal membranes or asymmetric photonic crystal slabs
grown on a low index substrate (oxide), like the ones shown in Fig. 2.

Two guiding lines have been followed throughout this work on the eigen-
modes in photonic crystal slabs: on one side the theoretical understanding of
application-oriented physical properties, on the other the development of the-
oretical tools concerning more fundamental investigations of radiation-matter
interaction effects in such systems. The analysis has been concentrated on
both one- and two-dimensional periodic systems, either defect-free or with
point or linear defects within the otherwise periodic structure. In particular,
issues such as the determination of the quality factor for cavity modes in
Fabry-Pérot cavities embedded in 1D photonic crystal slabs, and the calcu-
lation of disorder-induced out-of-plane losses for linear defect states in 2D
photonic crystal slabs are addressed. Original results that may be of great
importance for prospective applications of these systems to integrated optics
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are presented. From a more fundamental point of view, a quantum theory of
the exciton-photon coupling in photonic crystal slabs with embedded semi-
conductor quantum well(s) within the core layer of the planar waveguide
is formulated. The weak and strong coupling regimes in both 1D and 2D
lattices are studied, and the conditions for the formation of mixed states
of radiation and material excitations are theoretically determined. These
results still await for experimental confirmation.

This thesis basically relies on various collaborations and projects carried
out by the Solid State Theory group at the University of Pavia, headed
by Prof. L.C. Andreani. Part of the work has been financed by “Istituto
Nazionale per la Fisica della Materia” (INFM) through the project PRA-
Photonic, and by “Ministero dell’Istruzione, dell’Università e della Ricerca
Scientifica” (MIUR), through the project Cofinanziamento-2002. The lat-
ter involves, besides the University of Pavia, which participates with both
the experimental group of Prof. G. Guizzetti and the theoretical group of
Prof. L.C. Andreani, the Universities of Torino,Trento, Firenze, and TASC-
ELETTRA Synchrotron at Trieste. Collaborations with the group of Prof.
Y. Chen at LPN-CNRS, Paris-Marcoussis, France, brought the Silicon-on-
Insulator samples whose characterization is shown in this work. Experiments
of angle-resolved reflectance are carried out at the optical spectroscopy labo-
ratory of the Department of physics “Alessandro Volta,” University of Pavia.

The presentation of the work is organized as follows. In the first Chapter,
after an introduction to the general solution of Maxwell’s equations in pho-
tonic crystals and uniform planar waveguides, the theoretical formulation of
the method is presented. The successive chapters deal with the presentation
of results. In Chapter 2 one-dimensional photonic crystal slabs are addressed,
in both periodic and with point defects configurations for membrane and SOI
structures. Two-dimensional photonic crystal slabs are studied in Chapter 3,
periodic and with linear defects in a triangular lattice of air holes on mem-
brane and SOI. Finally, a quantum theory of radiation-matter interaction for
quantum well excitons in 1D and 2D photonic crystal slabs is presented in
Chapter 4, where results on the formation of new quasi-particles that we call
photonic crystal polaritons are discussed. Numerical results and comparisons
with available experimental data, either from the optical spectroscopy group
of the University of Pavia or from the literature, are extensively presented
and commented. Some of the work and the main scientific results have al-
ready appeared, usually more synthetically, in various journals [49–53], or
they will appear in forthcoming issues in the next months [54, 55].



Chapter 1

Theory of photonic eigenmodes

In this Chapter an outlook is given about the theoretical framework used to
study both numerically and analytically the physical properties of photonic
crystal slabs in the present work. Photonic crystal slabs are constituted by
planar dielectric waveguides periodically patterned in the plane. The two
constituent systems, namely the ideal two-dimensional photonic crystal and
the uniform planar slab, will be separately introduced in the first Section.
Finally, in the second Section the physics of these two systems will be put
together and the theory of photonic eigenmodes in photonic crystal slabs will
be pointed out. This method was first proposed in Refs. [46, 47] as a fast
and accurate numerical tool for calculating the main dispersive properties of
photonic crystal slabs, and it has been successively extended in order to treat
also the problem of both intrinsic [48] and extrinsic (that is disorder-induced)
[50] out-of-plane radiation losses within a perturbative formalism. Numerical
results concerning both one- and two-dimensional photonic systems in the
plane of the waveguide will be extensively presented in the next two chapters.

1.1 Solutions of Maxwell’s equations

It is well known that in a uniform, isotropic and non dispersive medium of
refractive index n the dispersion relation of the radiation field, that is the
expression relating the frequency (or energy) of the electromagnetic field and
the wave vector k, is simply given by

ω =
c

n
|k| (1.1)

where v = c/n is the group velocity of the field in the medium. The disper-
sion ω = ω(k) can be greatly changed by modifying the structural properties
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of dielectric materials, e.g. by using photonic crystals or dielectric waveg-
uides. As already introduced, photonic crystals are meta-materials basically
constituted of two different dielectric media periodically arranged in space
in one, two or three dimensions (see Fig. 1). The dispersion of photonic
modes in a photonic crystal is characterized by the presence of band gaps,
i.e. frequency regions for which the propagation of the electromagnetic field
is inhibited within the medium. The photonic band dispersion is one of the
main concepts that allows to study and understand the interesting physics
of these systems. The following paragraph is devoted to the introduction of
basic concepts related to photonic band calculations by using the plane wave
expansion method. The wave equations formulated as an eigenvalue problem
will be discussed, and a general numerical method to solve it will be given
for two-dimensionally periodic systems, for which the vectorial wave equation
reduces to two independent scalar equations. In the second paragraph the
solution of Maxwell’s equation in planar dielectric slabs will be described,
leading to the calculation of photonic eigenmodes and to the definition of
guided and radiative eigenmodes.

1.1.1 Eigenmodes in periodic dielectric media

The starting point of every electromagnetic study is the formulation of the
problem in terms of Maxwell’s equations. In particular, eigenmodes in pho-
tonic crystals are essentially the solution of the classical problem posed by
Maxwell’s equations in a medium with spatial periodicity in either the di-
electric constant, either the magnetic permeability, or both. In the following
we will assume that free charges and electric currents are absent, in order
to calculate the proper eigenmodes of the electromagnetic field neglecting
radiation-matter interaction (the latter will be treated from a quantum point
of view in the last Chapter of this work). Under these assumptions, Maxwell’s
equations in Gaussian units read

∇ ·D(r, t) = 0, ∇×E(r, t) = −1
c

∂

∂t
B(r, t), (1.2)

∇ ·B(r, t) = 0, ∇×H(r, t) =
1
c

∂

∂t
D(r, t). (1.3)

The electric and magnetic fields, E and H, are related to electric displace-
ment (D) and magnetic induction (B) by the constitutive relations

D(r, t) = ε(r)E(r, t), B(r, t) = µ(r)H(r, t), (1.4)

where ε and µ are the electric and magnetic function tensors, respectively.
We assume that the media composing the photonic crystal structure are
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isotropic, i.e. ε = ε and µ = µ. We further assume that the media are non-
magnetic, i.e. µ = 1 and B = H. Finally, by taking an oscillating temporal
dependence of the fields

E(r, t) = E(r)e−iωt H(r, t) = H(r)e−iωt (1.5)

the general solution of Maxwell’s wave equations can be found as a superpo-
sition of harmonics, thanks to the linearity of the electromagnetic problem.
By inserting Eqs. 1.5 in Eqs. 1.2 and 1.3, taking into account the consti-
tutive equations and the assumptions made above, Maxwell’s equations can
be written in the closed, second-order forms for either the electric or the
magnetic fields

∇ · ε(r)E(r) = 0, ∇×∇×E(r) =
ω2

c2
ε(r)E(r), (1.6)

∇ ·H(r) = 0, ∇×
(

1
ε(r)

∇×H(r)
)

=
ω2

c2
H(r). (1.7)

It is evident that the equations at the right hand side can be reformu-
lated in terms of eigenvalue problems, appearing very similar to station-
ary Schrödinger equation [5]. In particular, the role of the hamiltonian is
replaced here by a differential operator whose potential is represented by
[1 − ε(r)]ω2/c2. Notice that this effective potential for photons enters as
a multiplication factor, instead of an additive one as for material particles
obeying Schrödinger equation. The main difference between Eqs. 1.6 and 1.7
and the Schrödinger equation, however, is the vectorial nature of the electro-
magnetic field as compared to matter fields. It is more convenient to work
with Maxwell’s equation for the magnetic field, because H is transverse (see
left hand side in Eq. 1.7) and the master equation has the typical form of an
eigenvalue problem [5]. In fact, since the divergence equation for the E-field
involves the spatially dependent dielectric constant, the corresponding wave
equation on the right hand side of Eq. 1.6 has the form of a generalized eigen-
value problem, which is more complicated to solve [5]. From now on, we will
consider the solutions of Maxwell’s equations as coming from the solution
of the second equation in Eq. 1.7. After the solution of the second-order
equation for the magnetic field, the electric field can be obtained from the
relation

E(r) = i
c

ωε(r)
∇×H(r), (1.8)

which comes from the right hand side of Eq. 1.3, considering the first
relations in Eqs. 1.4 and 1.5.

Until now we have not specified any particular initial conditions for the
electromagnetic problem. Thus, the next step is to impose the periodic
spatial dependence of ε(r), which characterizes photonic crystals. The peri-
odicity can be in one, two or three dimensions, as schematically depicted in
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Fig. 1. It can be seen that the photonic structure of a photonic crystal can
be constructed by the repetition of a given unit cell according to a specified
periodic pattern. This can be reduced to only two concepts, namely a basis
and a lattice. The photonic lattice defines the spatial arrangement of the unit
cell, while the basis specifies the content of the unit cell. These concepts are
borrowed from the principles of electronic band calculations in Solid State
Physics [8]. The periodicity of ε(r) can be expressed by the relation

ε(r) = ε(r + R) (1.9)

where R is a vector defined by the linear combination of primitive lattice
vectors ai, with i equal to the dimensions of the periodic lattice. The photonic
crystal structure is invariant for any discrete translation defined by a vector
R belonging to the vectorial space V with basis {ai}. The dimensionality of
V is equal to the number of dimensions in which ε(r) is periodic. The master
equation for the magnetic field can be rewritten as an eigenvalue problem

Ô(r)H(r) = ΩH(r) (1.10)

where the operator Ô(r) and its eigenvalues are

Ô(r) = ∇×
(

1
ε(r)

∇× , Ω =
ω2

c2
(1.11)

It can be easily demonstrated that Ô is hermitian and positive definite [5],
thus it has real and positive eigenvalues with a complete set of orthonormal
eigenvectors. The eigenvectors H(r) are the field patterns of the harmonic
modes whose frequencies are obtained by the corresponding eigenvalues as
ω = c

√
Ω.

The operator formalism, very similar to the Hamiltonian formulation of
quantum mechanics, and the spatial periodicity of the effective potential for
this electromagnetic problem allow for a direct application of concepts and
theorems known from Solid State theories. In particular, Bloch’s theorem
can be applied to Eq. 1.10 as in the case of electronic wave equation in
ordinary crystals with a periodic potential due to the regular arrangement of
atoms. The discrete translation operator T̂R, with R ∈ V, commutes with the
“hamiltonian” Ô and the two operators possess a common set of eigenvectors;
k is a good “quantum number” for this problem [8]. This statement is known
as the Bloch-Floquet theorem when applied to electromagnetic problems:
The general solution of Eq. 1.10 under the condition of discrete translational
invariance expressed by Eq. 1.9 is given by a function uk(r) having the same
periodicity of ε(r), multiplied by a phase factor exp (ik · r)1. The concepts

1The demonstration of Bloch-Floquet theorem is easily obtained by noting that the
discrete translation operator commutes with the operator Ô. For an extensive proof we
refer to Refs. [5] and [6].
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of photonic band dispersion and of Bloch modes come now as a natural
consequence from the basic aspects of electronic band calculations in solids.
According to the Bloch-Floquet theorem, we can write the magnetic field in
a photonic crystal as

Hk(r) = eik·ruk(r), uk(r) = uk(r + R). (1.12)

By substituting the first of Eq. 1.12 in the master equation 1.7, one gets
the following equation for the periodic part of the magnetic field

(ik +∇)×
[

1
ε(r)

(ik +∇)× uk(r)
]

=
ω2

k

c2
uk(r), (1.13)

with the transversality condition (ik + ∇) · uk(r) = 0. For each k, the
solutions of Eq. 1.13 are discretized and can be labelled by an integer index
n ∈ N. The photonic band structure is given by the family of continuous
functions ω = ωn(k), indexed in order of increasing frequency by the band
number. In in the photonic band dispersion there are frequency ranges in
which there are no solutions for any k, then the system has a photonic band
gap.

In order to solve Eq. 1.13 explicitly, let us define the reciprocal space,
coming from the periodicity of the dielectric constant. The dual space G of
the space vector V, whose set of primitive vectors can be generated by the set
{ai}, is given by the condition G·R = 2πN , where N ∈ Z. A set of primitive
vectors {bi} is defined, in fact, by imposing that ai · bj = 2πδij, where δij

is the Kronecker’s delta. Thus, by recalling the relation x · (x × y) = 0
of vectorial calculus, where x and y are generic vectors, the following rules
can be applied to construct a number of primitive reciprocal lattice vectors
depending on the dimensions of periodicity





bi = 2π
aj×ak

ai·(aj×ak) 3D

bi = 2π limδ→0
aj×δk̂

ai·(aj×δk̂)
2D

b1 = 2π
|a1| â1 1D

(1.14)

where for the 2D photonic crystal k̂ represents the direction of the z axis, and
δk̂ is a vector basis of arbitrary length used to calculate the basis {b1,b2},
and whose length is sent to zero after performing the vectorial products.
For each linear combination of the primitive lattice vectors, R = n1a1 +
n2a2 + n3a3 and G = m1b1 + m2b2 + m3b3, the condition G · R = 2πN
is thus satisfied. As in Solid State Physics, we can define a Brillouin zone
in the reciprocal lattice, which is an ensemble of wave vectors k belonging
to a spatial region delimited by cutting the reciprocal space with planes
perpendicular to the primitive vectors at a distance |bi|/2 from the origin.
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Only these wave vectors are needed to classify the photonic eigenmodes,
intending both eigenvalues and eigenvectors. In fact, any other k′ can be
always obtained by k′ = k + G, for some G ∈ G and k in the first Brillouin
zone. A consequence of the translational invariance is that Hk(r) = Hk′(r)
if k′−k = G ∈ G, and thus there would be some redundancy in labelling the
eigenmodes with all the k vectors in reciprocal space, without introducing
the concept of Brillouin zone.

Examples of primitive lattice vectors and of irreducible Brillouin zones
for the simple photonic crystals displayed in Fig. 1 are schematically shown
in Fig. 1.1. In this case, owing to the particular simplicity of the direct
lattice, the primitive vectors can be obtained straightforwardly by Eq. 1.14
and form an orthogonal basis set. Obtaining {bi} can be not so simple for
more complicated lattices, but it is basically a geometrical problem. The
bold lines in Fig. 1.1 mark the irreducible Brillouin zone, that is the region
of reciprocal space irreducible with respect to the other possible symmetry
transformations of the master equation. For instance, the invariance of Eq.
1.13 under time-reversal yields the equivalence ωn(−k) = ωn(k), which means
that the photonic band structure can be calculated reducing the Brillouin
zone to non-negative Bloch vectors. Fixed point symmetry transformations,
such as rotations, inversions, reflections, gathered in the point group of the
crystal, finally lead to the possibility of further reducing the Brillouin zone.
It should be noticed from Fig. 1.1 that the irreducible Brillouin zone can
be much smaller than the whole Brillouin zone, especially for 3D photonic
crystals. Furthermore, to avoid solving the master equation for every point
k in the irreducible Brillouin zone, it is often enough to calculate the bands
along the main symmetry lines, which connect high symmetry points of the
lattice (marked as Γ, X and M in the case of square or cubic lattices).

After defining the reciprocal space and the first Brillouin zone, the gen-
eral form of Bloch states can be explicitly developed on a known basis of
eigenfunctions in order to solve the master equation as a linear eigenvalue
problem, like for electrons in solids. After almost 2 decades of research
on photonic crystals, many techniques have been employed to calculate the
photonic band structure. Anyway, the plane wave expansion method (PWE)
has the powerful advantage of being straightforwardly applicable and easy to
understand, even if its convergence properties are not always the optimum
from a computational point of view. The method consists in solving Eq.
1.13 after the expansion of uk on a complete set of eigenfunctions. The most
natural basis is represented by plane waves, as every periodic function can
be expanded in Fourier series in the following way

uk(r) =
∑

G∈G

∑
σ

ckσ(G)êσeiG·r, (1.15)
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Figure 1.1: Brillouin zones for the photonic crystal structures of Fig. 1: (a)
1D, (b) 2D and (c) 3D. Bold lines mark the irreducible Brillouin zones, while
{bi} represent the set of primitive vectors for generating the dual space G.
The main symmetry points are also indicated.

where σ = σ(k+G) labels the two possible independent polarization states
of each partial wave, and of course it depends on k+G through the condition
(k + G) · êk+G,σ = 0, êk+G,σ being the normalized polarization vector. This
additional degree of freedom comes from the vectorial nature of the field,
whose three components are related by the divergence equation. Thus, only
two components are really independent, and for each couple of quantum
numbers k, n there are two independent solutions with different polarizations.
In order to implement the calculation numerically, the sum over the reciprocal
lattice vectors must be truncated to a maximum value G ∈ G so that |G| <
Gmax. This way Eq. 1.15 becomes a finite expansion. The truncation of the
sum is the main approximation of the method. The master equation 1.13
has to be rewritten in Fourier space by calculating the matrix elements of
the “hamiltonian” Ô on the basis of plane waves. By expanding the periodic
dielectric function in Fourier series

ε(r) =
∑

G∈G
ε(G)eiG·r, (1.16)

it is easy to obtain the following linear eigenvalue equation

∑

G′,σ′
Hσ,σ′

G,G′ckσ′(G′) =
ω2

k

c2
ckσ(G) (1.17)
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where the “hamiltonian” matrix elements in Fourier space are given by

Hσ,σ′
G,G′ = |k + G||k + G′|η(G−G′)

(
êσ2 · êσ′2 −êσ2 · êσ′1
−êσ1 · êσ′2 êσ1 · êσ′1

)
(1.18)

and the matrix η(G − G′) = ε−1(G − G′) is the inverse of the dielectric
function Fourier transform

ε(G−G′) =
1
Ac

∫

Ac

ε(r)ei(G−G′)·rdr, (1.19)

and the integral is evaluated over the space Ac occupied by the unit cell in the
direct lattice. The latter can be easily calculated from the primitive lattice
vectors {ai}2. It is worth noting that for a 3D photonic crystal Eq. 1.17
has to be solved considering both polarization degrees of freedom, because
they are coupled by ε−1(G − G′). In the next paragraph it will be shown
that for a 2D photonic crystal, assuming only in-plane propagation, the two
polarizations decouple giving rise to two scalar equations.

The solution of Eq. 1.17 can be found numerically, yielding the deter-
mination of the photonic band structure ωn(k) and its eigenvectors through
the coefficients ckσ(G) of the Fourier expansion. The matrix 1.18 has di-
mensions 2N × 2N , where N is the number of reciprocal space vectors G so
that |G| < Gmax. It evident that likewise the operator Ô the matrix [H] is
hermitian with non-negative real eigenvalues. For a study on the convergence
properties of the PWE method we refer to [56], in which mathematical foun-
dations are given for the faster convergence of the so called inverse rule, or
also Ho-Chan-Soukoulis (HCS) method since its first application in Ref. [57].
Basically, this method consists in calculating Eq. 1.19 for the given lattice
and basis, and then inverting numerically the dielectric function matrix in
order to construct the hamiltonian 1.18. This is the method that has been
used in the numerical implementation of PWE throughout the present work.

Two-dimensional photonic crystals

As pointed out in this Section, a 2D photonic crystal is a meta-material whose
dielectric function presents periodicity in a horizontal plane and is uniform
in the direction perpendicular to this plane, as schematically depicted in Fig.
1. The PWE method is particularly suited for calculating the photonic band
structure of 2D photonic crystals, because good convergence properties are
obtained by using the HCS method and CPU time required for a numerical
calculation of a full photonic band structure is very low. Since the periodicity

2In fact, the unit cell length, area or volume is given by: (i) |a1| for 1D, (ii) |a1 × a2|
for 2D, and (iii) |a1 · (a2 × a3)| for 3D photonic crystals, respectively.
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Figure 1.2: (a) Even and (b) odd modes with respect to a generic horizontal
symmetry plane α. Considering in-plane propagation in a 1D or 2D photonic
crystal, eigensolutions can be decomposed in (a) H-modes (H ‖ ẑ) and (b)
E-modes (E ‖ ẑ).

is in 2 dimensions, the dielectric function is ε = ε(x, y) giving rise to two-
dimensional lattices both in direct and reciprocal spaces, with two primitive
vectors. The construction of primitive vectors in reciprocal space is done by
using the simple rule given 1.14. Here we do not specify to any particular
lattice; for the square lattice we refer to Fig. 1.1, while the triangular lattice
of air holes will be treated in Chapter 3. The formalism is restricted to in-
plane propagation only, and thus k = (kx, ky, 0). In this case two different
parities can be used to classify electromagnetic eigenmodes, schematically
shown in Fig. 1.2, called E-modes and H-modes, respectively. By considering
a horizontal plane α ‖ (x, y), for in-plane propagation and transversality
conditions the photonic modes can be either even or odd with respect to
mirror reflection through the plane α. Even modes have the magnetic field
perpendicular to the plane (H is a pseudo-vector and doesn’t change sign
when reflected) and electric field lying in the plane, viceversa for odd modes
(E is a vector)3. In brief, E-modes have field components (Hx, Hy, Ez) and
H-modes (Ex, Ey, Hz), all the other components can be set to zero. Since for
a crystal infinitely extended in the z-direction there are infinite mirror plane
α parallel to (x, y), the fields have to be uniform with respect to z. Thus,
the two polarization vectors are êσ1(k + G) = (0, 0, 1) and êσ2(k + G) =
(ex(k+G), ey(k+G), 0), where êk+G,σ ·(k+G) = 0. These two polarizations
are evidently independent, that is êk+G,σ1 · êk+G′,σ2 = 0 ∀ G,G′ ∈ G. It is

3In the literature these modes are also defined TE (H-modes) and TM (E-modes).
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worth reminding that the in-plane fields are not necessarily orthogonal to the
corresponding Bloch wave vector in the photonic crystal structure.

In conclusion, for in-plane propagation in a 2D photonic crystal σ is
a “good quantum number” to classify photonic eigenmodes: ωn,σ(k) and
Hk,n,σ(r). If we label with σ1 the H-modes and with σ2 the E-modes, from
Eqs. 1.17 and 1.18 we easily obtain that the master equation is split into
two independent equations [58]

∑

G′
(k + G) · (k + G′) η(G−G′) ckσ1(G

′) =
ω2

k

c2
ckσ1(G), H−modes (1.20)

∑

G′
|k + G||k + G′| η(G−G′) ckσ2(G

′) =
ω2

k

c2
ckσ2(G), E−modes. (1.21)

The solution of Eqs. 1.20 and 1.21 independently allows to reduce the
dimension of the eigenvalue problem to N ×N matrices.

1.1.2 Eigenmodes in planar dielectric waveguides

Planar dielectric waveguides are commonly made of thin slabs of high index
contrast material, called the core layer, standing between low index semi-
infinite media, called claddings. If the thickness of the core layer is of the
order of the wavelength of the electromagnetic radiation, interesting confine-
ment effects influence the photonic dispersion and the propagation properties
on light beams. The purpose of the present Section is to show how the solu-
tion of Maxwell’s equations in these systems leads to the definition of different
photonic eigenmodes.

We start from the generic Maxwell’s equations in a homogeneous medium
with magnetic permeability µ and dielectric constant ε

∇ ·E = 0, ∇×E = −1
c

∂B
∂t

, (1.22)

∇ ·B = 0, ∇×B =
µε

c

∂E
∂t

. (1.23)

By combining the two curl equations we obtain

∇×∇×E = −µε

c2

∂2E
∂t2

, ∇×∇×B = −µε

c2

∂2B
∂t2

. (1.24)

Recalling the relation ∇ ×∇ × a = ∇(∇ · a) − ∇2a for the generic vector
a and assuming harmonic temporal dependence, Eq. 1.5, one gets that the
generic field component Ψ satisfies the Helmholtz equation

(
∇2 + µε

ω2

c2

)
Ψ(r) = 0. (1.25)
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Figure 1.3: Schematic illustration of a uniform dielectric slab of dielectric
constant ε2 = n2

2 between low index claddings. The reference frame used in
this work is indicated.

Now, we want to find the eigenmodes of Eq. 1.25 for the system rep-
resented in Fig. 1.3. We consider a planar waveguide of thickness d made
of a non-absorbing dielectric material with refractive index n2 and dielectric
constant ε2 = n2

2, both real. The core layer is sandwiched between non-
absorbing materials of lower refractive indices n1 and n3 for the upper and
lower claddings, respectively. The (x, y) plane is chosen to lie in the mid-
dle of the core layer and the vertical axis is directed from the upper to the
lower cladding, thus the planes of discontinuity for the dielectric constant
ε = ε(z) are z1 = −d/2 and z2 = +d/2, respectively. We assume, in general,
the following relations between the dielectric constants in the three layers:
ε2 > ε3 > ε1. Under proper conditions, light can be confined to propagate
in the dielectric slab. Boundary conditions at core/claddings interfaces lead
to wave vector quantization along z. The analogy with the typical quantum
mechanical problem of a particle in a one-dimensional box is clear. Anyway,
since the continuous translational symmetry in the plane (x, y) is preserved,
the in-plane momentum is a good quantum number and can be used to clas-
sify the eigensolutions. For every fixed k‖ = (kx, ky, 0) we expect a discrete
spectrum of photonic modes coming from the quantization of kz. The cor-
responding photonic modes are truly guided waves. Each component of the
fields E and H has the following functional form4

Ψ(r) = Ψ(z)ei(kxx−ωt), (1.26)

where the fields are assumed uniform in y. Equation 1.25 thus becomes

∂2Ψ(z)
∂z2

+
(

ε(z)
ω2

c2
− k2

x

)
Ψ(z) = 0. (1.27)

4We assume, without loss of generality, propagation along x, and non-magnetic mate-
rials, that is µ = 1 and B = H.
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Before embarking in the formal solution of Eq. 1.25, we may learn a great
deal about the physical nature of possible eigenmodes by simple arguments.
The general solution of this eigenvalue problem can be given, in each uniform
layer, in terms of the propagation constant defined by

β2
j = εj

ω2

c2
− k2

x , j = 1, 2, 3. (1.28)

We write, for the generic field component Ψ, the following general solution

Ψ(z) =





ψ+
1 eiβ1(z+d/2) + ψ−1 e−iβ1(z+d/2) for z < −d/2

ψ+
2 eiβ2z + ψ−2 e−iβ2z for |z| < d/2

ψ+
3 eiβ3(z−d/2) + ψ−3 e−iβ3(z−d/2) for z > +d/2

. (1.29)

It is worth noting that, from a “ray optics” point of view, guided modes
correspond to a total internal reflection mechanism, as it can be argued from
Fig. 1.4a. From Snell’s law of refraction between a high index medium and
a low index one

n2 sin θ2 = nj sin θj , n2 > nj with (j = 1, 3) (1.30)

a critical internal angle can be defined

θ = arcsin
(

nj

n2

)
, (1.31)

such that propagating beam angle of refraction is 90◦ and thus light is to-
tally reflected within the core layer. Equation 1.29 allows to divide the (kx, ω)
plane into different regions corresponding to the values of βj, as schemati-
cally shown in Fig. 1.4b. It is easy to understand that according to the real
or imaginary nature of βj, the corresponding solutions of Eq. 1.27 can be
oscillating, evanescent, or divergent. In particular, guided mode field com-
ponents are oscillating within the core layer and evanescent in the claddings,
and are discretized by the confining potential along z; on the other hand, it
is clear that infinite solutions exist such that their field components form a
continuum set of states whose behavior is oscillating also in the claddings.
The latter are called radiative (or leaky) modes, as they radiate electromag-
netic energy far away from the guiding layer [4]. When the fields increase
without bounds at least on one side away from the waveguide, then the so-
lution is not physically realizable and does not correspond to a real wave,
so that no modes exist in that region of (kx, ω) plane. The various regions
are separated by the dispersions of light in the different homogeneous media,
defined by the three light lines ω = ckx/

√
ε1, ω = ckx/

√
ε3, and ω = ckx/

√
ε2

from top to bottom. The next step, thus, is to specialize Eq. 1.29 to guided
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Figure 1.4: (a) A uniform planar waveguide with dielectric discontinuity
along z. (b) Nature of photonic eigenmodes for the uniform slab in the
(k, ω) plane. The spectrum is discretized in the guided modes region, which
is displayed by the light grey area. The boundaries of the different regions
are called light lines.

mode solutions, in order to find the photonic dispersion of guided modes
corresponding to the shaded region of the (kx, ω) plane in Fig. 1.4b.

The presence of an incidence plane, which is represented by (x, z) in our
reference frame, allows for a distinction of possible solutions, according to
their parity with respect to reflection through this plane. Thus, photonic
eignemodes are classified as odd (transverse electric field, TE modes) or even
(transverse magnetic field, TM modes) with respect to the symmetry opera-
tion σ̂xz; TE modes have non-vanishing field components (Hx, Ey, Hz), while
TM modes have only (Ex, Hy, Ez) components. The general solution, Eq.
1.29, can be specified to truly guided solutions by defining the real propaga-
tion constants in each layer

χ1 =
(

k2
x − ε1

ω2

c2

)1/2

, β =
(

ε2
ω2

c2
− k2

x

)1/2

, χ3 =
(

k2
x − ε3

ω2

c2

)1/2

. (1.32)

The field components, evanescent in the claddings and oscillating in the core
layer, are given by

TE ⇒ Ey(z) =





E−
1 eχ1(z+d/2) for z < −d/2

E+
2 eiβz + E−

2 e−iβz for |z| < d/2
E+

3 e−χ3(z−d/2) for z > d/2
(1.33)

for TE modes and by

TM ⇒ Hy(z) =





H−
1 eχ1(z+d/2) for z < −d/2

H+
2 eiβz + H−

2 e−iβz for |z| < d/2
H+

3 e−χ3(z−d/2) for z > d/2
(1.34)
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for TM modes, respectively. In order to relate the field amplitudes at each
interface, we adopt the transfer matrix formalism. Interface matrices for TE
and TM modes are different, owing to the different continuity conditions for E
and H fields. It can be shown that transfer matrices divide into propagation
T-matrices and interface T-matrices. Referring to the generic scheme of Fig.
1.5, these matrices can be written as5

T2 =
(

eikz2d 0
0 e−ikz2d

)
, (1.35)

T
(TE)
i→j =

1
2kzj

(
kzi + kzj kzj − kzi

kzj − kzi kzi + kzj

)
, (1.36)

T
(TM)
i→j =

1
2
√

εi
√

εjkzj

(
εjkzi + εikzj εjkzi − εikzj

εjkzi − εikzj εjkzi + εikzj

)
, (1.37)

where i can be 1 or 2 and correspondingly j should be 2 or 3. Specifying
now these matrices to our problem, we have for the two polarizations

TE ⇒
(

E+
3

0

)
= T

(TE)
2→3 T2(d)T (TE)

1→2

(
0

E−
1

)
, (1.38)

TM ⇒
(

H+
3

0

)
= T

(TM)
2→3 T2(d)T (TM)

1→2

(
0

H−
1

)
, (1.39)

which, after some lengthy calculations and imposing the condition det(Ttot) =
0, lead to the following secular equations for TE and TM guided modes, re-
spectively6

TE ⇒ β(χ1 + χ3) cos (βd) + (χ1χ3 − β2) sin (βd) = 0, (1.40)

TM ⇒ β

ε2

(
χ1

ε1
+

χ3

ε3

)
cos (βd) +

(
χ1χ3

ε1ε3
− β2

ε22

)
sin (βd) = 0. (1.41)

It is evident that the zeros of Eqs. 1.40 and 1.41 have to be found numerically,
for fixed kx, in the frequency window ckx/n2 < ω < ckx/n3. The solution
yields a finite number of eigenfrequencies ωn(kx), corresponding to discretized
values of kz2. The field patterns can be straightforwardly determined by
giving the initial amplitudes, E−

1 and H−
1 , respectively. Assuming normalized

fields, these amplitudes can be set to unity. Once obtained one of the fields,
e.g. the magnetic field for TM modes, the other can be recast by applying
Maxwell’s equations, e.g. Eq. 1.8. The number of confined modes for a

5For a straightforward derivation of these transfer matrices, Maxwell boundary condi-
tions between the fields at the dielectric interfaces must be applied.

6In order to get the secular equations, one has to impose that kz1 = iχ1, kz2 = β, and
kz3 = iχ3.
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Figure 1.5: Scheme of a three layer structure related by transfer matrices.
The schematic illustration refers to the structure of Fig. 1.3.

given kx depends on the core thickness d, the thicker is the slab the more
guided modes are present in the solutions of Eqs. 1.40 and 1.41. It is worth
noting that all the guided modes of an asymmetric planar waveguide have
finite cut-off frequencies, which can be understood by the expression of these
frequencies as a function of the main structural parameters. In fact, an
analytical formula can be obtained by imposing the cut-off condition, i.e.
χ3 = 0 ⇒ k2

x = ε3ω
2/c2, in the secular equations. It is straightforward to

get, respectively for TE and TM modes,

ω(TE)
c.o. =

πc

d
√

ε2 − ε1

[
m +

1
π

arctan
(√

ε3 − ε1√
ε2 − ε3

)]
(1.42)

ω(TM)
c.o. =

πc

d
√

ε2 − ε1

[
m +

1
π

arctan
(

ε2
ε1

√
ε3 − ε1√
ε2 − ε3

)]
, (1.43)

where m = 0, 1, 2, ... labels the order of guided modes7.

It is worth pointing out that in the particular case of a symmetric slab
waveguide like, e.g., a suspended dielectric membrane (also called air bridge),
the solution of the secular equation factorizes in two independent condi-
tions. This is due to the symmetry operation with respect to the horizontal
midplane of the slab, which allows to further classify the modes as even
(σxy = +1) or odd (σxy = −1). By imposing ε1 = ε3 and χ1 = χ2 = χ in
Eqs. 1.40 and 1.41 and after some trivial calculations, we obtain that the
following characteristic equations have to be solved in order to find photonic

7These formulas coincide with previous analytical treatments of planar waveguides,
which can be found in Ref. [4].
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eigenmodes:

TE even χ cos (βd/2)− β sin (βd/2) = 0, (1.44)
TE odd χ sin (βd/2) + β cos (βd/2) = 0 (1.45)

for TE modes and

TM even ε2χ sin (βd/2) + ε1β cos (βd/2) = 0, (1.46)
TM odd ε2χ cos (βd/2)− ε1β sin (βd/2) = 0 (1.47)

for TM modes, respectively. One of the peculiarities of symmetric waveg-
uides as compared to asymmetric ones is that the lowest order TE and TM
modes have zero cut-off frequency, that is their dispersion starts as the one
of an effective homogeneous medium. Moreover, it can be easily seen that
TE and TM higher-order modes have degenerate cut-off frequencies. From
Eqs. 1.42 and 1.43, with ε1 = ε3, the analytical formula for all-order cut-off
frequencies in a symmetric dielectric slab is

ω(TE)
c.o. = ω(TM)

c.o. =
mπc

d
√

ε2 − ε1
(1.48)

with m = 0, 1, 2, ... as for the asymmetric waveguide. Fundamental TE and
TM modes have zero cut-off frequency for a symmetric planar waveguide.

The dispersion of guided photonic modes has been experimentally mea-
sured in a Silicon (Si) planar waveguide on a Silicon dioxide (SiO2) cladding.
This system is commonly known as Silicon-on-Insulator (SOI). SOI wafers
with d = 260 nm Si layer on a 1 µm SiO2 were fabricated by SOITEC, and
measured with an experimental technique known as Attenuated Total Re-
flectance (ATR) at the optical spectroscopy laboratory of the Department
of physics “Alessandro Volta,” University of Pavia, Italy. A schematic illus-
tration of the kinematics of an ATR experiment is shown in Fig. 1.6a. An
incident beam of polarized (TE or TM) light is coupled to evanescent modes
supported by the slab waveguide through a ZnSe prism8. The conservation
of in-plane momentum, related to angle of incidence, allows to observe pro-
nounced dips in the angle-resolved ATR spectrum. The positions of the dips
mark some points in the (k‖, E) plane, allowing for a direct determination of
guided mode dispersion (see App. A). The results of these measurements are
plotted in Fig. 1.6b, with closed (open) points for TE (TM) incident light.

To compare experimental data with theoretical calculations on a wide en-
ergy range, we solved Eqs. 1.40 and 1.41 by using frequency dependent dielec-
tric constants εSi and εSiO2 . Secular equations are solved self-consistently: at
each wave vector kx we determine the frequency interval [ωlow, ωup], with ωlow

8Details concerning the ATR set-up can be found in Ref. [53].
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Figure 1.6: (a) Schematic illustration of an Attenuated Total Reflectance
experiment. The semi-spherical prism is made of a material with interme-
diate refractive index between air and the core layer. (b) Experimentally
determined dispersions and theoretical calculations (with frequency depen-
dent dielectric constants) of guided modes in a 260 nm thick Silicon slab
grown on a Silicon dioxide substrate. Both TE (closed circles and full lines)
and TM (open circles and dashed lines) modes are exited in a ATR exper-
iment with polarized incoming beam. Experimental points, extracted from
ATR spectra (not shown here), are a courtesy of M. Galli and D. Bajoni.

lying on the Si light line and ωup on the SiO2 light line, over which the zeros of
Eqs. 1.40 and 1.41 are found. The frequencies ωlow and ωup are calculated it-
eratively through the relation ωlow = ckx/nSi(ωlow) and ωup = ckx/nSiO2(ωup).
Real dielectric constants of Si and SiO2 as a function of frequency are taken
from input files (courtesy of M. Patrini). Finally, the solution of Eqs. 1.40
and 1.41 with energy dispersive dielectric constants allows to determine the
exact dispersion of guided photonic modes, ω = ωα,σ(kx), where α labels the
order of the confined solution and σ its polarization. The results, shown in
Fig. 1.6b with lines (full for TE, dashed for TM), are in excellent agreement
with experimental points extracted from angle-resolved ATR spectra. The
Si, SiO2 and air light lines are also plotted for clarity. These light lines are
actually not straight lines, because of the energy dispersion of Si and SiO2

refractive indices. It can be noticed that excitation of photonic modes via
ATR measurements is possible only up to the crossing of guided modes with
the lower cladding light line. It is important to stress that the close agree-
ment between theory and experiment is the result of the iterative procedure
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for solving the characteristic equations with frequency dispersion of refrac-
tive indices, owing to the large energy range (from 0.2 to 2.5 eV) of spectral
analysis. This is, to the best of our knowledge, the first complete determi-
nation of guided modes in SOI planar waveguides, which also serves as an
important proof of the theory.

1.2 Theory of photonic crystal slabs

Photonic crystals embedded in planar waveguides, also known as photonic
crystal slabs, allow for a full three dimensional control of light. They ex-
ploit the considerable freedom in designing photonic structures (periodic or
containing defects) given by the development of sub-micrometer size lithog-
raphy and etching processes, besides the confinement properties (see last
paragraph) of high refractive index contrast waveguides. A schematic pic-
ture of a photonic crystal slab is given in Fig. 1.7a. The investigation of
these systems has been greatly improved in recent years, also because the
fabrication of good quality three-dimensional photonic crystals is still a chal-
lenge, while in many cases the fabrication of photonic crystal slabs takes
great advantages of knowhow coming from current opto-electronic industry.
For these reasons, as already pointed out in the introductory notes, they
are promising systems for future applications as building blocks of all-optical
circuits.

Electromagnetic eigenmodes in dielectric slabs with a periodic pattern
have notable differences as compared to the ideal reference systems (i.e.,
not waveguide-embedded), which are well known from the literature for the
cases of both 1D [4, 5] and 2D [5] periodicity. A most important issue is
the light-line problem: only photonic modes which lie below the light line
of the cladding material (or materials, if the waveguide is asymmetric) are
truly guided and stationary, while those lying above the light line in the
first Brillouin zone are coupled to leaky waveguide modes and are subject to
intrinsic radiative losses. The physical nature of different eigenmodes in pho-
tonic crystal slabs is schematically summarized in Fig. 1.7b. The dispersion
diagram of the uniform planar waveguide is modified by the in-plane peri-
odicity of dielectric constants, which introduces an irreducible Brillouin zone
where guided modes are folded back and split, creating photonic band gaps.
After the folding, some of the modes that should have been truly guided in
the uniform slab fall above the cladding light line, and become quasi-guided.

These quasi-guided modes are actually resonances in a region of continu-
ous energy spectrum9, and for this reason they are more difficult to calculate

9This problem is similar, from a certain point of view, to the Fano resonances problem



1.2 Theory of photonic crystal slabs 29

/aπ0 k

ω
ck/

ck/

ck/

n

n

n

1

3

x

2

quasi−guided
mode

radiative modes

a

d

x

z

y

(a) (b)

Figure 1.7: (a) Schematic drawing of a two-dimensional photonic crystal slab,
made up of high refractive index core layer sandwiched between low index
claddings and periodically patterned in the plane (x, y); (b) illustration of
the nature of photonic eigenmodes in photonic crystal slabs.

than truly guided modes below the light line. Indeed, while the dispersion
of truly guided modes in photonic crystal slabs can be obtained by a plane-
wave expansion with a supercell in the vertical direction [28], the energies
and especially the losses of quasi-guided modes are most commonly stud-
ied by exact numerical approaches such as Finite-Difference-Time-Domain
(FDTD) [6], or scattering matrix calculations [31, 32]. The most common
drawback of exact methods, however, is the computational effort required in
order to treat realistic systems or to obtain convergent results. This prevents,
in most cases, the systematic study of physical properties as a function, e.g.,
of structural parameters such as core thickness or air fraction, which would
be useful for designing desired operating structures. No systematic studies
of such kind have been found in literature for what concerns photonic crystal
slabs, taking into account also the additional degrees of freedom introduced
by quasi-guided modes.

In this Section a theory of photonic eigenmodes in photonic crystal slabs
is presented. The present method has been first proposed a few years ago
as a powerful tool to study dispersion characteristics [46] and intrinsic out-
of-plane radiation losses [47, 48] in a variety of photonic crystal slab config-
urations, and it will be referred to henceforth as Guided-Mode Expansion
method. The main advantages of this approximate approach are as follows.
First of all it allows a three dimensional analysis of the electromagnetic prob-
lem, leading to reliable calculations of both truly guided and quasi-guided
modes in photonic crystal slabs, while preserving a computational effort that

in Solid State Physics [59].
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is close to the two-dimensional PWE method. This allows the fast although
systematic study of many physical properties by varying a certain number
of parameters (e.g. waveguide thickness, air fraction, dielectric contrast, and
so on), which is highly desirable when designing new structures. Secondly,
it can be straightforwardly extended to a perturbative theory of the cou-
pling between guided and radiative modes, which leads to the calculation
of intrinsic and extrinsic (i.e. disorder-induced) out-of-plane losses. Besides
allowing the calculation of such fundamental quantities, the method yields a
clear and easily understandable physical insight into this complicate electro-
magnetic problem. Finally, the direct calculation of eigenmodes in photonic
crystal slabs allows to make studies on a more fundamental point of view,
e.g. concerning the theoretical formulation of a quantum formalism for the
radiation-matter interaction that will be presented in the last Chapter of this
work.

1.2.1 The Guided-Mode Expansion method

The description of the method is given here in its most general formulation.
It basically relies on a finite-basis expansion in order to transform the second-
order equation for the magnetic field into a linear eigenvalue problem. The
basis is chosen to consist of a set of eigenfunctions in which the planar and
vertical dynamics are separated. For the planar dynamics the natural basis is
given by the complete set of plane waves (see also Eq. 1.15), while the vertical
dynamics is best described by the guided modes of an effective homogeneous
waveguide where the dielectric constant of each layer is defined by the spa-
tial average of the dielectric constant εj(x, y) (with j = 1, 2, 3 labelling the
layers) over the photonic pattern. For this reason it is defined Guided-Mode
Expansion (GME) method. The starting point is the second-order Maxwell
equation for the magnetic field, which is rewritten here for convenience

∇×
[

1

ε(x, z)
∇×H

]
=

ω2

c2
H, (1.49)

where x = (x, y) is the in-plane coordinate vector. Generally speaking,
the implementation of GME method is not much different from the PWE.
Equation 1.49 can be formulated as a linear eigenvalue problem in Fourier
space (like Eq. 1.17), after expanding the field on the chosen set of basis
states. For each wave vector k within the irreducible Brillouin zone of the
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in-plane periodic lattice10, the magnetic field is expanded as

Hk(r) =
∑

G

∑
α

ck,α(G)Hk+G,α(r) =
∑

G

∑
α

ck,α(G)ĥk+G,α(z)ei(k+G)·x, (1.50)

where G ∈ G is a two-dimensional reciprocal lattice vector, the inte-
ger “quantum number” α = 1, 2, . . . , αmax labels the guided mode order,
x = (x, y) is the in-plane coordinate vector, and ĥα,k+G(z) is a normal-
ized envelope function representing the guided magnetic field of the effective
waveguide, which has to be found from Eqs. 1.33 and 1.34 for TE and TM
polarized partial waves, respectively.

The transfer matrix formalism outlined in Sec. 1.1.2 is used to find the
coefficients of the fields for the guided modes; a generalized orthonormal set
of reference vectors is defined for fixed in-plane wave vectors k + G

(
k + G
|k + G| , êk+G , ẑ

)
, (1.51)

where êk+G is the in-plane polarization unit vector, such that êk+G =
(ex,k+G, ey,k+G, 0) and êk+G · (k + G) = 0, while ẑ = (0, 0, 1). Then, the
corresponding propagation constants of Eq. 1.32 are redefined as

χ1(k + G) =
(
|k + G|2 − ε

(1)
eff

ω2

c2

)1/2

, (1.52)

β(k + G) =
(

ε
(2)
eff

ω2

c2
− |k + G|2

)1/2

, (1.53)

χ3(k + G) =
(
|k + G|2 − ε

(3)
eff

ω2

c2

)1/2

. (1.54)

For in-plane polarized modes (TE modes) we have to find the coefficients

defined in Eq. 1.33 for the electric field, which is E
(TE)
k+G = Eêk+G. This is

done by using the transfer matrices 1.35 and 1.36 to relate the field coefficients
in the various layers, where each layer is assumed to have effective dielectric

constant ε
(j)
eff (j = 1, 2, 3). Because the general formalism is developed for

the magnetic field, once the guided electric field profiles are obtained at fixed
k+G we have to recover the corresponding magnetic field coefficients, which
can be done by exploiting Maxwell’equation (analogous to Eq. 1.8)

H(r) = −i
c

ω
∇×E(r). (1.55)

10The construction of reciprocal lattice primitive vectors and of the irreducible Brillouin
zone for the two-dimensional periodic lattice follows the general guidelines of Sec. 1.1.1.
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The explicit form of Eq. 1.33 is given by

Ê(TE)
g (z) =

1√
N

i
(ωg

c

)
êg





B
(1)
g eχ

(1)
g (z+d/2) for z < −d/2

A
(2)
g eiβgz + B

(2)
g e−iβgz for |z| < d/2

A
(3)
g e−χ

(3)
g (z−d/2) for z > d/2

, (1.56)

from which, through Eq. 1.55, we obtain

ĥ(TE)
g (z) =

1√
N





B
(1)
g eχ

(1)
g (z+d/2)(−χ

(1)
g ĝ + i|g|ẑ)

iβg

(
−A

(2)
g eiβgz + B

(2)
g e−iβgz

)
ĝ+

+i|g|
(
A

(2)
g eiβgz + B

(2)
g e−iβgz

)
ẑ

A
(3)
g e−χ

(3)
g (z−d/2)(χ(3)

g ĝ + i|g|ẑ)

, (1.57)

where we have indicated with ĝ the unitary vector (k + G)/|k + G| and
by g the wave vector k + G, for convenience of notation. The normalization
factor can be calculated as a function of coefficients B1, A2, B2, A3 from the
condition

N =
∫
|H(x, z)|2dxdz (1.58)

For TM modes, the coefficients of the guided magnetic field can be found
directly by applying the transfer matrices 1.35 and 1.37 to the expression

ĥ(TM)
g (z) =

1√
N

êg





D
(1)
g eχ

(1)
g (z+d/2) for z < −d/2

C
(2)
g eiβgz + D

(2)
g e−iβgz for |z| < d/2

C
(3)
g e−χ

(3)
g (z−d/2) for z > d/2

. (1.59)

After the solution of the vertical problem that yields the guided modes
of the effective waveguide, Eq. (1.49) can be transformed into a linear eigen-
value problem (for fixed k)

∑

g′

∑

α′
Hα,α′

g,g′ cα′(g′) =
ω2

c2
cα(g), (1.60)

where the “hamiltonian” matrix Hα,α′
g,g′ is hermitian and its elements can be

calculated explicitly by the general expression

Hα,α′
g,g′ =

∫
H∗

g,α(r) ·
[
∇×

(
1

ε(r)
∇×Hg′,α′(r)

)]
dr , (1.61)

where Hg,α(r) is one of the eigenfunctions of the expansion (Eq. 1.50);
rearranging the vectorial products Eq. 1.61 becomes

Hα,α′
g,g′ =

∫
1

ε(r)

[
∇×

(
ĥ∗g,α(z)e−ig·x

)]
·
[
∇×

(
ĥg′,α′(z)eig′·x

)]
dr . (1.62)
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It is worth pointing out that in a 2D photonic crystal slab there is no
possibility to separate the two polarizations, which are coupled owing to the
presence of the vertical degree of freedom. Thus the eigenmodes cannot be
classified anymore as purely TE or TM. Both guided mode solutions have
to be included in the expansion and taken into account when constructing
the photonic hamiltonian matrix (Eq. 1.62)11. Thus, we introduce a new
quantum number σ =TE/TM labelling the polarization.

The matrix elements of Eq. 1.62 can be expressed in terms of the inverse
dielectric tensor in each layer ηj(g,g′) = ε−1

j (G − G′), by assuming the
separability of ε(r) and calculating the 2D integral in the xy plane. In fact,
assuming that ε−1(x, z) can be factorized as

ε−1(x, z) =





ε−1
1 (x) for z < −d/2

ε−1
2 (x) for |z| < d/2

ε−1
3 (x) for z > d/2

, (1.63)

the curl functions in Eq. 1.62 are explicitly calculated from Eqs. 1.57 (which,
through Eq. 1.8, is basically given by Eq. 1.56 multiplied by −iεω/c) and
1.59. Finally, we get a very compact form of the hermitian hamiltonian
matrix which can be written as

Hσ,σ′
g,g′,α,α′ = ε−1

1 (G−G′)
∫ −d/2

−∞
dz F

(1)σ,σ′
g,g′,α,α′(z) +

ε−1
2 (G−G′)

∫ d/2

−d/2
dz F

(2)σ,σ′
g,g′,α,α′(z) +

ε−1
3 (G−G′)

∫ +∞

d/2
dz F

(3)σ,σ′
g,g′,α,α′(z) , (1.64)

where the functions F
(j)
{∗}(z) are explicitly determined, after some lengthy

calculations, in terms of guided modes coefficients {A,B} and {C, D}, and
the integrals in the various layers are easily performed analytically12. The
matrix ε−1

j (G −G′) is the same quantity which appears in usual 2D plane-
wave calculations and can be conveniently evaluated by HCS method, that
is by a numerical inversion of the dielectric matrices εj(G −G′) [57]. It is
evident that the numerical implementation required by this method is not
much different from usual band structure calculation of a 2D photonic crystal
with the PWE method. Anyway, it is worth pointing out that the dimensions
of the matrix can lead to a more time-consuming diagonalization process than

11This is like in a three dimensional photonic crystal, see Eqs. 1.17 and 1.18.
12The integrand functions are exponentially decaying in the claddings and oscillating in

the core layer.
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PWE calculations13. After the construction of Eq. 1.64 for the given lattice,
the numerical diagonalization of this matrix yields the eigenvalues ωα

n(k)
and the corresponding eigenvectors, given by the explicit determination of
the expansion coefficients ck,α,σ(G) of Eq. 1.50.

The main approximation of the present method is as follows: even if
the guided modes of the effective waveguide represent an orthonormal set of
states, the basis is not complete since the radiative modes are not included in
the expansion. The energy spectrum thus obtained treats on the same footing
both truly guided and quasi-guided photonic modes, but the latter must be
intended actually as resonances in a continuum of radiative modes, with a
finite lifetime. The coupling to radiative modes at all energies produces a
second-order shift of the resonance energies: this effect (usually of the order
of a few percent) is neglected in the present formulation. The error in the
determination of mode frequencies is largest for larger air fractions. However,
the most important effect is the first-order coupling to radiative modes at
the same energy for modes that fall above the light line leading to a radiative
decay, i.e., to an imaginary part of the energy, which can be calculated by
time-dependent perturbation theory. This procedure, formally analogous to
Fermi’s Golden Rule in quantum mechanics, will be addressed in the next
paragraph.

Other approximations made in this guided-mode expansion method are
as follows. The effective dielectric constant of the homogeneous waveguide,
which defines the basis of guided modes for the expansion, is a key parameter
in this approach. We assume that each layer composing the planar waveguide
is patterned with a periodic lattice of air regions in a dielectric (or oxide for
the claddings) matrix. Throughout this work, the effective dielectric constant
is taken as the spatial average defined by

ε
(j)
eff = fairεair + (1− fair)εj , (1.65)

where j = 1, 2, 3 labels upper cladding, core and lower cladding, fair is the
air fraction common to all layers, for both TE and TM polarizations, and
εj is the dielectric constant of the higher refractive index materials in each
layer. This definition is by no means unique. For one-dimensional lattices
of stripes, however, Eq. 1.65 can be considered the exact definition of the
effective dielectric constant for TE polarization and anyway when the electric
field is perpendicular to the direction of periodicity [60]. For TM-polarized
modes, which have electric field components along x and z, the situation is

13The dimension of Eq. 1.64 for fixed k is given, in general, by 2(α · N) × 2(α · N), α
being the number of guided modes and N the number of plane waves used in the basis
set.
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more complex14. It is known from the literature that the x component of
the electric field is subject to an effective dielectric constant that is obtained
from the inverse averaging rule [60]. Therefore a different choice of εeff in
the patterned region could be suggested for TM modes. Choices of εeff dif-
fering from Eq. 1.65 do not lead to any appreciable change of the results
above the mode cutoff, as we have verified, in the case of 1D systems. The
frequency position of the cutoff does depend on the choice of εeff , especially
for large air fractions, however a comparison with exact scattering matrix
calculations [19, 46] shows that the average dielectric constant defined by
Eq. 1.65 gives very good agreement with the frequencies and cutoff positions
obtained from the exact calculations. It should also be noted that the elec-
tromagnetic field close to mode cutoff is mostly extended in the claddings,
where the dielectric constants are homogeneous for the airbridge and SOI
structures studied throughout the present work.

The number of reciprocal lattice vectors G is limited by a finite cut-off
Gmax, like for usual plane-wave calculations [57] (see also Sec. 1.1.1), and in
addition a restricted number of guided modes of the effective waveguide is
kept in the expansion. For the calculations shown in this work, the number
of plane waves in the basis set depends on the lattice considered, but it is
usually taken to be < 37 for simply periodic 1D photonic crystal slabs and
< 109 for 2D triangular lattices of air holes, which are generally sufficient
for convergence with better than percent accuracy. It should be noted that
these numbers are valid thanks to the implementation of HCS method for the
diagonalization of the inverse dielectric matrices in each layer, which greatly
improves convergence properties in the number of plane waves [56]. The
number of guided modes in the expansion is usually taken to be ≤ αmax = 8,
but it depends on the core thickness (thinner slabs need less guided modes
in the basis set). All these approximations are justified a posteriori by the
close agreement of the calculated photonic frequencies with those obtained
from reflectivity calculations made with the exact scattering-matrix method
[44, 46].

As a final remark, we point out that the choice of the basis for the expan-
sion makes the method particularly suited to study systems with a strong
refractive index contrast between the core layer and the claddings. In par-
ticular, for suspended dielectric membranes or air/dielectric/oxide structures
results obtained by the present approach can be considered reliable and ac-
curate. Accuracy of the present method has not been completely checked

14It is known in the grating literature that the application of coupled-wave analysis to
the case of TM polarization is more difficult and special methods are needed to stabilize
numerical convergence, as discussed, e.g., in Ref. [61].
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a

a

Figure 1.8: Linear defects in a square lattice of air holes. The elementary
cell of the superlattice is shown on the right hand side.

for low index contrast symmetric structures, while for strongly asymmetric
waveguide layers such as, e.g., air/GaAs/AlGaAs the results are often not
accurate enough, owing to the limited number of guided modes that can be
taken in the basis. In this work we restrict ourselves to study high index
contrast structures.

The supercell method

As already mentioned, the GME approach allows for a quick extension to
treat structures with more complicated patterns in the plane of the waveg-
uide, such as point or linear defects embedded in an otherwise periodic lattice.
If we want to study photonic eigenmodes, e.g., of a linear defect waveguide in
a two-dimensional photonic crystal slab, we have to consider a periodic array
of linear defects equally spaced (see Fig. 1.8). This artificially periodization
of the system we want to study is called supercell method. Since the period-
icity of the original lattice is preserved along one of the two main symmetry
directions, the wave vector along that direction is conserved. A defect mode
will be evanescent in the direction perpendicular to its propagation Bloch
vector. Thus, if the supercell is sufficiently large, the guided modes of ad-
jacent elementary cells will not overlap, and the resulting dispersion will be
that of a single defect. In Fig. 1.8 a schematic picture of the elementary cell
to be used in this case is displayed.

In order to expand the fields in the basis set of plane waves, we have to
consider new primitive lattice vectors a1 and a2, which in this particular case
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have the same directions of the original square lattice, but generally this is
not verified. The most difficult task is to calculate the matrix εG,G′ for the
superlattice. Looking, e.g., at the model structure of Fig. 1.8, we see that
the dielectric function inside the supercell can be expressed as

ε(x) = εdiel + (εair − εdiel)
∑

j

Θ(|x− xj | − r) ∀ x ∈ unit cell (1.66)

where εdiel indicates the dielectric constant of the dark grey material, xj are
the positions of the holes within the unit cell, r is their radius, and Θ(x) is
the step function15. The expression 1.66 is very convenient for computing the
Fourier integral, Eq. 1.19. Indeed, the Fourier transform of the elementary
cell of a composed lattice can be expressed as the Fourier transform of the cell
of the square lattice multiplied by a structure factor that takes into account
the diplacements xj, and it can be written as

εG,G′ =
{

S(G−G′)Fhole(G) forG 6= G′

fεair + (1− f)εdiel forG = G′ , (1.67)

where f is the supercell air fraction, G,G′ are reciprocal lattice vectors of
the supercell lattice, S is the structure factor, and Fhole is the elementary
Fourier transform. The structure factor is obtained by

S(G) =
Ac

A

∑

j

eiG·xj , (1.68)

where Ac is the area of the square lattice unit cell, while A is the area of the
supercell elementary cell. By using Eq. 1.67, we can thus solve the eigenvalue
problem (Eq. 1.60), finally obtaining the correct dispersion relation for defect
states. This method can be generalized, of course, to treat every patterned
structure for which Eq. 1.67 can be calculated. Convergence in the number
of plane waves used in the basis set has to be checked in each specific case.

1.2.2 Perturbative theory of radiation losses

In a photonic crystal slab, the periodic patterning in the plane of the waveg-
uide leads to out-of-plane scattering of the guided Bloch waves. Such scat-
tering mechanisms give rise, e.g., to well known features in transmission or
reflection spectra of gratings and are generally known in the literature as

15The step function, or Heaviside function, is generally defined as

Θ(x) =
{

1 x < 0
0 x > 0 .
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Wood’s anomalies. Commonly, Wood’s anomalies can be divided into two
main classes: diffractive anomalies, caused by openings of new diffraction
orders in the transmission or reflection spectra at a given angle, or waveg-
uide anomalies, caused by the resonant coupling of an incoming light beam
with surface or waveguide modes. From an historical viewpoint, diffractive
anomalies were discovered in metallic gratings by Wood [62], and theoreti-
cally explained by Rayleigh [63], and are also known as Rayleigh anomalies.
Waveguide anomalies, instead, are examples of a Fano resonance [59], where
a discrete mode becomes a resonance owing to the coupling to a continuum
of modes at the same energy. These losses are also called out-of-plane diffrac-
tion losses, because they physically correspond to diffraction precesses out of
the waveguide plane for the Bloch waves propagating in the photonic crystal
slab.

Recently, some theoretical approaches have been developed in order to
treat the problem of these anomalies from a diffractive optics point of view,
such as scattering matrix-based methods [31, 32], or from the exact solution
of time-dependent Maxwell’s equations through FDTD simulations [34, 36].
Here we tackle and solve this problem on a different theoretical basis. Cou-
pling of waveguide eigenmodes to leaky modes of the effective waveguide is
taken into account by time-dependent perturbation theory, which leads to
an expression for the imaginary part of the mode frequency in terms of the
photonic density of states at fixed in-plane wave vector [47]16. This approach
is very close to the formal description of Maxwell’s equations as an hermitian
eigenvalue problem that we have been using until now. Moreover, the pro-
cedure is formally analogous to Fermi’s golden rule in quantum mechanics.
Strictly speaking, we could address the present perturbative treatment of
photonic eigenmodes in photonic crystal slabs as the Photonic Golden Rule.
Basically, the imaginary part of mode frequencies can be associated to the
finite lifetime of the corresponding photonic state, induced by the coupling
to radiative modes. In this sense, applying the Photonic Golden Rule is very
similar to the perturbative calculation of decay rates for electronic states in-
duced by time-dependent perturbations. The main advantage of the present
approach, besides the straightforward interpretation of the scattering mech-
anism of Bloch waves, is the possibility to include disorder-induced losses of
truly guided modes within the perturbative hamiltonian, as it will be shown
in the final part of the present paragraph.

16The perturbative treatment of the coupling to radiative modes is analogous to that
introduced by Ochiai and Sakoda [42], however in the present method the dielectric mod-
ulation described by the tensor εG,G′ is treated exactly, thereby going beyond the nearly-
free-photon approximation of Ref. [42].
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The coupling between guided and radiative modes in the operator for-
malism can be expressed as

Γguid→rad ∝
∑

rad

|〈Hguid|Ôp|Hrad〉|2 , (1.69)

where Hguid is the solution of an eigenvalue problem of the form 1.10 with
the matrix operator 1.64 and eigenvalues Ω = ω2/c2, while Hrad represents
the continuum set of radiative modes at a given frequency for the effective
homogeneous waveguide. The perturbation operator that couples guided
to radiative modes is represented by Ôp = ε−1(r), because the scattering
losses are caused by the non-separability of the spatially dependent dielectric
constant. From Eq. 1.69 one gets the following expression for the imaginary
part of mode eigenvalues [42]

−Im
(

ω2
k

c2

)
= π |Hguid,rad|2 ρ

(
k;

ω2
k

c2

)
, (1.70)

which is very similar to Fermi’s Golden Rule17. Here ρ(k; ω2
k/c

2) is the 1D
density of photonic states at fixed k, owing to the conservation of the in-plane
wave vector, which has to be calculated for each polarization and (possibly)
parity with respect to the horizontal midplane from the definition

ρ

(
k;

ω2
k

c2

)
=

∑

kz>0

δ

(
ω2

k

c2
− |k|2 + k2

z

ε(clad)

)
. (1.71)

When the waveguide is asymmetric (like in the case of the SOI structure),
care must be taken to express the leaky modes in terms of outgoing states
and to relate them to the respective state densities [64], which depend on the
cladding considered. The state density of radiation modes has a divergence
on the light line, which is a crucial issue for diffraction losses in a photonic
crystal slab. The matrix element Hguid,rad is given by

Hguid,rad =
∫

1
ε(r)

[∇×H∗
guid(r)] · [∇×Hrad(r)] dr . (1.72)

17The formal analogy with the expression of perturbative transition probability for an
atom in a continuous radiation field should be noticed

Γ1→2 =
2π

~
|〈1|ĤI |2〉|2ρ(E1 − E2),

where ĤI is the interaction hamiltonian and ρ(E1 −E2) is the density of radiation states
at the energy corresponding to the transition. This probability could be interpreted as a
radiation damping of the emission or absorption lineshape of the transition, which can be
also seen as an imaginary part of the mode frequency.
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When the guided mode solution is expanded in terms of its eigenvectors like
in Eq. 1.50, the matrix elements in Eq. 1.72 become

Hguid,rad =
∑

G,σ,σ′
c∗k,α,σ(G)Mσ,σ′

G,α(k, ω) , (1.73)

where σ labels the polarization (TE or TM) state of the corresponding
guided or radiation mode in the uniform planar slab. The procedure for the
calculation of M follows mutatis mutandis the one used to get Eq. 1.64. At
the end, an expression for Eq. 1.73 analogous to Eq. 1.64 is obtained

Mσ,σ′
G,α(k, ω) = ε−1

1 (G)
∫ −d/2

−∞
dz G

(1)
G,α,σ,σ′(z) +

ε−1
2 (G)

∫ d/2

−d/2
dz G

(2)
G,α,σ,σ′(z) +

ε−1
3 (G)

∫ +∞

d/2
dz G

(3)
G,α,σ,σ′(z) , (1.74)

where the functions G
(j)
{∗}(z) have to be determined in terms of products of

the coefficients of guided and radiative modes, respectively. The integrability
of these functions for z → ±∞ is always preserved by the products between
an exponentially decaying function coming from the guided mode solutions
and an oscillating one coming from radiative modes. Notice that after the
calculation of Eq. 1.72, through Eq. 1.70 we get the imaginary part of
ω2/c2, while we are interested in the quantity Im(ω), which is obtained by
the relation

Im(ω) =
Im(ω2)
2Re(ω)

. (1.75)

It should be noted that, owing to the scalability of the electromagnetic prob-
lem, the complex photonic dispersion in photonic crystal systems is usually
displayed by the dimensionless frequency ωa/(2πc).

A model of disorder

As already pointed out, one of the main advantages of GME theory is that it
allows to study also structures with more complicated in-plane patterns, by
using a supercell. The supercell technique can be straightforwardly embedded
in the perturbative treatment of diffraction losses in order to take into account
also disorder effects. Among the many possible sources of disorder in a
photonic crystal structure (such as non-vertical hole shape, non-homogeneous
etching, surface roughness, etc.), we chose to model variation in air fraction
due to imperfections in the e-beam process (see Fig. 1.9). We considered a
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a
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(a) (b)

Figure 1.9: Schematic illustration of disordered supercell in (a) 1D lattice of
stripes and (d) 2D lattice of holes. In both cases the effect of the random
variation of the disorder parameter is exaggerated, usually being of a few
percent. Moreover, a is constant within the supercell, the variation being
only in the air fraction.

random variation of stripes length or hole radii within a large supercell. The
variation is distributed over the supercell with Gaussian probability.

P (r) ∝ exp
(−(r − r̄)2

2(∆r)2

)
. (1.76)

This way, the root mean square deviation of the Gaussian function, ∆r/a
(or ∆l1/a for 1D lattices, where l1 is the length of the air slits), is taken
as our disorder parameter, as schematically illustrated in Fig. 1.9. These
variations of air fraction from the nominal value of the perfectly periodic
lattice, r̄, change the dielectric function to εdis(r) and give rise to a dielectric
perturbation,

∆ε(r) = εdis(r)− ε(r). (1.77)

The perturbative matrix element 1.72 thus becomes

H(dis)
guid,rad =

∫
(ε(r) + ∆ε(r))−1 [∇×H∗

guid(r)] · [∇×Hrad(r)] dr , (1.78)

which can be approximated by (∆ε ¿ ε)

H(dis)
guid,rad = H(0)

guid,rad −
∫

∆ε(r)
ε2(r)

[∇×H∗
guid(r)] · [∇×Hrad(r)] dr + O

[
(∆ε)2

ε4(r)

]
,

(1.79)
where H(0)

guid,rad is given by 1.73, and the second term can be calculated
straightforwardly from the matrix elements of Eq. 1.74 after the calculation
of the Fourier transform ∆ε(G). Basically, we solve the eigenvalue problem
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to find photonic frequencies of guided and quasi-guided modes for the un-
perturbed lattice, and then we introduce disorder in order to estimate the
losses for the given photonic mode. This way, the photonic band disper-
sion both below and above the light line is associated to real and imaginary
parts of mode frequencies, the latter including both intrinsic and extrinsic
effects. Results on disorder-induced diffraction losses for line defect modes in
two-dimensional photonic crystal slabs, very important for prospective appli-
cations of these systems to integrated optics, will be presented in Chapter. 3.



Chapter 2

One-dimensional photonic
crystal slabs

A theoretical study of one-dimensional (1D) lattices embedded in planar
waveguides with strong refractive index contrast is presented in this Chap-
ter. The theoretical approach relies on the Guided-Mode Expansion method
outlined in Sec. 1.2. The Chapter is organized as follows: in the first two
Sections results concerning the photonic band dispersion will be presented,
with a systematic study of gap maps and intrinsic diffraction losses of 1D
periodic systems, both for what concerns membrane and Silicon-on-Insulator
(SOI) structures1. A comparison between experimental and calculated pho-
tonic band dispersion in a 1D photonic crystal slab in a SOI configuration
is shown at the end of Sec. 2.1. In the last Section, 1D periodic systems
in SOI configuration with localized defects will be addressed. Comparisons
with preliminary experimental results on 1D systems with cavities in super-
cell configuration will be also presented in Sec. 2.3. The results of this study
may be useful for the design of integrated 1D photonic structures with low
radiative losses.

2.1 Photonic band dispersion

An important feature of photonic crystal slabs is the blue shift of the eigen-
modes due to vertical confinement in the planar waveguide. This effect,
which is more pronounced for slabs with strong out-of-plane refractive index
contrast, implies that the energies of photonic bands and gaps depend on all
parameters of the planar waveguide (layer thicknesses and refractive indices)
and can differ substantially from those of the reference 1D or 2D system.

1Part of the results presented in these Sections have been published in Ref. [49].
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Figure 2.1: (a) Ideal one-dimensional photonic crystal, with period a and air
fraction fair = l1/a. (b) Photonic crystal slab consisting of a self-standing,
patterned dielectric core (air bridge or membrane) of thickness d surrounded
by air. (c) Photonic crystal slab, with the pattern defined in a high-index
dielectric core of thickness d sandwiched between air and an insulating oxide
substrate. We assume here: εdiel = 12, εoxide = 2.1, εair = 1.

The Guided-Mode Expansion (GME) method provides an important tool in
order to account for the dependence of mode frequencies on these structural
parameters by making systematic analyses. The cut-off frequency of second-
and higher-order modes also depends on slab parameters and on the photonic
lattice.

In this Section we present a systematic study of photonic bands and gap
maps for 1D photonic crystal slabs, that is 1D photonic lattices like those of a
distributed Bragg reflector (see Fig. 2.1a for the 1D reference system). These
are defined in two types of waveguides with strong refractive index contrast:
the self-standing membrane or air bridge (Fig. 2.1b) and the asymmetric
photonic crystal slab in which only the core layer is patterned (Fig. 2.1c).
The latter structure is typically realized with the SOI system but may also be
realized with GaAs on an oxide layer. We assume the following values of the
dielectric constants: εdiel = 12 for the high-index core layer (as appropriate
to Si or GaAs below the band gap, and at a frequency corresponding to the
typical wavelength λ = 1.55 µm), εair = 1, and εoxide = 2.1 (as appropriate
for SiO2 or other oxides). The periodic patterning is taken along the x
direction and throughout this work we assume ky = 0. The gap maps are
calculated as a function of air fraction in the core layer and for different
values of the core thickness, thereby exploring a wide range of parameters
of experimental interest. Calculations are carried out by using a number of
31 plane waves in the finite-basis expansion for 1D periodic systems (if not
otherwise specified), which is largely sufficient for convergence within percent
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Figure 2.2: Ideal multilayer: (a) Photonic bands for fair = 0.3; TE and TM
modes are exactly degenerate. (b) Gap map, i.e., band edges as a function
of air fraction; the value of fair corresponding to the calculation given in (a)
is indicated by an arrow.

accuracy. The number of guided modes of the effective waveguide, α, is not
found to be critical in the energy range considered, and it is usually taken to
be ≤ 8.

The photonic bands and gap maps of a distributed Bragg reflector are
obviously well known and are exemplified in Fig. 2.22. They were calculated
by simple plane wave expansion in one direction (see Sec. 1.1.1). Notice that
the photonic bands of Fig. 2.2a (which refer to an air fraction fair = 0.3) as
well as the gap map of Fig. 2.2b are degenerate for transverse electric (TE)
and transverse magnetic (TM) polarizations with respect to the plane of
incidence: this degeneracy is lifted in a waveguide because the confinement-
induced shift is polarization-dependent, as was already shown experimentally
by our group [19]. One of the goals of the present analysis is to establish
whether a complete band gap for both polarizations can occur in a waveguide-
embedded 1D photonic structure.

It is worth reminding that related concepts have already been studied in
the literature in the context of dielectric waveguide gratings, also called res-
onant grating filters [65–77]. These kinds of diffraction gratings may support
guided and leaky modes. The latter are resonantly coupled to an external
light beam and give rise to narrow resonances in reflection or transmission,

2For εdiel = 12 the λ/4 condition occurs at fair = 0.776: this corresponds to the first
gap being maximum and to the vanishing of the second-order gap together with all gaps
of even order.
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Figure 2.3: Photonic bands for the membrane structure of Fig. 2.1b. The
dashed lines represent the dispersions of light in air and in the average core
layer. (a) TE, (d) TM dispersion curves, folded in the first Brillouin zone,
for a uniform dielectric membrane with εav = 8.7 and thickness d/a = 0.4;
(b) TE, (c) TM photonic bands for the patterned structure with fair = 0.3,
d/a = 0.4.

which may be used for polarization-dependent filters [65] or for enhanced non-
linear optical effects [68, 73]. Most of the research concentrated on systems
with a weak dielectric modulation, e.g., surface relief gratings for filtering
and distributed feedback [4, 67], waveguides with a weak refractive index
contrast within the core region [66, 70] and/or which are modelled by a sin-
gle Fourier component of the dielectric function [65, 71, 75]. For an extensive
list of previous literature along these lines and of the different kinds of the-
oretical methods used we refer to the book by Loewen and Popov [69]. In
all these cases, which can be treated at least qualitatively by coupled-mode
theory, the dispersion of the waveguide mode is only weakly modified by the
dielectric modulation and photonic bandgap effects are very small. Specific
waveguide grating structures with strong refractive index modulation in the
plane leading to an appreciable photonic gap have been studied in Ref. [72]
for the case of TE polarization, and in Refs. [74, 77] for both TE and TM
polarizations. In these strongly modulated cases a rigorous coupled-wave
analysis (also called the Fourier modal method, see Sec. 2.3) is necessary
and has been used. We point out that the focus of the present work is quite
different from all these papers, in particular for what concerns the systematic
calculation of gap maps and losses as a function of frequency and of various
structure parameters.

The photonic bands of the strong confinement symmetric slab, corre-
sponding to the system schematically shown in Fig. 2.1b, are displayed in
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Fig. 2.3b and 2.3c for a core thickness d = 0.4a and an air fraction fair = 0.3.
The bands are plotted by using dimensionless frequency ωa/(2πc) = a/λ as
a function of in-plane wave vector kxa/π in the first Brillouin zone. The
photonic dispersion curves of the patterned structure are compared to those
of a uniform dielectric slab suspended in air (Figs. 2.3a and 2.3d) with a
spatially averaged dielectric constant, given by εeff = 8.7 in the present case.
The guided modes of Figs. 2.3a and 2.3d represent the basis set for the ex-
pansion method discussed in the previous Chapter. The dispersion for the
average dielectric slab is presented in the reduced zone scheme, allowing for
a direct comparison with the corresponding photonic bands of the patterned
waveguide. We have classified the guided modes according to mirror sym-
metry with respect to the plane of incidence kz ≡ xz (we use σxz to denote
this operation) and with respect to the xy plane (σxy operation). The modes
whose electric field component lies in the xy plane are referred to as TE, and
are odd with respect to specular reflection through the plane of incidence
(σxz = −1); the modes whose magnetic field lies in the xy plane are labelled
as TM and are even with respect to mirror plane xz (σxz = +1) [34]. These
modes can be classified further as even (σxy = +1) or odd (σxy = −1) with
respect to specular reflection through the xy plane, thus giving four different
types of guided eigenfunctions for the electromagnetic field. We can sepa-
rately compare Fig. 2.3a to 2.3b and Fig. 2.3c to 2.3d. It is clearly seen
that for both TE and TM modes the periodic patterning of the dielectric
slab introduces band gaps around the degenerate points of the average slab
dispersion curves (kx = 0 and kx = ±π/a), owing to the off-diagonal com-
ponents of the inverse dielectric tensor. There is one-to-one correspondence
between average slab and 1D photonic crystal slab modes. The first-order
modes (TE even and TM odd) have no cut-off frequency, as is well known for
a symmetric waveguide. The second-order guided modes have a finite cut-off
frequency, which is degenerate for TE and TM modes. The second-order
mode, represented by dotted lines, has σxy = −1 for TE polarization, while
it has σxy = +1 for TM polarization.

A second point should be remarked by comparing the photonic bands of
Figs. 2.3b and 2.3c to the bands of an ideal multilayer. The first photonic
band gap appears between 0.15 and 0.20 in the ideal 1D case, and between
0.22 and 0.28 for the lowest TE mode in the photonic crystal slab, due to
the confinement effect along the vertical (z) direction. The gap between the
first and the second band opens between 0.37 and 0.45 when considering
TM modes: these values are strongly blue shifted with respect to both the
multilayer and the TE modes of the photonic crystal slab. Thus the con-
finement effect manifests itself in the blue shift of the eigenfrequencies of the
electromagnetic field with respect to the ideal multilayer, and moreover in
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Figure 2.4: Photonic bands for the patterned dielectric-on-insulator structure
of Fig. 2.1c with fair = 0.3, d/a = 0.4. The dashed lines are the light
dispersions in the effective core and in the upper and lower claddings; α
labels the order of the guided mode. (a) TE, (b) TM modes.

the removal of degeneracy between TE and TM modes: the latter effect is
due to the stronger confinement of TM compared to TE modes in the planar
waveguide [4]. We also notice that all the band gaps, except for the first one,
lie in the region of guided resonances, and could be experimentally tested by
external reflectance measurements. The first band gap, either TE even or
TM odd, is instead in the region of truly guided modes. A complete band
gap common to both polarizations can also be seen around ωa/(2πc) ∼ 0.4,
where the second-order TE gap overlaps the first-order TM gap. As we will
see in the following, this is rather a coincidence for 1D photonic crystal slabs.

In Fig. 2.4 we display the photonic bands for the asymmetric structure
represented in Fig. 2.1c. The dashed lines are the dispersions of photons
in air, substrate and effective dielectric core. The parameters used in these
calculations are d/a = 0.4, fair = 0.3, allowing for a direct comparison with
the results of Figs. 2.3b and 2.3c. Owing to the asymmetry of the vertical
waveguide, σxy is no more a symmetry operation: the modes can only be
classified as odd (TE, Fig. 2.4a) or even (TM, Fig. 2.4b) with respect to the
plane of incidence. However, we have indicated the approximate order of the
waveguide mode by the index α in Fig. 2.4 (this can be defined only when
the modes are well separated in frequency, otherwise mixing and anticrossing
effects occur). For an asymmetric slab there are no modes starting at ω = 0
[4]. By comparing Figs. 2.3 and 2.4, we notice that the lowest TE mode of
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the asymmetric 1D photonic crystal slab is in quantitative agreement with
the first-order TE mode of the photonic crystal membrane; instead, the TM
modes of the asymmetric slab are somewhat less confined than those of the
photonic crystal membrane. It is important to stress that the modes lying
between the two claddings light lines (oxide and air in this case) are evanes-
cent in air, but leaky in the substrate. These modes have finite radiative
losses, as we will see in Section 2.2. We also notice that no complete band
gap is present in the asymmetric 1D photonic crystal slab, at variance with
the corresponding symmetric structure. The results shown in Fig. 2.4 are
conceptually similar to Brillouin diagrams calculated for TE polarization in
the case of an asymmetric waveguide grating structure [72]. The described
features of photonic band structures for an asymmetric 1D photonic crystal
slab were experimentally verified by variable angle surface reflectance per-
formed on SOI structures [19]. A direct comparison between measured and
calculated photonic bands for SOI 1D photonic crystal slab will be shown at
the end of this Section.

In Fig. 2.5 we present a complete set of gap maps for waveguide-embedded
1D photonic crystal We consider a band gap as a frequency region where no
photonic modes exist, either truly guided or quasi-guided above the light
line. We present the gap maps for modes with TE or TM polarizations, i.e.,
with definite parity with respect to the vertical mirror symmetry σxz: this
convention applies to symmetric as well as asymmetric vertical waveguide
structures. For the case of the asymmetric structure, for which the lowest-
order waveguide mode has a finite cut-off, only the frequency region above
the lowest-order cut-off is physically relevant.

In Fig. 2.5a,b, and c we display the calculated gap maps for the air bridge
structure of Fig. 2.1b. We show the maps for three different slab thicknesses,
namely d/a = 0.2, 0.4, and 0.8. We display in black the true complete band
gap, i.e., the frequency region in which no photonic modes (or resonances) are
allowed for any polarization. The gap maps are shown for air fraction varying
from 0 to 0.7, which represent a realistic range for practical realization. The
solid lines in Fig. 2.5 represent the cut-off frequency of the second-order
waveguide mode, which is given by (see Eq. 1.48)

ωca

2πc
=

a

2d
√

εeff − εair

(2.1)

and is the same for both polarizations.
An important feature that we can see from Fig. 2.5 is that for d/a = 0.2,

the TE gap map is qualitatively similar to the ideal multilayer one (see
Fig. 2.2b) with a blue shift arising from the confinement effect. The band
gaps for TM modes are shifted to much higher frequencies and some complete
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Figure 2.5: Gap maps for the membrane structure of Fig. 2.1b (left side)
and the asymmetric photonic crystal slab structure of Fig. 2.1c (right side),
as a function of the air fraction, fair = l1/a. Dashed (solid) lines represent
the cut-off frequencies of the first- and second-order waveguide modes for
TE (TM) polarization; (a) and (d) core thickness d/a = 0.2, (b) and (e)
d/a = 0.4, (c) and (f) d/a = 0.8.

band gaps start to appear only at a/λ ∼ 0.7. The gap map is more complex
for d/a = 0.4, due to the appearence of higher-order waveguide modes at low
frequency. Nevertheless, for a/λ . 0.4 the slab is still monomode, and a large
complete band gap opens in a wide range of air fractions (Fig. 2.5b). This
complete gap comes from the overlap of the first TM gap (at the Brillouin
zone edge, see Fig. 2.3c) and the second TE one (at the zone center, Fig. 2.3b).
No complete band gap has been found for other values of d/a (calculations
not shown). For d/a = 0.8 the photonic band structure is quite complex
because the slab becomes multimode already at low frequencies. The band
gap in TM modes is still present around a/λ ∼ 0.4, but no complete band gap
exists because of the presence of second-order TE modes. The conclusions
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from these results are the following: (i) the TE gap map in a waveguide
resembles the ideal 1D one only below the cut-off of second-order modes,
(ii) the TM gap map is very sensitive to the structure parameters, and (iii) a
complete gap for both polarizations is calculated to occur only for a core
thickness around d/a = 0.4.

In Fig. 2.5d,e and f we show the calculated gap maps of the asymmetric
1D photonic crystal slab of Fig. 2.1c, for core thicknesses d/a = 0.2, 0.4,
and 0.8. These gap maps show notable differences as compared to those of
the photonic crystal membrane. One of the peculiarities of the asymmetric
structure is the existence of a finite cut-off frequency for the lowest-order TE
and TM modes, as pointed out in Sec. 1.1.2. The cut-off frequency as a
function of air fraction is plotted with dashed lines for TE modes, and with
solid lines for TM modes. The values for the cut-off frequencies obtained by
the present approach coincide with those following from the expression (see
Eqs. 1.42 and 1.43)

ωca

2πc
=

a

2d
√

εeff − εoxide

[
m +

1

π
arctan

(
r

√
εoxide − εair√
εeff − εoxide

)]
(2.2)

where r = 1 for TE modes, r = εeff/εair for TM modes, and m ≥ 0 is an
integer.

For d/a = 0.2 the asymmetric 1D photonic crystal slab has only first-
order TE and TM modes in the whole frequency range shown. The TE band
gaps are again qualitatively similar to those of the ideal 1D multilayer, with
a confinement effect which is close to that of the membrane case (Fig. 2.5a);
the TM gaps are instead shifted to much higher frequencies as compared to
the 1D multilayer. The first TE band gap is in a region below the cut-off
of the first-order TM mode, thus it may be considered as a complete band
gap. For d/a = 0.4 and 0.8 a second-order TE cut-off appears at frequencies
around 0.44 and 0.22, respectively: the TE gap map is similar to that of
the 1D multilayer only below the second-order cut-off frequency. The TM
gaps are always very different from those of the ideal 1D case and also quite
different from those of the photonic crystal membrane: TM modes are seen
to be extremely sensitive to the structure parameters (core thickness and
claddings dielectric constants). As it can be seen by comparing Figs. 2.5b
and 2.5e, the complete band gap for d/a = 0.4 occurs for the particular
case of a 1D photonic crystal membrane but not in the asymmetric photonic
crystal slab. For d/a = 0.8 a complete band gap resulting from the overlap
of the first TE and TM gaps appears around a/λ ∼ 0.3 for fair & 0.5.

Numerical results for photonic bands and gaps previously shown relate
only to the real part of the frequency and do not consider the effect of coupling
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to radiative waveguide modes. Thus, the physical relevance of a photonic
band dispersion is expected to decrease on increasing the frequency far from
the light line. We also notice that the concept of mode cut-off for resonant
modes is not clearly defined when radiative broadening is taken into account.
For these reasons, the gap maps calculated here are expected to be more
useful in the low frequency region, in particular for the band gaps which
open below the second-order cut-off lines shown in Fig. 2.5.

Comparison with experimental data

In this paragraph a comparison between calculated and measured photonic
bands is presented for asymmetric 1D photonic crystal slabs. The samples
were fabricated on Silicon-on-Insulator wafers manufactured by SOITEC, in
which only the core layer (260 nm thick) was patterned by electron beam
lithography. Details on the fabrication process are given in Ref. [21]. As a
general remark, the structural parameters are chosen in order to have a pho-
tonic band gap centered around the typical telecommunication wavelength,
λ = 1.5 µm. The final structure is the realization of the schematic picture
shown in Fig. 2.1c. The experimental technique employed is the variable-
angle reflectance (VAR) from the slab surface [14].

As already pointed out, the resonant features seen in reflectance or trans-
mission spectra are related to the coupling of guided modes of the photonic
crystal slab to the incoming beam through the grating effect. In fact, the
in-plane momentum conservation law that forbids this coupling in the case
of a uniform slab is no more valid owing to the periodic patterning. A mode
with in-plane momentum k is coupled to an external plane wave provided
that its momentum is conserved modulo a reciprocal lattice vector G. A pho-
tonic crystal slab mode with frequency ω and Bloch wave vector k couples,
in principle, to all radiative modes with the same frequency and momentum
k + G provided that the condition εω2 − |k + G|2 > 0 is satisfied, where ε is
the dielectric constant of the external medium in which the incoming beam
is propagating (usually air, and thus ε = εair = 1). The latter condition
represents a simple formulation of the light line issue that has been intro-
duced in the first Chapter, which allows to discriminate between truly guided
and quasi-guided modes. Out-of-plane diffraction losses in photonic crystal
slabs are a natural consequence of the periodic patterning, which introduces
scattering in the radiative modes if the coupling condition is satisfied. The
reciprocal process is the coupling of an external wave to a quasi-guided mode.
The incident plane wave has frequency ω and momentum (k, kz), where kz

is its vertical component. The external wave excites the quasi-guided modes
of the system before being reflected or transmitted. The anomaly in re-
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Figure 2.6: Comparison between experimental (points) data and theoretical
calculations (lines). The points are extracted from angle-resolved reflectance
spectra (courtesy of M. Galli); (a) TE and (b) TM modes. Parameters of
calculations are taken from the nominal structural parameters of the sample,
i.e. d = 260 nm, a = 560 nm, fair = 0.18.

flectance (or transmittance) occurs when the incident wave is resonant with
a quasi-guided mode in energy and in-plane momentum.

In Fig. 2.6 the comparison between calculated and measured photonic
bands is shown, for both TE and TM polarized incident light. The experi-
mental points are extracted from VAR spectra (not shown here) through the
relation k = (ω/c) sin θ between the incident angle and the in-plane wave
vector component along the periodicity direction, see also App. A. The
three light lines appearing in Fig. 2.6 correspond, for increasing energies, to
the effective core layer with average dielectric constant εeff , to the uniform
SiO2 cladding and to the air light line. Calculations were carried out by
using the GME method; the frequency dispersion of the dielectric constants
of Si and SiO2 was taken into account by calculating the bands in different
energy ranges. In particular, considering the photonic dispersion of, e.g., TE
modes (Fig. 2.6a), the bands were separately calculated from 0 to 0.76 eV,
from 0.76 to 1.3 eV, and from 1.3 to 1.5. The light lines correspond to the
dielectric constants values assumed in the first energy interval. A similar
procedure was followed for TM modes calculations of Fig. 2.6b. There is a
very good agreement between calculated and measured dispersion, for both
TE and TM quasi-guided modes. This means not only that the GME is a
powerful and reliable tool for calculating photonic eigenmodes of high index
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Figure 2.7: (a) Photonic bands and (b) imaginary part of frequency for a
symmetric 1D photonic crystal membrane; parameters are d/a = 0.2, fair =
0.3. Solid (dashed) lines are TE (TM) modes.

contrast photonic crystal slabs, but also that the choice of the effective di-
electric constant as spatial average is a very good approximation, for both
polarizations.

2.2 Intrinsic diffraction losses

To complete our analysis of 1D photonic crystal slabs we have to address also
the imaginary part of frequency, which gives information about the radiative
losses due to out-of-plane diffraction. This is done by using time-dependent
perturbation theory for the electromagnetic problem, as discussed in the pre-
vious Chapter. The number of plane waves and of guided modes of the effec-
tive planar waveguide are taken to be, respectively, 37 and ≤ 8 in the basis
expansion. In Figs. 2.7a and 2.7b the band diagram and the corresponding
imaginary part of frequencies are shown for the symmetric 1D photonic crys-
tal slab with parameters d/a = 0.2 and fair = 0.3. In Fig. 2.7a the waveguide
is monomode for both TE and TM polarizations. In Fig. 2.7b we show the
dimensionless quantity Im(ω)a/(2πc), corresponding to each photonic band
of Fig. 2.7a, as a function of mode frequency. The imaginary part is generally
much smaller than the real part, indicating the validity of the perturbative
treatment adopted. The losses go to zero when the mode crosses the light
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Figure 2.8: (a) photonic bands and (b) imaginary part of frequency for an
asymmetric 1D photonic crystal slab; parameters are d/a = 0.2, fair = 0.3.
Solid (dashed) lines are TE (TM) modes. The arrow in (b) denotes the cusp,
which corresponds to the second TE band in (a) crossing the air light line.

line in air and becomes truly guided. It is clear from the figure that the
radiative losses generally increase on increasing the photonic band index,
however the behavior of the losses within a given photonic band is nontrivial
and has to be studied in each specific case. The guided resonances at the
Brillouin zone center present a quite interesting behavior. In fact, the second
and the fourth TE bands have zero linewidth at kx = 0 (their frequencies are
ωa/(2πc) = 0.45 and 0.81, respectively) while the third and the fifth band
have finite radiative widths at kx = 0 (ωa/(2πc) = 0.56 and 0.94). A similar
behavior holds also for TM modes. These numerical results could be probed
by variable angle surface reflectance experiments made on 1D photonic crys-
tal membranes: the imaginary part of the frequency can be extracted from
the linewidth of spectral structures in reflectance that correspond to photonic
modes [15, 16].

In Fig. 2.8 we show the results for an asymmetric 1D photonic crystal
slab with the same thickness and air fraction3. The radiative losses shown
in Fig. 2.8b display quite the same behavior as in the membrane case. They

3In Ref. [72] a Brillouin diagram for the losses is shown, i.e., the imaginary part of the
wave vector is displayed as a function of frequency. The meaning of the loss diagram is
therefore different from those in Figs. 2.7 and 2.8, in particular the imaginary part of the
wave vector is largest in the photonic gap regions.
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Figure 2.9: Imaginary part of photonic frequencies as a function of the air
fraction for the photonic crystal membrane of thickness d/a = 0.2; the three
curves correspond to different wave vectors (kx = 0, kx = π/2a, kx = π/a)
in the first Brillouin zone of the third TE photonic band. The three points
marked on the curves correspond to the three markers of Fig. 2.7b, where
fair = 0.3.

are about two times larger than the corresponding losses of Fig. 2.7b: this is
due to the asymmetry of the vertical waveguide, which implies that a quasi-
guided mode above the light line is coupled to all radiative modes of the
effective waveguide at the same frequency, without the parity selection rule
which holds instead in the symmetric case. A similar behavior was found in
the calculation of spectral properties of deep 1D gratings [38]. Moreover, the
higher-order modes (either TE or TM) now have a finite Im(ω) also at kx = 0:
this is due to the additional diffraction channels for radiative losses which are
present in the asymmetric waveguide. Moreover, we notice that the modes
whose frequencies lie between the light lines of air and oxide claddings are
not truly guided, i.e., they are evanescent in air but leaky in the substrate.
Thus, the crossing between a band and the light line in air does not cause
the linewidth of the photonic resonance to go to zero: rather, Im(ω) has a
cusp (marked by an arrow in Fig. 2.8b) when the light line in air is crossed.
Similar features can by recognized in Fig. 2.8b at higher frequencies: they
arise whenever a photonic mode crosses a cladding light line folded in the
first Brillouin zone. These notable features of Im(ω) are not a numerical
artifact, but rather they correspond physically to the opening or closing of
diffraction channels for radiative losses.
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We also found that the imaginary part of frequency increases on increas-
ing the air fraction in the investigated range, as shown in Fig. 2.9, where
Im(ω)a/(2πc) is plotted for the photonic crystal membrane of thickness
d/a = 0.2. A similar behavior is found also for the asymmetric structure
(not shown here) and an increase of the photonic mode linewidth with the
air fraction was already stated experimentally [19, 24]. The three curves of
Fig. 2.9 correspond to the evolution of the losses for the third TE photonic
band at three different points in the first Brillouin zone. When fair = 0.3
the corresponding photonic band has frequencies around ωa/(2πc) = 0.6
(see Fig. 2.7a), and the three points marked in Fig. 2.9 correspond to those
marked in Fig. 2.7b. Notice that the losses vary in a logarithmic scale and
become extremely small either towards the homogeneous waveguide limit at
low air fraction or close to the Brillouin zone edge. While the filling fraction
dependence of the losses is similar for all bands and polarizations, the wave
vector dependence changes from band to band, as it appears from Figs. 2.7b
and 2.8b. It can be concluded that for the present waveguide-embedded 1D
photonic structures, the spectral linewidth of quasi-guided photonic modes
can vary by several orders of magnitude and it depends in a nontrivial way
on the structure parameters as well as on the angle of incidence, mode index,
and polarization.

2.3 Cavity modes and quality factors

In this Section the study of defect cavities in 1D photonic crystal slabs,
namely Fabry-Pérot cavities in waveguide geometry, is presented and the
problem of determining the quality (Q) factor of localized cavity modes is
addressed. These devices are considered as potential building blocks in SOI
planar photonic integrated circuits operating at optical wavelengths for ad-
vanced telecom applications, thus we focus on SOI slab structures. The
problem is tackled by three different theoretical approaches: (i) the Guided-
Mode Expansion (GME) method outlined in Sec. 1.2, (ii) a calculation of
surface reflectance at varying angles of incidence using grating or scattering-
matrix methods (SMM), and (iii) a calculation of in-plane transmission on a
finite structure employing a Fourier modal expansion (FME) method. The
GME and SMM methods require that the defect cavity be repeated with
supercell periodicity along the 1D axis, while the FME method deals with
a finite structure. Part of this comparative theoretical analysis is the result
of a collaboration with Ph. Lalanne, at the “Laboratoire Charles Fabry de
l’Institut de Optique,” CNRS, Orsay Cedex, France, who performed the cal-
culations with the FME approach. The goal of this Section is twofold. First,
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Figure 2.10: Schematic picture of the structure considered for calculations
with GME and SMM approaches. Upper and lower claddings are assumed
to be semi-infinite along z, and the structure is uniform along y. The main
structural parameters are defined. The air fraction is fair = L1/a; N is the
number of air slits between consecutive cavity layers.

to show that the different methods yield the same results for the Q-factors.
Second, to prove that the intrinsic Q-factor of a single cavity can be deter-
mined by working on a periodic structure in a diffraction geometry, i.e., by
measuring the reflectance from the surface of the sample at varying angles of
incidence. A brief overview of the alternative theoretical approaches adopted
is given, then numerical results will be presented. Finally, a comparison with
preliminary experimental measurements will be shown.

A schematic picture of the structure considered here is shown in Fig. 2.10,
where the parameters are also defined and the supercell along the direction of
periodicity can be seen. The latter is used in the calculation of the photonic
band dispersion by the GME method, and also of reflectance by the SMM,
which will be briefly introduced in the following. These cavities were designed
to have a resonant wavelength of λ = 1.5 µm in a SOI slab with a Silicon layer
of thickness d = 260 nm. Two kinds of mirrors with a mid-gap frequency
equal to the resonant frequency are considered, namely first- and second-
order Bragg mirrors4. Two physical mechanisms are responsible for the finite
mode lifetime of the cavity. For first-order Bragg mirrors, the fundamental

4In this work only results concerning the second-order cavity modes will be shown. The
same conclusions hold for the first-order one.
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Bloch mode of the mirror is truly guided, and the mode lifetime is limited
solely by a mode-profile mismatch problem between the fundamental guided
mode of the slab waveguide (which is cycling between the mirrors) and the
fundamental Bloch mode of the mirror [40]. This mismatch problem results
into radiation losses in the claddings with a finite modal reflectivity of 98%
at λ = 1.5 µm for the fundamental guided mode impinging onto a semi-
infinite mirror. The first-order gap lies fully below the cladding light lines
and the intrinsic Q-factor calculated for a cavity with semi-infinite mirrors
is rather high5. The cavity designed with second-order Bragg mirrors suffers
from additional losses. In this case, the second-order photonic gap lies above
the light line in air and the cavity mode has sizeable contributions from
leaky Bloch modes of the mirrors. Thus as the light is reflected back from
the mirrors, it is additionally radiated into the claddings. This additional
source of radiation results in a lower modal reflectivity of 93.5% at mid-gap
frequency and to a smaller intrinsic Q-factor.

The scattering matrix method

The Q-factor of a one-dimensional cavity can also be estimated by consider-
ing a periodic system and calculating optical spectra for light incidence on
the surface of the photonic crystal slab. Illuminated by an incident plane
wave, the transmission or reflection spectrum of the periodized cavity (a
one-dimensional grating in fact) should present an anomaly for the resonant
wavelengths. This anomaly results from a pole of the scattering matrix, which
relates the Rayleigh expansion of the electromagnetic fields in the claddings
[67]. The method that has been used here for the calculation of the reflec-
tion spectra is a frequency-domain method, which relies on Fourier expansion
techniques for all the electromagnetic fields quantities. Because the litera-
ture on the analysis of gratings with Fourier expansion techniques is largely
documented [67], the method is not detailed here. The implementation we
used, which can also be applied to 2D photonic lattices, is described in [31]
and will be referred to henceforth as scattering-matrix method (SMM). In
the present work, all the theoretical results concerning reflectance spectra
calculated within the SMM have been obtained with a numerical algorithm
developed in our group in the last years. For the detailed implementation
of the algorithm we refer to Ref. [44]. A brief overview of the numerical
method is also given in App. B.

The geometry for the grating calculation is shown in Fig. 2.11. The light
beam is incident on the surface of the structure in direction perpendicular to

5These calculations will not be shown here, see Ref. [54] for details.
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Figure 2.11: Schematic picture of geometrical structure employed in the SMM
method for one-dimensional periodic lattices.

the grating, i.e., a classical (non-conical) diffraction geometry is used. The
present method is the theoretical realization of the variable-angle reflectance
experimental set-up described in App. A, and has been widely tested [44].

The Fourier modal expansion method

Fourier expansion methods like the rigorous coupled-wave analysis [78] or
the differential method [79], which are widely used for modelling periodic
structures, can also be used for modelling non-periodic systems. Such an ex-
tension has been first pointed out in Refs. [74, 76]. This approach drastically
extends the domain of application of grating theories, and will be referred
to henceforth as Fourier modal expansion (FME) method. Referring to Fig.
2.12, a supercell is introduced in the z-direction, perpendicular to the plane
xy of the slab. The boundaries of the supercell incorporate perfectly matched
layers [80] that absorb the light scattered by the corrugation. The electro-
magnetic fields are null on every transversal boundary and can be expanded
in a Fourier series (plane-wave expansion). Radiative and guided modes are
thus calculated for each uniform layer in a Fourier basis. Transmission and
reflection can be evaluated by using a scattering matrix to match the field
amplitudes in the different layers:

[
b(i)

f (i)

]
= S

[
0
f (t)

]
(2.3)

where b(i) and f (i) are column vectors whose elements represent the ampli-
tudes of the backward and forward propagating modes at the input plane,
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Figure 2.12: Schematic picture of geometrical structure employed in the FME
method. The scattering matrix is used to relate the field amplitudes between
the different layers along x, and a Fourier expansion is made along z with
supercell periodicity.

and similarly f (t) is the vector of amplitudes of the forward field at the
output plane. As an example, let us consider the waveguide geometry of
Fig. 2.12. If we assume to illuminate the corrugated region with the fun-
damental TE mode, all components of the vector f (i) will be zero except
the component f

(i)
p = 1 corresponding to that mode. The amplitudes of

backward- and forward-propagating modes are then computed by using the
S-matrix, and the reflected and transmitted intensity can be simply defined
by R = |b(i)

p |2 and T = |f (t)
p |2. The Q-factor of a cavity mode can be evalu-

ated by Q = Re(λ̃)/[2Im(λ̃)], where λ̃ is the complex pole of the scattering
matrix.

Numerical results and discussion

We consider here the case of a cavity surrounded by second-order Bragg
mirrors. The structure has the following parameters: d = 260 nm, a = 560
nm, Lcav = 335 nm, L1 = 100 nm, L2 = 460 nm, with an air fraction
fair = L1/a = 0.1786. In Fig. 2.13 the photonic band dispersion is shown
for the ideally infinite 1D lattice as well as for the cavity structure. Only
TE-polarized modes are considered here. The dielectric constants of the
patterned core layer and the uniform upper and lower claddings are set to
the following values: εair = 1, εSi = 12.1104, εSiO2 = 2.0736, as appropriate
for these materials at λ = 1.5 µm. An effective dielectric constant given by
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Figure 2.13: Photonic band dispersion of TE-polarized modes as a function
of dimensionless wave vector for (a) 1D lattice of Silicon stripes on a SiO2

cladding with lattice constant a = 560 nm, thickness d = 260 nm, air fraction
fair = 0.1786, and (b) 1D cavity of length Lcav = 335 nm and 7 air slits
between two consecutive cavities in the supercell.

the spatial average in each layer is chosen to define the basis set for the GME
method, which is a very good approximation for TE modes [49]. A number
of 91 plane waves and α = 8 guided modes of the effective planar slab are
taken in the basis set for the photonic band calculations of the structure with
defects.

The dispersion of the Fabry-Pérot resonator is displayed in a reduced
Brillouin zone (BZ) in Fig. 2.13b, owing to the super-periodicity introduced
in the calculation. The supercell period is defined as A = NL1 +(N−1)L2 +
Lcav = Na − L2 + Lcav, and it is about seven times larger than the period
of the Bragg reflector, a, in this particular case; thus, the BZ is reduced by
a factor of about seven. The photonic bands, folded in the reduced zone,
can be recognized in Fig. 2.13b as compared to those of Fig. 2.13a. The
main difference is that a defect mode appears as an almost dispersionless
band within the TE band gap, at an energy Ecav ' 0.825 eV (λ = 1.5 µm).
This defect mode lies in the radiative region of the (k, ω) plane and it can
be excited by light incident on the surface of the planar waveguide.

In Fig. 2.14a the band dispersion of the defect mode is displayed in
the energy range between 0.7 and 1 eV, and in Fig. 2.14b the imaginary
part of mode energies calculated by the perturbative approach described
in the previous Chapter is also shown. The imaginary part of frequency
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(a) (b) (c)

Figure 2.14: (a) Dispersion of the defect mode, (b) imaginary part of mode
energy corresponding to each photonic band, and (c) surface reflectance for
angles ranging from 0◦ to 60◦ in steps of 5◦ for classical diffraction and
TE polarization (geometry of Fig. 2.11). Reflectance curves are shifted
by ∆R = 0.5 for clarity.

is always much smaller than the real part, thereby justifying a posteriori
the perturbative treatment. In Fig. 2.14c the calculation of variable -angle
reflectance by the SMM is plotted on the same energy range, in order to
make a direct comparison with the dispersion of Fig. 2.14a,b. It is worth
reminding that the SMM allows an exact solution of Maxwell equations for
layered structures, and is in practice the theoretical realization of a VAR
experiment.

The same supercell along the periodicity direction was employed for SMM
calculations. As outlined in App. A, each resonance in the VAR spectrum
marks a point in the (k, ω) plane, and the wave vector component parallel
to the surface can be extracted from the angle of incidence by the relation
k = (ω/c) sin θ. Very good agreement between GME and SMM is found in
the present case, in particular concerning the energy position of the defect
mode and of the band gap edges. The excitation of the cavity mode can
be recognized in the reflectance spectrum as a dispersionless feature as a
function of the angle of incidence. Moreover, the spectral linewidth of the
structure observed in reflectance are related to the imaginary parts of Fig.
2.14b. Cavity modes of Fabry-Pérot resonators with supercell periodicity
were probed with this experimental technique on GaAs-based systems [22].
A comparison with experimental data obtained on SOI samples will be given
at the end of the Section. The vertical Q-factor, Qv, of the cavity mode,
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Figure 2.15: (a) Transmission through 5 air slits Bragg mirror (parameters
as in Fig. 2.13); the width of the photonic band gap should be compared
to calculations of Fig. 2.14a and c. (b) Transmission through a structure
analogous to the one of Fig. 2.16a, with a cavity surrounded by mirrors with
5 air slits.

that is the one determined by out-of-plane losses, depends slightly on the
parallel wave vector because the imaginary part of the energy does. This
effect vanishes in the limit of a very large supercell. In order to smear out
the effect of a finite supercell width and to get a single number for the Qv-
factor from the calculations of Figs. 2.14a and b, the mode energy and the
corresponding imaginary part are averaged over the first BZ and then the
following definition is applied: Qv = Eav/[2Im(E)]av. Thus, a Qv of 250 is
obtained for such a structure, which is in favorably good agreement with the
Q-factors estimated from the resonant features in reflectance spectra. This
value slightly depends on the number of air slits in the mirrors around the
cavity layer and is already converged for N = 7.

In Fig. 2.15 transmission calculations by the FME method are shown
for a 1D photonic crystal slab of finite length (Fig. 2.15a), and for a cavity
between two mirrors with the same number of slits (Fig. 2.15b). The mirrors
are composed of 5 air slits in both cases. The same structure parameters
as in the previous calculations are used. The reflection and transmission
coefficients are calculated after excitation with the fundamental TE guided
mode of the initial planar waveguide. The band gap is clearly seen to be in
good quantitative agreement with both GME calculation of Fig. 2.14a and
SMM calculations of Fig. 2.14c, between 0.75 and 0.9 eV. The cavity mode
produces a Lorentzian peak in the transmission spectrum, which is displayed
in Fig. 2.15b, with a calculated Q-factor of 188. The total Q of such a system
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Figure 2.16: (a) Schematic picture of the geometry employed for the FME
calculation; (b) Transmission of the fundamental TE mode through the struc-
tures displayed in (a), with parameters as in Fig. 2.13.

can be expressed as [81]

Q =
QpQv

Qp + Qv

(2.4)

where Qp is the planar Q-factor due to the confinement induced by the
mirrors. The resonant transmission in the cavity mode is very low in this
case, owing to reflection and diffraction losses over the length of the structure
(calculations not shown).

In order to make a direct comparison with the calculations of Fig. 2.14,
a detailed view of the transmission peak for the structure represented in Fig.
2.16a is shown. The cavity layer is inserted between two Bragg mirrors with
7 air slits each. The calculated total Q-factor for this structure is Q = 231,
as indicated in Fig. 2.16b. This value is in good quantitative agreement with
the one obtained by the calculation of Qv from either the GME or the SMM
methods in Fig. 2.14. This means that with 7 air slits in the mirrors Qp is
much larger than Qv, and thus Q ' Qv.

In table 2.1 the calculated Q-factors and the maxima of the transmission
peaks for different numbers of air slits in the mirrors are shown. On increasing
the number of periods in the mirrors surrounding the cavity, it is clear that
the total Q-factor tends to Qv. Thus we confirm that all theoretical methods
adopted here lead to the same value for the vertical Q-factor. Also, we
conclude that the Q-factor can be determined by measuring the radiative
coupling between a plane wave incident from the surface and the cavity mode
with supercell repetition, as described by the calculations of Fig. 2.14. This
may be more convenient than measuring the in-plane modal transmission:
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Table 2.1: Quality factors and transmission peaks calculated with the FME
method. Parameters of the structure as in Fig. 2.13, but with increasing
number of air slits per mirror.

Number of slits Q-factor Tpeak (%)
3 71 45
4 150 15
5 188 2.5
6 220 0.3
7 231 0.03

indeed, when the mirrors have many periods the total structure is longer in
length and the transmission in the cavity mode is low, because of reflection
and diffraction losses, thus making the measurement a difficult one. We
notice that no optimization of the structure was made to reach a high Q-
factor as done, e.g., in [82]. Higher Q-factors can be obtained in a natural
way by using first-order Bragg mirrors, i.e., with a photonic gap at the border
of the BZ in the region below the cladding light lines [54].

In conclusion, numerical results for cavity modes in 1D photonic crys-
tal slabs based on Silicon-on-Insulator technology have been presented. The
three methods employed, namely guided-mode expansion, scattering-matrix
method, and Fourier modal expansion have been shown to lead to the same
values for the cavity Q-factors. The GME and SMM methods treat systems
with a periodic repetition of the cavity along the 1D axis and infinite exten-
sion in the vertical direction, while the FME method deals with a finite struc-
ture along the 1D axis and perfectly matched layers in the vertical direction.
The Q-factors obtained by the FME method increase with the number of
periods in the Bragg mirrors and tend to the vertical Q determined by GME
or SMM methods when the effect of escape in the finite 1D structure is negli-
gible. Thus, the Q-factor of cavity modes can be obtained from experiments
by coupling from the surface of the waveguide and measuring the reflectance
of a periodized cavity system. The cavity mode in reflectance spectra is more
easily detectable close to grazing (normal) incidence for structures with first-
(second-) order mirrors. This may be advantageous over transmission mea-
surements that are made difficult by the length of the structure, when the
transmission in the cavity mode is very low owing to diffraction losses.
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Figure 2.17: (a) SEM image of the defect cavity between 2nd order Bragg
mirrors, top view (courtesy of M. Belotti). (b) Experimental variable-angle
reflectance spectra on the sample D3 (courtesy of M. Galli); the dispersionless
feature marked by the arrows indicates the excitation of the cavity mode.
(c) Comparison between calculated bands and experimental points extracted
from the VAR spectrum in (b).

Preliminary experimental results

In this brief paragraph, a comparison between GME calculations and prelim-
inary experimental data obtained from SOI 1D photonic crystal slabs with
cavities repeated with supercell periodicity is presented. Analogous experi-
ments have been performed in Ref. [22] on GaAs-based systems. The samples
are fabricated by increasing or decreasing the Silicon stripe width in one unit
of the supercell lattice. The energy position of the cavity mode is sensible to
the structural parameters, and thus the fabrication step is a very important
one in order to get reliable results. The samples were designed to obtain
cavity modes within both first- and second- order Bragg mirrors. Samples
with different supercell periodicities (4, 5 and 6 air slits per mirror between
two consecutive cavities) have been fabricated.

In Fig. 2.17a a SEM image of one of the measured samples is shown,
in particular the sample named D3, with 4 air slits between cavities. The
supercell period between the two cavities is indicated and compared to the
small period of the surrounding Bragg mirrors. The Bragg mirrors have the
same parameters as the 1D photonic crystal slabs whose band dispersion
is displayed in Fig. 2.6. Thus, d = 260 nm, a = 560 nm, air slits width
L1 = 100 nm, cavity width Lcav = 335 nm. A cavity mode within the
second-order band gap is clearly seen in the measured VAR spectrum shown
in Fig. 2.17b as a dispersionless anomaly. By extracting the dispersion of
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the quasi-guided modes in the (k, E) plane, a very good agreement between
the calculated bands and the measured ones can be observed in Fig. 2.17c.
The calculations are made by using the expansion in the guided modes of the
effective waveguide with the nominal parameters of the sample. In particular,
the energy position of the cavity mode is exactly predicted by our method.
Notice that the bands are folded in the reduced Brillouin zone of the super-
lattice. The fundamental mode of the 1D photonic crystal slab forms small
gaps at the zone boundaries and becomes observable in reflectance, while
in the periodic system it should lie below the light line and could not be
excited by an external beam. This preliminary study is very useful for the
design of such cavities also on other materials. A study on the Q-factor
of the cavity modes, in particular on the experimental confirmation of the
conclusions reported in this Section, is still being completed.



Chapter 3

Two-dimensional photonic
crystal slabs

This Chapter deals with the theoretical investigation of two-dimensional (2D)
photonic crystal slabs, which are of primary importance for prospective ap-
plications of photonic crystals as components of future all-optical integrated
circuits. The 2D pattern and the additional confinement provided on the
electromagnetic field by the dielectric mismatch along the third direction
allow for a complete three dimensional control of light propagation. The
great advantage with respect to fully three-dimensionally periodic systems
is that 2D photonic crystal slabs exploit the current fabrication technology
of Silicon-based integrated circuits. In this work only systems with strong
refractive index contrast, such as membrane photonic crystal slabs or SOI
structures, are considered. The theoretical approach adopted relies on the
Guided-Mode Expansion (GME) method outlined in Sec. 1.2. In the first
two Sections the photonic band dispersion of guided and quasi-guided modes
in 2D photonic crystal slabs, also with linear defects, will be shown. In
Sec. 3.2 comparisons between theoretical calculations and experimental data
on linear waveguides in SOI photonic crystal slabs with supercell configu-
ration will be described1. These two Sections should be considered as an
introduction to Sec. 3.3, in which the systematic study of propagation and
out-of-plane diffraction losses of defect modes in 2D photonic crystal slabs
with line defects will be presented2.

1Part of these results have been presented in Ref. [53].
2Most of the results discussed here have been published partly in Ref. [50] and partly

in Ref. [52].
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Figure 3.1: (a) Direct and (b) reciprocal lattices for the 2D photonic crystal
with a triangular pattern. The dark grey material is assumed to have dielec-
tric constant εdiel = 12, while the white material is air. The shaded region
in (b) is the Brillouin zone. The main symmetry points in the irreducible
Brillouin zone are also indicated.

3.1 Photonic bands of triangular lattice

The most commonly studied 2D photonic crystal structure is the triangular
lattice of air holes, after pioneering papers of the beginning of nineties in
which a complete photonic band gap was predicted for in-plane propagation
[83, 84]. It should be pointed out that a complete band gap disappears
for the analogous waveguide-embedded structure, as discussed in Ref. [46].
In this Section, the dispersion properties of 2D photonic crystal slabs with
triangular lattice of air holes are summarized by showing calculations for
guided and quasi-guided modes, both in membrane and SOI structures. The
present theoretical approach allows for a quick and clear understanding of
the dispersion properties, in particular for what concerns the calculation of
quasi-guided modes. Theoretical calculations of the whole energy spectrum,
that is both below and above the light line, in triangular lattice of air holes
of high index contrast planar slabs can be performed by exact methods (but
also computationally heavy) such as FDTD [6]. The GME approach has the
great advantage of being a plane wave-based method, with a relatively low
computational effort required also for more complicated systems. On the
other hand, as pointed out in Sec. 1.2, the method is approximate because
the basis set chosen for the expansion is not complete. In the calculations
shown in this section, convergence was checked and a number of 109 plane
waves and 4 guided modes for each parity in the basis set are found to give
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stable numerical results in the frequency range considered. The convergence
is less accurate when the waveguide is thicker, owing to the presence of many
guided modes in the effective slab.

Figure 3.1a displays a top view of the photonic crystal structure consid-
ered. In real space, the periodic pattern is defined by a triangular lattice
of air holes with lattice constant a and hole radii r. The background di-
electric constant is set to the value εdiel = 12, as appropriate for Silicon or
GaAs at optical wavelengths. The choice for the primitive lattice vectors
is to take a1 = a(1, 0) and a2 = a/2(1,

√
3), from which the unit cell area

is Ac = a2
√

3/2 and the air fraction fair = πr2/Ac = 2πr2/(
√

3a2). The
primitive vectors of the reciprocal lattice can be easily found from Eq. 1.14,
resulting in b1 = 2π/a(1,−1/

√
3) and b2 = 2π/a(0, 2/

√
3). The reciprocal

lattice is displayed in Fig. 3.1b. The shaded area represents the Brillouin
zone, reflecting the hexagonal symmetry of the lattice. The main symmetry
directions are also indicated. Correspondingly, in real space the ΓK direction
is along x and the ΓM is along y.

In Fig. 3.2 a comparison between photonic mode dispersions in the ef-
fective uniform slab (Fig. 3.2a), in the 2D photonic crystal membrane (Fig.
3.2b) and in the ideal 2D photonic crystal (Fig. 3.2c) is shown. The main
purpose of Fig. 3.2 is to illustrate the differences between the eigenmodes of
2D photonic crystal slabs and the corresponding modes in the two limiting
systems, namely a planar waveguide without patterning and a 2D photonic
crystal with the same parameters but infinitely extended along the vertical
direction. In this case, contrary to 1D photonic crystal slabs, the modes
cannot be classified according to mirror symmetry with respect to the plane
of incidence, because there are different symmetry directions owing to the
2D pattern. The only symmetry operation (in the case of symmetric planar
slab, like the suspended membrane here considered) remains the reflection
with respect to the horizontal plane (x, y) bisecting the waveguide. The same
symmetry holds for the ideal 2D case considering only in-plane propagation,
where the even solutions (σxy = +1) are referred to as H-modes (having
non-vanishing field components Hz, Ex, Ey) and the odd (σxy = −1) are
called E-modes (non-vanishing components Ez, Hx, Hy)

3. In 2D photonic
crystal of finite height the modes cannot be classified anymore as purely H
or E, because the fields are functions also of the z-coordinate and the eigen-
modes generally possess all their vectorial components. However, it makes
still sense to define H-like modes and E-like modes the even and odd modes
of a 2D photonic crystal slab, respectively. For a more general analysis of

3In literature alternative definitions can be found, such as: TE for H-modes and TM
for E-modes [5], or p-polarization for H-modes and s-polarization for E-modes.



72 Two-dimensional photonic crystal slabs
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Figure 3.2: Upper panels: schematic pictures of the structures, i.e. (a) uni-
form planar waveguide suspended in air, (b) 2D photonic crystal membrane
with triangular lattice of air holes, and (c) ideal 2D photonic crystal with the
same lattice as in (b). (d) Even and (g) odd photonic modes for the uniform
slab with effective dielectric constant εeff = 8.4 and thickness d/a = 0.5.
Truly guided modes are folded in the BZ of the triangular lattice of air holes
assuming a lattice constant a. (e) Even and (h) odd guided and quasi-guided
photonic modes for the membrane photonic crystal slab with r/a = 0.3 and
d/a = 0.5. Light lines are represented by dotted lines. (f) H- (even) and
(i) E-modes (odd) for a 2D photonic crystal infinitely extended along the
vertical direction with r/a = 0.3.
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2D photonic crystal slabs based on the group theoretical formulation and on
the symmetry aspects see Ref. [34].

In Figs. 3.2d (modes with σxy = +1) and 3.2g (σxy = −1) the dispersion
of the guided modes of the uniform planar slab with effective dielectric con-
stant εeff = 8.4 and thickness d/a = 0.5 are plotted in the first Brillouin zone
of the triangular lattice with lattice constant a. This is done to understand
the origins of quasi-guided modes in a photonic crystal slab. Studying the
guided modes of the uniform slab folded in the first Brillouin can also be
useful for understanding the symmetry of the resonances excited, e.g., with
variable-angle reflectance (VAR) or transmittance. It should be noted that
these modes constitute the basis set for the expansion in guided modes of the
uniform slab, as it can be recognized by the coincidence of the second-order
modes cut-offs in Figs. 3.2d and e and in Figs. 3.2g and h. Because of
the use of the reduced zone scheme, some of the folded modes in Figs. 3.2d
and g fall above the light cone. These modes, of course, have no radiative
linewidth in the homogeneous slab, because the coupling to radiative modes
is still forbidden by the continuous translational invariance in the plane of the
waveguide. The photonic band dispersion of the photonic crystal membrane
(Figs. 3.2e and h) with r/a = 0.3 and d/a = 0.5 shows notable differences as
compared to the effective waveguide. In particular, it displays the opening
of band gaps at the main symmetry points, which is more pronounced for
even than for odd modes. This is similar to what previously shown for 1D
photonic crystal slabs (Sec. 2.1). It is important to consider both guided
and quasi-guided modes for the definition of a photonic band gap, as already
anticipated in the previous Chapter. A wide band gap is present for even
modes, because this allows to obtain defect modes within the gap of a given
parity, as it will be described in the next Section.

The photonic bands of the ideal 2D triangular lattice photonic crystal
are plotted in Figs. 3.2f and i; they are calculated by using the plane wave
expansion method described in Sec. 1.1. They display well known features,
such as a photonic band gap between the first and the second band of even
(H) modes [5]. A complete band gap for all polarization forms in this 2D
photonic crystal for r/a > 0.4. As already pointed out, no complete band
gap forms in the corresponding finite height system [46]. The main differ-
ence as compared to the dispersion of Figs. 3.2e and h is that the bands
are lower in energy. In particular, the blue shift of the photonic crystal slab
modes, due to the dielectric confinement, is more pronounced for odd modes
(this is analogous to 1D systems). The presence of higher order mode cut-
offs represents a further important difference of the finite height system as
compared to the ideal reference one. It should be noted that the disper-
sion of photonic crystal slab modes presents, both for even and odd bands,
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Figure 3.3: (a) Schematic picture of a SOI 2D photonic crystal slab, and
photonic band dispersion along the main symmetry directions (b) ΓM and
(c) ΓK for a structure with d/a = 0.5 and r/a = 0.3. For each direction,
the modes can be classified as odd (σkz = −1, excited by TE incident light)
or even (σkz = +1, excited by TM light) with respect to the vertical plane
of incidence. The dielectric constant of the semi-infinite oxide cladding is
assumed to be εoxide = 2.1.

anti-crossings and mini-gaps forming when two photonic modes of different
parities are resonantly coupled by the inverse dielectric tensor. Examples
of these anti-crossings can be seen, e.g., in Fig. 3.2e when the second-order
mode is coupled to a first-order photonic band. The one-to-one correspon-
dence at low frequency between the fundamental mode and the photonic
bands of the ideal 2D photonic crystal allows to confirm the H-like (E-like)
nature of even (odd) modes in 2D photonic crystal slabs. It is worth remind-
ing, anyway, that the calculations shown in Figs. 3.2e and h come from a
3D formulation, while the ones in Figs. 3.2f and i are 2D. For a thorough
analysis of intrinsic diffraction losses of quasi-guided modes in 2D photonic
crystal membranes the reader is referred to Ref. [47]. As a final remark, it
should be noted that 2D photonic crystal membranes have been fabricated
both in Silicon and GaAs layers [12, 24], but mainly for purposes concerning
in-plane transmission experiments, owing to the difficulty in fabricating sus-
pended membranes of sufficiently large area. Experiments of variable angle
reflectance on 2D photonic crystal membranes have not yet been published,
up to now.

In Fig. 3.3 the photonic band dispersion of a SOI photonic crystal slab
with analogous parameters as the membrane structure of Fig. 3.2b is pre-
sented. The main difference with respect to the photonic band structure
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of the symmetric system is that the reflection with respect to the xy plane
parallel to the waveguide is no more a symmetry operation of the system
(see Fig. 3.3a for a schematic representation of the 2D photonic crystal slab
structure). This implies that all the transverse components of the electric
and magnetic fields have to be included in the basis set for the solution of
the master equation. The only symmetry separation that still holds is the
reflection with respect to the plane of incidence, when this is fixed by the
specified direction of the exciting plane wave in real space. In this case the
photonic modes can be classified as even (σkz = +1) or odd (σkz = −1) with
respect to this plane. As these modes are excited, e.g. in a VAR experiment,
by TM- or TE-polarized incident beam4, respectively, this is also the defini-
tion used sometimes to classify the modes of 2D asymmetric photonic crystal
in literature. Here, the photonic bands are separately calculated for the two
symmetry directions ΓM and ΓK (see Fig. 3.1). Even if the SOI structure
is not so different from the membrane one, in the sense that there is not
much difference between the dielectric constants of air and oxide claddings,
the photonic band structure of Fig. 3.3 is very different from Figs. 3.2e and
h. The most notable difference is the finite cut-off frequency for the funda-
mental modes and the removal of degeneracy between odd and even modes
cut-offs, in analogy to what previously shown for asymmetric 1D systems. It
is worth noting the presence of a wide band gap for both directions in the
σkz = −1 modes. Defect photonic states can be present in SOI 2D photonic
crystal slabs, as it will be shown in the next Section. Finally, it can be seen
that some modes change their parity with respect to the plane of incidence
on changing the symmetry direction. This is due to the change in the vertical
plane of symmetry for the dominant field components of the mode.

3.2 Linear waveguides in triangular lattices

Linear waveguides in photonic crystal slabs are an attractive candidate for
the realization of integrated optical interconnects and other photonic devices.
Indeed, one of the most attractive features of photonic band gap properties in
the last two decades has been the possibility to guide light and to control its
propagation properties, besides the control of spontaneous emission first pro-
posed by Yablonovitch [2]. In particular, light propagation can be tailored
through the design of defects in the otherwise periodic structure, thereby
creating defect states within the photonic band gap. As light confined by

4The TE-polarized light beam has its electric field linearly polarized perpendicularly
to the vertical plane of incidence, while the TM-polarized one has the electric field in the
plane of incidence.
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Figure 3.4: (a) Schematic picture of the supercell lattice used for the defect
modes calculations. The supercell period along ΓM, the channel width and
the elementary cell repeated with supercell periodicity are defined; (b) Bril-
louin zone of the 2D structure, with the projection and folding induced by
the linear defect with supercell repetition.

the gap is not subject (at least in principle) to total internal reflection con-
strictions, high transmission through sharp bends and very low propagation
losses should be achievable in such systems. A linear defect in a 2D periodic
systems acts like a waveguide for the electromagnetic field, and it is poten-
tially the basic element of photonic integrated circuits. Such linear defects
preserve the periodicity of the 2D pattern only along one direction, yielding
a one-dimensional Bloch wave vector. A dispersion relation for these defect
states can be calculated within the GME approach, by defining a supercell in
the plane of the waveguide. We consider in this section one of the most stud-
ied waveguide structure in photonic crystal slabs, namely the one created by
filling up a single row of holes along the ΓK direction in a triangular lattice
of air holes. We consider both symmetric (membrane) and asymmetric (SOI)
slab structures. Comparisons with measured photonic band dispersions will
be shown for SOI waveguides.

In Fig. 3.4a a schematic view of the supercell considered for calculations
is shown. The waveguide is defined by removing a row of holes, the channel
width is w = w0 =

√
3a, that is the distance between the centers of two holes

placed at the channel sides. This system is typically called a W1 waveguide.
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The presence of the waveguide breaks the periodicity along the ΓM direc-
tion, but the system is clearly periodic (with lattice constant a) along the
waveguide channel. The spacing between two consecutive channels in the
super-lattice is defined by the supercell period As. Since a guided mode has
exponentially decaying (evanescent) fields in the direction perpendicular to
its Bloch wave vector, no overlap occurs between the guided modes of adja-
cent waveguides if As is sufficiently large. This way, the calculated dispersion
of the guided mode will coincide to the one of a single linear waveguide. A
similar principle has been used for the calculations of defect modes in 1D
photonic crystal slabs in the previous Chapter5. Considering the elementary
cell defined in Fig. 3.4a, this is repeated with a periodic rectangular lattice
of primitive vectors a1 = a(1, 0) and a2 = As(0, 1). The dielectric matrix in
Fourier space can be obtained by the Fourier transformation of a single hole
multiplied by a structure factor, which depends on the elementary cell (see
appendix for the Fourier transform of the linear defect). The Brillouin zone
of the lattice of Fig. 3.4a is displayed in Fig. 3.4b. Owing to the supercell
periodicity along ΓM, the reciprocal lattice is projected onto ΓK. Thus, K′

becomes the boundary of the first Brillouin zone in the projected lattice.
The number of discretized bulk modes that are folded in the ΓK′ direction
depends, of course, on the supercell period As

6. In the limit of very large As

the projected bands tend to a continuum of modes, which represent also the
continuum of folded modes for a single, isolated linear defect. For this reason
these modes are usually represented by a shaded area in the first Brillouin
zone of the defect lattice. The length of the ΓK′ direction is π/a.

After the definition of direct and reciprocal lattices and the calculation of
the Fourier transform of the dielectric function for the elementary cell of Fig.
3.4a, the GME method can be easily applied to calculate the dispersion rela-
tion of the defect modes along ΓK′. In Fig. 3.5 the photonic band structure
for a W1 linear waveguide in a membrane 2D photonic crystal slab is shown.
The slab thickness is d/a = 0.5 and the hole radius is r/a = 0.3. Since the
waveguide is symmetric with respect to its vertical axis, that is with respect
to the plane of incidence (x, z), the guided modes can be classified as even
(σkz = +1) of odd (σkz = −1) with respect to this plane. Moreover, owing to
the symmetry of the waveguide with respect to the horizontal midplane, the
modes can also be classified as even or odd with respect to σ̂xy symmetry op-
eration. We consider here only guided modes of the even σ̂xy parity, because

5Normally, in the calculations shown here a supercell period As = 5w0 is largely suffi-
cient to recover the correct dispersion relation for the guided modes.

6This phenomenon is conceptually similar to the formation of sub-bands in solid state
superlattices for what concerns electronic energy states, or to the folding of acoustic
phonons in semiconductor superlattices that makes them visible in optical spectra.
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Figure 3.5: Photonic dispersion of (a) odd (σkz = −1) and (b) even (σkz =
+1) modes for a W1 linear waveguide in a membrane of thickness d/a = 0.5.
The hole radius is r/a = 0.3. Only even modes with respect to the slab plane
are considered (σxy = +1). The grey areas correspond to folded modes of
the triangular lattice.

the corresponding photonic band dispersion for the triangular lattice has a
complete band gap (see, e.g., Fig. 3.2e). In Fig. 3.5 the dispersions of odd
(a) and even (b) modes with respect to the plane of incidence are plotted7.
The shaded regions represent the photonic modes of the triangular lattice of
air holes projected in the Brillouin zone of the defect lattice (see Fig. 3.4b).
For these calculations, a supercell period As = 4

√
3a along ΓM has been

used, and 181 plane waves that are largely sufficient for convergence. The
discretized bands have been obscured in order to represent the dispersion of a
single linear defect. The width of the band gap is the one of the correspond-
ing triangular lattice. The guided modes display known features and will not
be commented extensively here [29, 44]. It should be noted, however, that
two kinds of guided modes can be present in a line-defect photonic crystal
slab, namely index confined and gap confined modes. The latter can exist

7The defect mode shown in Fig. 3.5a is globally odd (σkz = −1), but its dominant
field components are spatially even with respect to the vertical midplane kz bisecting the
waveguide channel. That is why in the literature it is sometimes indicated as the even
mode. The definition discussed in the text is considered the most appropriate here, from
the point of view of parity symmetry.
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Figure 3.6: SEM image of one of the measured samples, in particular the one
with supercell period As = 5

√
3a along ΓM (courtesy of M. Belotti). Nominal

parameters of the sample are: d = 260 nm, a = 500 nm, r/a = 0.35.

only as a consequence of the photonic band gap properties of the surrounding
periodic lattice. Referring to Fig. 3.5, the TE defect mode within the band
gap is partly index confined (high group velocity region) and partly gap con-
fined (final region below the light line), while the TM mode is a gap confined
one. Notice also that as the waveguide is symmetric the fundamental guided
mode has no cut-off, and thus its dispersion starts at ω = 0 (see Fig. 3.5a).
Moreover it lies below the 2D lattice projected modes before being folded
back at the Brillouin zone edge, because it starts as an index confined mode
and it is guided in a region of higher dielectric constant than the effective
planar waveguide. For experimental results concerning guided modes in 2D
photonic crystal Silicon membranes we refer to Refs. [25, 85], and in GaAs
membranes to Ref. [86].

Silicon-on-Insulator systems represent the most valid proposal for prospec-
tive applications of photonic crystal waveguides in integrated optics. For this
reason W1 waveguides in SOI slabs have been the subject of intensive both
theoretical [30, 87] and experimental [88] works. In order to illustrate here the
dispersion properties of SOI-based 2D photonic crystal slabs with linear de-
fects, a comparison between experiments realized at the optical spectroscopy
laboratory of the Department of Physics “Alessandro Volta,” University of



80 Two-dimensional photonic crystal slabs

1
(a. u.)

Figure 3.7: VAR spectra along ΓM for (a) TE and (b) TM-polarization on
the sample of Fig. 3.6. The curves are slightly shifted for clarity. (c) and
(d) corresponding photonic bands folded in a reduced Brillouin zone due to
supercell periodicity: experiment (points) and GME calculations (lines).

Pavia, and theoretical calculations by the GME method is presented. Pat-
terned waveguides containing W1 linear defects repeated with supercell peri-
odicities As = m

√
3a (with m = 4, 5, 6) were fabricated at the “Laboratoire

de Photonique et Nanostructure,” of the CNRS, Paris-Marcoussis, France.
Here we consider the sample with As = 5

√
3a, whose picture is shown in Fig.

3.6. Details on the fabrication procedure (namely electron beam lithography
and reactive ion etching) are given elsewhere [21]. The supercell structure
of the samples has allowed for the first time the experimental determination
of the photonic band dispersion in linear defect waveguides on SOI slabs by
using the VAR technique, see also Ref. [53].

In Figs. 3.7 the reflectance spectra along the ΓM orientation of the sample
of Fig. 3.6, that is perpendicular to the line-defect, are shown for (a) TE-
and (b) TM-polarized incident light. The well defined resonant features
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Figure 3.8: (a) TE- and (b) TM-polarized photonic modes measured (closed
points for the defect modes, open circles for the 2D photonic crystal bands)
on the sample of Fig. 3.6 along the ΓK orientation. Calculated data (lines)
are obtained by the GME approach.

in the spectra mark the excitation of quasi-guided modes of the patterned
waveguide. The dispersion of such modes is extracted from these spectra
and compared to theoretical calculations in Figs. 3.7c and d. The excitation
of cavity modes at 0.73 and 0.89 eV respectively for (c) TE- and (d) TM-
polarized modes is evidenced by a flat dispersion, while the bulk photonic
crystal modes are characterized by a much stronger dispersion as a function
of the wave vector in units of the supercell period π/As. The results shown
in Fig. 3.7 are similar to those of Fig. 2.17. The supercell along ΓM act as
a repetition of Fabry-Pérot cavities in waveguide geometry, very much like
the systems studied in Sec. 2.4. Very good agreement between measured
and calculated photonic bands is found, in particular for what concerns the
defect mode energy. The fundamental mode of the 2D photonic crystal slab
forms small gaps at the zone edges and becomes observable in reflectance.
Mini-gaps of ∼ 0.01 eV are predicted by the theory and actually observed in
the experiment.

The photonic band dispersion of the photonic crystal waveguide along
the ΓK direction is shown in Fig. 3.8a and b for TE and TM polarization,
respectively. It should be noted that the wave vector range of measured data
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has been greatly increased in this case, thanks to the use of both VAR and
ATR techniques [53], see also App. A. The data plotted in Figs. 3.7 and
3.8 represent a complete experimental characterization of W1 defect modes
over the whole irreducible Brillouin zone, which has been obtained thanks to
the combination of VAR and ATR spectra (not shown here). The agreement
between measured data and theoretical calculations is very satisfactory, both
for truly guided and quasi-guided photonic modes. The photonic modes of
the bulk 2D triangular lattice discretized and folded in the reduced Brillouin
zone due to periodic repetition of the W1 defect along ΓM are clearly visible
in the experimental spectra (not shown) and compare favorably well with
calculations. Owing to the asymmetry of the system, all photonic modes are
present and no complete band gap is found. Contrary to W1 waveguides in
photonic crystal membranes, the region of the (k, E) plane of mono-mode
propagation for the defect mode is limited to a small area below the SiO2 light
line (e.g. the region around 0.7 eV at large wave vectors in Fig. 3.8a). This
is one of the main limitations to prospective applications of these interesting
systems. Another drawback is the problem of diffraction losses, which is a
very important one and will be addressed in the next Section. As a final
comment, it is worth reminding that the theoretical calculations shown in
Figs. 3.7 and 3.8 have been carried out by using nominal parameters of
the measured sample. Moreover, in order to better reproduce experimental
data, the radius of the holes adjacent to the waveguide channel has been
reduced by 10%. In particular, the lattice constant was precisely measured
with diffraction techniques and gave a value of a = 502 ± 1 nm. The slab
thickness was set to the value d/a = 0.52, the hole radius was taken as
r/a = 0.34, and the adjacent holes radii r′/a = 0.306. A number of 193
plane waves and 8 guided modes were taken in the basis set for the GME
calculations of photonic modes. This model takes into account that in the
electron beam lithography process the holes adjacent to the W1 channel
receive a lower dose of electrons, and thus their radius should result reduced
of about 6-10%8. The theoretical model reproduces very well experimental
data for both polarizations by using the following values for the dielectric
constants of Si and SiO2: εSi = 12, εSiO2 = 2.1. These values are valid
for the corresponding materials at wavelengths around 1.5 µm, close to the
defect mode dispersion. Anyway, the whole energy spectrum seems to be
reproduced very well. The very small remaining discrepancies (∼ 0.008 eV)
should be attributed to the energy dispersion of the dielectric constants,
which was not included in these calculations.

8M. Belotti, private communication.
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3.3 Disorder-induced losses in photonic crys-

tal waveguides

In photonic crystal slabs with strong refractive index contrast, like the sus-
pended membrane or air bridge and the SOI system, the defect mode as-
sociated with the linear waveguide may lie partly below the cladding light
line in the (k,ω) plane, as shown in the previous Section. In this case the
mode is truly guided with no intrinsic diffraction loss (unlike modes above
the light line, which are subject to intrinsic out-of-plane losses). In such a
situation, the propagation loss of a guided mode depends exclusively on the
presence of structural imperfections. The role of disorder on propagation
losses is therefore a crucial issue for prospective applications of linear pho-
tonic crystal waveguides to integrated optics. The main question that has
been arising among researchers in the last few years concerns the effective
advantages brought by the photonic crystal waveguides over common strip
dielectric waveguides (that is rectangular waveguides of Silicon stripes on
SiO2 substrates), in which propagation losses of the order of 0.1 dB/mm or
less have been demonstrated for transmitting wavelengths at the micron scale
[89, 90, 91]. Experimental losses measured in W1 waveguides on membrane
structures are still too large as compared to these values, even if the fabrica-
tion steps have reached a high level of accuracy nowadays [25, 85, 86]. Until
now, however, no theoretical approach has been able to produce predictive
results to study this crucial issue, even by using exact numerical methods
such as the 3D FDTD. A reliable theoretical tool would be able to predict
if structures with losses comparable to strip waveguides could be fabricated
in photonic crystal slab waveguides, in particular estimating the role of fab-
rication inaccuracy on the scattering losses. The present Section is a first
important step towards the answer to this question.

A systematic theoretical analysis of the effects of disorder on propagation
losses in 2D photonic crystal slabs with line defects is presented here. We
focus on the W1 waveguide. The main purpose is to quantify the trends of
disorder-induced losses as a function of various structure parameters and to
analyze the differences between air bridge and SOI photonic crystal slabs.
Previous studies of disorder phenomena in photonic crystal slabs concen-
trated on the effects on the photonic gap [92] or on the consequences of a
non-vertical shape of the holes for propagation losses [93]. Recently, the ef-
fects of scattering at sidewall roughness in photonic crystal slabs were studied
in a two dimensional model [94]. In this work we consider the variation of
hole radii as the main disorder effect. It should be noted that the present
fully 3D results extend those of Ref. [48], where only intrinsic losses above
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the light line were calculated and the effect of disorder was not included.
After discussing the numerical results, we compare with recent experimental
measurements of losses below the light line made on Silicon W1 waveguides
in an membrane structure [85].

We consider a W1 waveguide in a photonic crystal membrane structure.
After the calculation of photonic eigenmodes (see last Section), the cou-
pling to radiative modes of the effective waveguide is taken into account by
time-dependent perturbation theory, as described in Sec. 1.2. The effects
of disorder are accounted for by defining a large supercell in the direction
parallel to the line defect, in which the hole radii are randomly distributed
with Gaussian probability around an average value r, as discussed in details
in paragraph 1.2.2. The root mean square deviation ∆r of the hole radius
is taken as disorder parameter. As previously pointed out, the random vari-
ation of the hole size changes the dielectric modulation to εdis(r), and gives
rise to a perturbation ∆ε(r) that couples guided and radiative eigenmodes
and leads to a finite Im(ω) also for truly guided modes. The supercell along
ΓK used to model the disorder has typically a size of 39a. It is worth noting
that the use of this supercell does not require increasing the number of plane
waves in the basis set for the expansion, since disorder-induced scattering
is treated by perturbation theory. We typically use up to 461 plane waves
and two guided modes in the basis set for air bridge structures, taking ad-
vantage of horizontal mirror symmetry of the slab. The number of guided
modes is doubled in the case of SOI. The calculations employ a supercell in
the direction ΓM perpendicular to the line defect and an average over the
results with supercell widths from 3w0 + w up to 8w0 + w is taken in order
to smooth out finite supercell effects, like in Ref. [48]. Moreover, all loss
results presented here include an average over calculations with six different
random distributions corresponding to the same disorder parameter ∆r/a,
that is different Gaussian distributions with the same r.m.s. deviation. The
propagation losses are obtained as

α(k) = 2 Im(k) = 2 Im(ωk)/vg , (3.1)

where
vg = |vg(k)| = |∇kωk| (3.2)

is the modulus of the group velocity at the corresponding wave vector and
frequency. The losses in dB are given by 4.34 · 2Im(k).

In Fig. 3.9 the dispersion, the imaginary part of frequency and the prop-
agation losses of the defect mode are plotted for different values of ∆r/a and
frequencies within the photonic band gap. Parameters of the structure are
summarized in the caption. Only the defect mode that is even with respect
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Figure 3.9: (a) Dispersion of the defect mode, (b) group velocity, and (c)
propagation loss for different values of the disorder parameter, ∆r/a. Pa-
rameters of the W1 air bridge structure are: r/a = 0.28, d/a = 0.5, ε = 12.
Shaded regions in (a) represent the modes of the bulk lattice.

to the horizontal midplane (σxy = +1) and odd with respect to the plane
of incidence (σkz = −1, i.e. excited by TE-polarized light) is considered.
The shaded regions in Fig. 3.9a represent the bulk photonic crystal modes,
as explained in the previous Section. As it can be seen from Figs. 3.9b and
c, the defect mode is subject mainly to intrinsic losses when its dispersion
falls above the air light line [48]. When the mode crosses the light line,
Im(ωa/2πc) has a sudden decrease towards finite values, due to the disorder-
induced losses. The imaginary part of mode frequency depends strongly on
the disorder parameter of the structure. In particular, it is found to grow
almost quadratically with ∆r, as appropriate for a Rayleigh scattering mech-
anism, that is an elastic scattering mechanism in the perturbative limit. The
same quadratic behavior is reflected by the losses in dB, whose divergence at
low frequency is determined by the group velocity of the defect mode that
tends to zero at the zone edge. The propagation losses are minimal at the
crossing between the defect mode an the air light line, where the group ve-
locity is still high, and increase very rapidly on decreasing frequency. The
extrinsic losses become important also above the light line for sufficiently
high values of the disorder parameter (∆r/a = 0.08 in this case), or in the
energy window of low group velocity, i.e. for ωa/2πc > 0.33 in the Figure.
The conclusion from Fig. 3.9 is that small advances in the fabrication accu-
racy could lead to sensible lowering of these losses, owing to their quadratic
dependence on the degree of disorder.

In Fig. 3.10 the dependence of the extrinsic losses as a function of the
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Figure 3.10: (a) Dispersion of the defect mode, (b) group velocity, (c) imag-
inary part of frequency, (d) propagation loss for different values of the slab
thickness, d/a. Structural parameters of the W1 waveguide are: r/a = 0.28,
∆r/a = 0.01, ε = 12.

core thickness d/a is displayed for r/a = 0.28 and ∆r/a = 0.01, which is a
typical value in realistic structures. In Fig. 3.10a the dispersion of the defect
mode is plotted over the whole Brillouin zone for different values of the slab
thicknesses, and it is seen that increasing the confinement of the field in the
high dielectric region the frequency of the mode decreases. The dispersion
of the mode itself is red-shifted remaining almost unchanged, as it can be
seen also from the curves of the group velocity in Fig. 3.10b. The red-shift
causes the defect mode to lie below the air light line for a larger frequency
window, and particularly to cross the light line with higher group velocity.
This is important not only because of the larger band-width accessible for
guiding signals, but also because the higher is the group velocity the lower is
the propagation loss. This is confirmed by the results shown in Figs. 3.10c
and d. It is known that the increased confinement of the field within the high
dielectric region coming from an increasing of the core thickness d leads to
a decrease of the imaginary part of mode frequency, as first pointed out in
Ref. [48]. This behavior is seen to hold for what concerns both intrinsic and
extrinsic losses from Fig. 3.10c. In Fig. 3.10d the propagation losses in dB
confirm the trend previously outlined; in particular, is important to see that
the d/a = 0.5 W1 waveguide is preferable not only for the lowest losses, but
also for the largest transmission band-width. As a final remark concerning
this Figure, it is worth noting that the imaginary part (and the losses, too)
go to zero at the Γ point, that is at k = 0.

In Fig. 3.11 the dispersion, the group velocity, the imaginary part and
the propagation losses are plotted for frequencies within the photonic band
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Figure 3.11: (a) Dispersion of the defect mode, (b) group velocity, (c) imag-
inary part of frequency, (d) propagation loss for different values of the hole
radii r/a. Structural parameters of the W1 waveguide are: d/a = 0.5,
∆r/a = 0.01, ε = 12.

gap with decreasing values of the hole radius, and d/a = 0.5. The disorder
parameter is again assumed to the value ∆r/a = 0.01. The mode frequencies
decrease on decreasing the hole radius, because of the reduced air fraction
in the effective planar slab. Compared to Fig. 3.10a the dispersion curves
plotted in Fig. 3.11a show notable changes on changing the hole radius.
In fact, decreasing the air fraction higher order modes fall within the band
gap, and the defect mode is mixed to other modes within the band gap.
Our analysis can be limited, in the present case, to the part of the defect
mode lying below the light line, which is the most interesting region for
prospective applications. Again, on decreasing the mode frequency, a wider
band falls below the air light line. It is surprising to see from the results
of Figs. 3.11c and d that the lower air fraction does not always implies
lower imaginary part and extrinsic losses for the defect mode, as it would
have been expected from previous analysis. In fact, the intrinsic losses above
the light line increase on increasing the hole radius, as recently reported in
Ref. [48], while the extrinsic ones are ∼ 3 · 10−6 and have a much weaker
dependence on this parameter. These numerical results can be explained by
considering that extrinsic losses depend mainly on ∆r/a, while intrinsic out-
of-plane diffraction of quasi-guided modes is determined by the leakage of the
field. It is not intuitive, in this context, that disorder-induced losses have a
weaker dependence on the air fraction than intrinsic ones. In Fig. 3.11d the
propagation loss in dB is plotted, which displays the expected behavior of
decreasing for decreasing hole radius in the frequency region of truly guided
photonic modes. This behavior is mainly determined by the corresponding
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Figure 3.12: (a) Dispersion of the defect mode, (b) group velocity, (c) imagi-
nary part of frequency, (d) propagation loss for different values of the channel
width w. Structural parameters of the 2D photonic crystal air bridge are as
in Fig. 3.9, ∆r/a = 0.01. The results are shown only between the lower band
edge and the crossing with the light line.

group velocity (see Fig. 3.11b), which is higher at the crossing point between
the defect modes and the air light line when the air fraction is decreased.

In Fig. 3.12 we show the defect mode dispersion, group velocity, imag-
inary part of frequency and propagation losses for waveguides with chan-
nel thickness w ranging from 0.7w0 to 1.5w0. The channel width w equals
w0 ≡

√
3a if the positions of the surroundings holes are fixed to those of the

triangular lattice, but waveguides with reduced or increased channel widths
have also been realized and tested [25, 88]. The frequencies of the defect
mode decrease on increasing the channel width: moreover, the dispersion is
modified in such a way that the group velocity at the crossing point with the
light line increases and takes a maximum value close to c/n ' 0.25 for waveg-
uides with the largest values of w9. The results of Fig. 3.12c and d, which
assume a disorder parameter ∆r = 0.01a, can be scaled to other values of ∆r
by using the quadratic dependence previously discussed. The imaginary part
of the frequency shown in Fig. 3.12c decreases rapidly for increasing channel
thickness: this behavior, which is similar to the one occurring above the light
line for the intrinsic out-of-plane losses [48], follows from increasing localiza-
tion of the electromagnetic field in the dielectric (channel) region where it
is less affected by fluctuations of the hole diameter. As a consequence of
both the lower Im(ω) and the higher vg, the propagation loss shown in Fig.

9Reduced-width waveguides with large group velocity have been demonstrated [25]:
however, the mode considered in Ref. [25] is not the one shown in Fig. 3.12, but rather a
lower one at frequencies lying close to the band edge.
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Figure 3.13: Comparison between W1 (full lines and solid circles) and W07
(dashed lines and open circles) linear waveguides in membrane and SOI struc-
tures, respectively. (a) Dispersion of the defect mode, group velocity, imag-
inary part of frequency and losses (dimensionless losses, α · a in dB or α in
dB per lattice constant) for an air bridge photonic crystal waveguide with
r/a = 0.28, d/a = 0.5, ∆r/a = 0.01; (b) same quantities for a SOI-based
photonic crystal waveguide with identical structure parameters. A dielectric
constant εoxide = 2.1 was used for the SiO2 substrate. The results for group
velocity, imaginary part of frequency and losses are plotted only in the energy
range for which the defect mode lies below the light line (or below the parity
mixing region, for SOI).

3.12d is minimum for channel thickness w = 1.5w0. By considering also the
spatially odd defect mode (calculations not shown here), it can be shown
that the waveguide with w = 1.5 is truly monomode. The minimum loss
∼ 6 · 10−5 in dimensionless units becomes about 0.15 dB/mm when divided
by a lattice constant a = 420 nm (for a working wavelength λ = 1.55 µm).
Thus, we predict that propagation losses ∼ 0.15 dB/mm can be obtained in
waveguides with state-of-the-art values for the roughness (∆r = 4 nm), by
increasing the channel thickness to w = 1.5w0. We notice that such losses
are comparable to those of Silicon wires in the monomode region [91].

Finally, in Fig. 3.13 we show a comparative analysis of mode dispersion,
group velocity, imaginary part of frequency and losses below the light line
both in air bridge and SOI configurations, for channel widths w = w0 (W1)
and w = 0.7w0 (W07 waveguide). Again, only modes with σxy = +1 and
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σkz = −1 symmetries are considered for the air bridge. For SOI systems, the
reflection through the plane xy is not a symmetry operation, and thus both
parities must be considered in the basis set. Nevertheless, there is a region
below the light line in the k-ω plane where no parity mixing occurs [30, 87, 93].
We can see from Fig. 3.13 that Im(ωa/2πc) is generally larger in SOI systems,
due to the asymmetric slab configuration. Looking at the dependence on
channel width, the out-of-plane losses are lower for W1 than for W07 in air
bridge structures, while in SOI the W07 waveguide has lower losses owing
to the larger group velocity of the mode at the crossing point with the SiO2

light line [87]. This explains the experimental situation according to which
W1 waveguides are commonly addressed in Silicon membranes [85], while
W07 waveguides have lower propagation losses in SOI structures [88]. The
parameters used in these calculations are close to the ones of SOI structures
fabricated and studied in Ref. [88]. By using a = 390 nm and ∆r ' 4 nm, the
present results (minimum loss around 9 dB/mm for W07 SOI waveguides, see
last panel in Fig. 3.13b) agree well with the experimental value of 6 dB/mm
[88].

It is worth concluding this paragraph with some final comments about
the numerical results shown. The dependence of extrinsic losses on the main
structural parameters can be summarized in the fact that the channel width
is the main tuning length allowing for a reduction of propagation losses by
orders of magnitude, at fixed disorder parameter (i.e. fabrication accuracy).
Thus, the main conclusion is that propagation losses comparable to state-of-
art strip waveguides are theoretically achievable with increased width pho-
tonic crystal waveguides. Finally, the comparison between membrane and
SOI structures has shown that increased width waveguides display the low-
est losses for symmetric structures, while reduced-width channels should give
better performances for asymmetric structures like SOI.

Comparison with available experiments

In this paragraph the theoretical model proposed for disorder-induced losses
in photonic crystal waveguides is put on a solid basis by comparing with
recent experimental results obtained on W1 waveguides in Si membranes
[85]. Experimental determinations of propagation losses in photonic crystal
waveguides are very difficult, especially on a membrane structure. The main
difficulty, besides the fabrication step, is the coupling of incident light to the
channel in photonic crystal waveguide. The most recent published results
concern the use of the so called cut-back method to determine the value of the
losses (with about 10% accuracy) in photonic crystal slab with line defects
in Silicon [85] and GaAs [86] air bridges. Briefly, the cut-back technique
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(a) (b)

Figure 3.14: (a) SEM image of a photonic crystal membrane and (b) exper-
imental transmission spectra for TE polarization of photonic crystal waveg-
uides with different lengths. The inset shows the cut-back method. These
figures are taken from Ref. [85]. Nominal sample parameters are d = 220
nm, a = 445 nm, r/a = 0.37, ∆r = 5 nm.

consists in measuring transmission spectra (normalized to a reference frame)
in samples of different lengths, and extracting the losses in dB/mm from the
interpolation of measured data.

In Fig. 3.14a an example of a high-quality sample measured in Ref. [85]
is shown. It consists of a linear W1 defect in a triangular lattice of air
holes with r/a = 0.37 and a = 445 nm, patterned on a Silicon suspended
membrane of thickness d = 220 nm. The quoted sidewall surface roughness
in the paper by McNab et al. is of the order of 5 nm, and it is considered
the main source of scattering loss of the propagating Bloch wave below the
light line. This is, as previously explained, a crucial issue to obtain very low
values for the losses. In Fig. 3.14b the measured transmission spectra on
the different length samples is shown (taken from Ref. [85]). The incoming
beam is TE-polarized in the experiment, and the spectral range covers the
width of the guided mode of the photonic crystal waveguide. In the inset
the corresponding attenuation of the light intensity at 1505 nm is displayed
for the different length samples. From this experimental analysis a value
of 2.4 dB/mm has been extracted with 10% error accuracy. For details
concerning fabrication process, experimental set-up, and analytical models
used to extract the propagation losses the reader is referred to Ref. [85].

In Fig. 3.15 the theoretical results obtained by assuming the experimen-
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light line cutoff

Figure 3.15: (a) Dispersion of the defect mode, (b) propagation loss, (c)
transmission spectra with the parameters of the experiment of Ref. [85].
Parameters used in the calculations are as in the caption of Fig. 3.14: r/a =
0.37, d/a = 0.5, ∆r/a = 0.011, a = 445 nm, ε = 12. Transmission spectra in
(c) should be directly compared to Fig. 3.14b.

tal structure and the quoted disorder parameter are shown. The defect mode
is guided for frequencies below ωa/(2πc) = 0.297 (Fig. 3.15a). The propaga-
tion loss in Fig. 3.15b has a minimum of 2.7 dB/mm when the defect mode
crosses the light line: this result is in amazingly good agreement with the
experimental value of 2.4 dB/mm. The losses increase rapidly both below
the light line, due to the decreased group velocity of the defect mode, and
above the light line because of the onset of intrinsic losses. Propagation loss
shown in Fig. 3.15b has been obtained by the calculated dimensionless loss
α · a by dividing for the corresponding lattice constant, which is a = 445
nm in this case. Thus, propagation loss in dB/mm units are obtained and
directly compared to the value extracted from experimental data. Finally,
in order to recover the transmission spectra for different sample lengths, the
curve plotted in Fig. 3.15b is multiplied by the length of the sample. This
gives the transmission (in dB) for different lengths of the photonic crystal
waveguides, as shown in Fig. 3.15c and directly compared to experimental
spectra. The comparison with the measured data reported in Fig. 3.14b is
very satisfactory and almost surprising. Besides a small discrepancy coming
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from experimental inaccuracy of the reference frame to which the spectra are
normalized, our theoretical model seems able to reproduce all the qualitative
and quantitative features of experimental data. It is worth reminding that all
theoretical results shown in Fig. 3.15 have been obtained without adjustable
parameters, and thus it can be concluded that the present model gives an
adequate account of disorder-induced losses in W1 waveguides, when state-
of-art values for the roughness are assumed. In particular, it appears to be
confirmed that the main source of scattering loss for truly guided modes relies
on disorder effects induced by the random distribution of variable hole radii.
This indicates also that further improvements in fabrication should concen-
trate in this aspect in order to reduce propagation losses in these systems
and make them really appealing for future all-optical circuits applications.

In our theoretical model, no disorder-induced scattering into the counter-
propagating defect mode has been considered, like, e.g., in Ref. [95]. The fair
agreement between calculated and measured values for the losses below the
light line that has been shown here seems to prove that out-of-plane scattering
into the leaky waveguide modes is, indeed, the dominant loss mechanism for
the high contrast photonic crystal slabs considered in this work. As a final
remark, it should be pointed out that in a more advanced model the variation
of the hole radius could take place within the same hole, i.e. microroughness
of the side-walls could be included in the present theoretical approach.





Chapter 4

Quantum theory of
radiation-matter interaction

Up to this point, the physics of photonic crystal slabs has been considered
mostly for what concerns the “optical” point of view, that is studying the
dispersion and propagation properties of light in periodic dielectric media.
This is also what is commonly found in the existing literature, where the
original proposal to exploit photonic band gap materials in order to modify
the radiation-matter interaction properties has been only partly studied in
the last years, while research efforts mostly concentrated on understanding
their optical properties in view of applications to integrated optics.

In this Chapter we analyze the radiation-matter interaction in photonic
crystal slabs, by considering the effects of the interplay between the electro-
magnetic field and semiconductor material excitations that give rise to the
manifestation of so-called polaritonic effects. Generally speaking, polaritons
are the mixed states resulting from the interaction between the retarded
part of the electromagnetic field and dipole-active quasi-particles in solids
(phonons, excitons, etc.). An overview of the main physical concepts within
the exciton and polariton pictures in Semiconductor physics will be given as
an introduction for the non-specialized reader. The purpose of the present
study is twofold. On one side we would like to introduce the concept of strong
radiation-matter coupling and that of polariton state in the context of pho-
tonic crystal research. This is also a way for going back to the original interest
that motivated the growth of this fruitful research field, i.e. understanding
the consequences of photonic band gap properties on the radiation-matter
interaction. On the other hand, we want to emphasize, in the framework of
polariton research, the great possibilities offered by photonic crystals for the
tailoring of strong coupling regime between electromagnetic field and semi-
conductor exciton states. The first study of radiation-matter interaction of
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periodic arrangements of quantum wells traces back to the theoretical work
of Ref. [96]. Up to now, very few papers appeared regarding this interesting
topic, the most important ones concerning the experimental [13] and theoret-
ical [97, 98] investigation of strong coupling regime in organic-based systems.
Exciton polaritons in one-dimensional photonic crystals (ideal Bragg mirrors)
in which one of the constituent media has a strong excitonic character were
studied in Refs. [99, 100] by using a classical approach. Other works concen-
trated on studying some physical properties of so called phonon-polaritonic
photonic crystals, in which one of the materials constituting the photonic
band gap structure has an intrinsic phononic character [101, 102]. The influ-
ence of quantum well excitons on the longitudinal part of the electromagnetic
field, which produces a shift of photonic modes, has been studied in Ref. [103]
for deeply patterned photonic crystals with an unpatterned quantum well be-
low the photonic crystal region. Effects of polarizable media infiltrated in
opal-based three dimensional photonic crystals have been also studied both
experimentally [104, 105] and theoretically [106]. Systems like the ones stud-
ied in the present work have not been addressed, up to now, in the existing
literature, neither theoretically nor experimentally.

In the present study, we consider as our model system a photonic crystal
membrane made of a semiconductor material (usually GaAs) with a quan-
tum well (QW) of a compatible crystalline structure (usually InGaAs) grown
in its core layer and patterned with the same periodic lattice. The QW is
chosen as the reference active material providing the electronic excitations
with which the electromagnetic eigenmodes can interact. The problem of
radiation-matter interaction in photonic crystal slabs is tackled by using a
pure quantum mechanical formalism. A second-quantized theory has been
developed and will be described in detail; our theoretical approach leads to
a clear and rigorous description of the problem. The main results of the
present analysis show that polaritonic effects could be present in photonic
crystal slabs, provided that the exciton-photon coupling energy is larger than
the intrinsic radiative linewidth of a quasi-guided photonic mode. The new
quasi-particles arising from this strong coupling between photons and QW ex-
citons in the photonic crystal slab are called photonic crystal polaritons. The
comparison between our quantum formalism and a semiclassical treatment
of the optical properties via the scattering matrix method (extended here
to treat frequency dispersive dielectric materials, as the QW layer) shows a
favorably good agreement. These interesting results pave the way for new ex-
citing developments in the investigation of hybrid semiconductor structures
exhibiting both photonic and electronic band gap characteristics, besides the
same physical dimensionality underlying both photon and electron confine-
ment. Some of these new lines of research will be pointed out at the end of
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the present work.

4.1 Overview of exciton and polariton physics

Before starting the description of our quantum theory of photonic crystal
polaritons, it is useful to recall the generalities of exciton and polariton con-
cepts in Solid State Physics. These are well established physical topics,
treated also in some textbooks at undergraduate level [8, 107, 108] and in
some more advanced monographs [109, 110].

Excitons are the bound states of electron-hole pairs in a semiconductor
or insulator crystal, and thus they present a discrete spectrum in emission
or absorption of light. They can be described as elementary excitations, or
quasi-particles, even if their physics goes beyond the one-electron picture in
electronic band theory. It is very interesting that absorption lines due to ex-
citonic transitions in bulk semiconductors present a hydrogen-like spectrum
with very narrow linewidths. In the weak excitation regime, these quasi-
particles obey a Bose-Einstein statistics and can be effectively considered
as bosons. From a theoretical point of view, in semiconductor crystals the
Coulomb interaction between an electron in the conduction band and a hole
in the valence band is screened by the high-value dielectric constant of the
material, and are usually called shallow or weakly bound. As such, they are
very well described by an effective mass approximation. In the single-particle
picture, we write the crystal ground state as a Slater determinant in which
all Bloch states within the valence band are filled

Ψ0 = A{ψvk1(r1), ψvk2(r2), ..., ψvkN
(rN )} (4.1)

where the symbol A indicates the antisymmetric product of states, and N is
the total number of electrons in the crystal. When an electron is excited to
a conduction band Bloch state, the crystal state in the one-electron scheme
is given by

Ψckc,vkv = A{ψvk1(r1), ψvk2(r2), ...ψckc(ri)..., ψvkN
(rN )} (4.2)

where the valence function ψvkv has been replaced by the conduction func-
tion ψckc for the i-th electron. The explicit, single-particle Bloch states are
generally given by

ψnk(r) = eik·runk(r), unk(r) = unk(r + R) (4.3)

satisfying the Bloch theorem [8], ∀R of the direct crystal lattice. We expand
the general exciton wavefunction on the states of the form 4.2 as

Ψexc =
∑

kc,kv

A(kc,kv)Ψckc,vkv , (4.4)
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where A(kc,kv) is an envelope function in reciprocal space. We can define an
exciton wave vector Kex = kc−kv. For shallow excitons, like the ones usually
present in semiconductors, the Schrödinger equation obtained by calculating
the matrix elements of the all-electron Hamiltonian between states of the
form 4.2 can be written as [109]

[
Ec(−i∇e)−Ev(−i∇h)− e2

εdiel|re − rh| + Jcv δ(re − rh)− E

]
F (re, rh) = 0,

(4.5)
where the exciton envelope function normalized to the crystal volume in real
space is

F (re, rh) =
1√
V

∑

kc,kv

A(kc,kv)ei(kc·re−kv·rh). (4.6)

The energies Ec(k) and Ev(k) are the conduction and valence band dis-
persions, schematically represented in Fig. 4.1a. The background dielectric
constant of the semiconductor material, εdiel, screens the attractive Coulomb
interaction between electron and hole, and Jcv is the electron-hole exchange
interaction. The solution of Eq. 4.5 yields the following energy spectrum

En(Kex) = Eg − R∗

n2
+
~2|Kex|2

2M
, n = 1, 2, 3, ... (4.7)

where the effective Rydberg (in analogy with atomic transitions in alkali
atoms) is defined as R∗ = ~2/(2µa2

B). In the last expressions, µ−1 = (m∗
e)
−1+

(m∗
h)
−1 is the inverse of the reduced effective mass and M = m∗

e + m∗
h is the

total effective mass of the two-particle system; the exciton Bohr radius is
defined as aB = ~2εdiel/(µe2), which is about two orders of magnitude larger
than the atomic Bohr radius (∼ 0.053 nm) owing to the large dielectric
constant and small effective mass. The exciton quasi-particle and its energy
spectrum are schematically illustrated in Figs. 4.1b and c.

In order to treat optical properties connected with excitonic transitions
in semiconductors, it is useful to introduce the concept of oscillator strength.
This quantity is defined as

fê =
2

m~ω

∣∣∣∣∣〈Ψexc|ê ·
N∑

i=1

pi|Ψ0〉
∣∣∣∣∣

2

(4.8)

where ~ω = Eexc − E0 is the transition energy, m is the free electron mass,
pi are the electrons momentum operators, and ê is the polarization vector of
the electromagnetic field, the sum is over all the electrons of the system, and
the 2 factor comes from the spin degree of freedom. It can be shown [110]
that in the case of 3D excitons in bulk semiconductors the oscillator strength
is proportional to the crystal volume and is calculated analytically as

fê = g
2

m~ω
|ê · pcv|2 2V |F (r = 0)|2δKex,0, (4.9)
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Figure 4.1: Schematic illustration of the exciton concept: (a) Electronic
band structure in a single-particle picture. Taking into account the Coulomb
interaction of an electron in the conduction band and a hole in the valence
band, which give rise to (b) electron-hole pairs with discrete hydrogen-like
energy spectrum, the two-particle band structure represented in (c) can be
obtained.

where the factor g is the the spin-orbit factor of the exciton transition (which
takes into account the structure of the valence band), and the single-electron
interband momentum matrix element is defined as pcv = 〈uc0|p|uv0〉. In
order to obtain Eq. 4.9, the momentum matrix element of Eq. 4.8 must
be evaluated in the effective mass approximation, expressing the exciton
envelope function in terms of relative and center-of-mass coordinates, F =
F (r, rcm), which are defined as usual by the expressions

r = re − rh , rcm =
m∗

ere + m∗
hrh

M
. (4.10)

For free excitons we can safely assume that

F (r, rcm) = eiKex·rcm F (r), (4.11)

which explains the function F (r = 0) in Eq. 4.9.
When polaritonic effects can be neglected, the oscillator strength of the ex-
citon transition is related to the absorption lineshape by

∫

line
α(ω)dω =

2π2e2

ndielmc

f

V
, (4.12)

where the absortpion coefficient α(ω) is integrated over the exciton transition
peak in the absorption spectrum. This allows the experimental determination
of the oscillator strength.
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Polaritons are the mixed states that form when the radiation-matter in-
teraction is stronger than the intrinsic decoherence mechanisms of both ex-
citons and photons in a semiconductor material. Generally speaking, optical
absorption of exciton states is conceptually different from that of electron-
hole pairs. The exciton absorption process implies the absorption of a single
photon with defined wave vector (see Eqs. 4.9 and 4.12), where the energy
and momentum conservation laws require that the interaction takes place
when the two dispersion relations (that of excitons and that of photons in
the material) intersect. The exciton-photon interaction implies that the final
state is a linear combination of exciton and photon eigenfunctions. These
states are called exciton-polaritons. Schematically, in the polariton picture
the absorption process of light in a bulk semiconductor material is not due
to the direct absorption of photons, but it is the result of polariton scatter-
ing with other dissipative excitations, such as lattice vibrations. Ideally, at
T → 0 and in a very pure crystal, a photon enters the material, produces
an exciton, and viceversa until the photon escapes the material out of the
following interface. It has been proven experimentally that Eq. 4.12 is valid
at high temperature, when the lattice vibrations dominate and polaritonic
effects are negligible, while at very low temperature the polariton picture
dominates and the physics of polariton coherence within the crystal has to
be taken into account. For a thorough discussion on the concepts of temporal
and spatial coherence of polaritons in bulk semiconductors we refer to Refs.
[109, 110]. The schematic transfer of energy and momentum between exciton
and photon is schematically shown in Fig. 4.2a. The mechanical analog of
this physical process is constituted by the problem of two coupled harmonic
oscillators, as displayed in Fig. 4.2b.

A classical theory of polaritons was developed in the early fifties by Huang
[111] in the context of the interaction of the electromagnetic radiation with
long-wavelength lattice vibrations in ionic crystals. An analogous treatment
can be done for exciton-polaritons. In the semi-classical approach, a fre-
quency dispersive dielectric constant is assumed, in which the exciton reso-
nance ω0 is a pole for ε(ω). The solution of Maxwell’s equations with the con-
stitutive relation D = ε(ω)E yields two distinct equations, one for the trans-
verse modes, ε(ω) = c2k2/ω2, and the other for longitudinal modes, ε(ω) = 0.
The solutions of these equations give the dispersion relation schematically
shown in Fig. 4.2c. The transverse modes display upper and lower polari-
ton branches, which anticross in correspondence of the frequency/momentum
resonance with the photon dispersion in the material, ω = ck/n. Two im-
portant parameters characterize the polariton dispersion as obtained from
the classical theory of Maxwell’s equations: (a) the longitudinal-transverse
(LT) splitting ωLT = ωL−ωT, and the polariton splitting 2ωc = (2ω0ωLT)1/2,
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Figure 4.2: (a) Schematic illustration of stationary polariton states in a bulk
semiconductor, in which photon and exciton mutually exchange energy and
momentum, and (b) mechanical analog given by two coupled harmonic os-
cillators; in (c) the typical dispersion curves of upper and lower polariton
branches and the uncoupled longitudinal exciton (full lines) is shown together
with the bare exciton and photon dispersions (dashed lines).

which basically is a measure of the interaction between material excitations
and the retarded electromagnetic field. It can be seen that the polariton
dispersion turns upwards at large wave vectors, due to the spatial dispersion
of exciton center of mass (see Eq. 4.7). The meaning of Fig. 4.2c is that it is
the dispersion of polaritons, and not that of excitons, which is measured in
good semiconductor crystals at low temperature, as described, e.g., in [107].

Even if the polariton dispersion can be obtained by a semi-classical treat-
ment of the electromagnetic problem, it is only through a pure quantum
approach that the physical nature of the polaritonic quasi-particles can be
understood. A quantum theory of exciton-polaritons in bulk semiconductors
was developed in the late fifties by Hopfield [112, 113] and Agranovich [114].
This theoretical approach basically relies on describing exciton and photon
fields within a second-quantization formalism, in which creation and anni-
hilation operators of field quanta are defined and the proper commutation
relations are satisfied. Neglecting non-quadratic terms in the bosonic oper-
ators yields a second-quantized Hamiltonian corresponding to a generalized
coupled oscillators model (see Fig. 4.2b). The results are stationary states
whose dispersion relation coincides with the one found from the semi-classical
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treatment (see Fig. 4.2c) [112], in which the LT splitting

ωLT =
2π e2

4πε0εdiel mω0

f

V
, (4.13)

and the exciton-photon coupling

ωc =
(ω0ωLT

2

)1/2
=

(
πe2

4πε0εdielm

f

V

)1/2

, (4.14)

are now expressed in terms of the microscopic quantities, such as the oscilla-
tor strength per unit volume [109]. A proper generalization of this procedure
has been followed to develop the quantum mechanical theory of photonic
crystal polaritons described in the next Section. It is worth pointing out
that Eqs. 4.13 and 4.14 are given in M.K.S. units. In order to write the cor-
responding expressions in Gaussian units, the substitution e2(4πε0)

−1 → e2

should be made.

Excitons in quantum wells and microcavity polaritons

A quantum well is a thin layer of a semiconductor material sandwiched be-
tween thicker layers of a different semiconductor material with wider elec-
tronic band gap. The band discontinuity created at the hetero-interfaces of
the different materials between conduction and valence band edges is com-
monly known as band offset. This variation of band edges from one material
to the other acts as an effective confining potential for electrons and holes.
We assume in the following that electrons and holes are confined in the same
layer1. The envelope function approximation allows for an accurate treatment
of electronic states in heterostructures such as quantum wells, superlattices
and lower dimensionality systems as quantum wires and dots [115]. A QW
is the physical realization in a solid-state system of the typical quantum me-
chanical particle-in-a-box problem. If the z coordinate corresponds to the
growth direction, the motion of the particles is quantized along z but it is
free in the plane (x, y). Thus, exciton energy spectrum is characterized by
two-dimensional subbands En(k‖) as a function of the in-plane exciton wave
vector2. Excitons envelope eigenfunctions in a QW can be generally written
as

F (re, rh) = eiKex·rcm‖ F (r‖, ze, zh), (4.15)

where Kex indicates now the in-plane exciton center-of-mass wave vector,
while r‖ is the in-plane relative coordinate. The function F (r‖, ze, zh) depends

1This kind of hetero-structures is usually called of the type-I.
2It should be noted the analogy of exciton confinement in QWs with the photonic

confinement in planar dielectric waveguides, which can be viewed as the optical analog of
the particle-in-a-box problem.
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on the solution of the Schrödinger equation for the z degree of freedom, with
appropriate confining potentials for electrons and holes. Different regimes
can be obtained, depending on the strength of the confining potential and
on the QW width [109].

The characterizing quantity for absorption processes of QW excitons is
the oscillator strength per unit area, which from Eqs. 4.8 and 4.15 becomes

fê

S
= g

2
m~ω

|ê · pcv|2
∣∣∣∣
∫

F (r‖ = 0, z, z)dz

∣∣∣∣
2

, (4.16)

and which can be measured from the absorption probability (dimensionless
quantity) integrated over the excitonic absorption peak through a relation
similar to Eq. 4.12.

The great progress in nanofabrication technology and growth techniques
over the last 25 years has brought a new boost on the study of the optical
properties of quantum confined systems. In particular, one of the most in-
teresting aspects for the control of photonic states is to study phenomena
connected with the interaction between confined photonic modes and mate-
rial excitations. In this sense, planar microcavities with embedded various
active media like QWs or dots offered an important benchmark for studying
polaritonic effects in low dimensional systems. In a planar microcavity (also
known as Fabry-Pérot resonator), the electromagnetic field is confined in a
central cavity layer of width Lcav surrounded by two Bragg mirrors on both
sides of the cavity. The strong coupling regime of radiation-matter coupling
in planar microcavities with embedded QWs has been observed in the be-
ginning of nineties [116, 117], manifesting itself with a splitting of coupled
exciton-photon modes when the resonance condition is satisfied. The en-
ergy separation at resonance is called vacuum-field Rabi splitting, which is
the 2D analog of the polariton anticrossing in the dispersion of 3D mixed
exciton-photon states (Fig. 4.2c). These 2D mixed exciton-photon modes
are called cavity polaritons, and have been a very fruitful research field in the
last ten years. For reviews on the last developments see Ref. [118]. From a
theoretical point of view, the dynamics of coupled exciton-photon states in
microcavities has been studied with a pure quantum mechanical formalism
[119] and with a semiclassical treatment of light-matter coupling made with
a transfer matrix formalism [120]. The crossover between weak and strong
coupling regimes can be studied also by taking into account the damping
of the Fabry-Pérot mode and of the excitonic transition by defining imagi-
nary parts, γph and γex, of the respective mode energies, Eph and Eex, in the
framework of a simple two-oscillator model

Ĥ =
[

Eex − iγex V
V Eph − iγph

]
, (4.17)
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where the exciton-photon coupling energy is given by

V =
(

2π~2e2

4πε0εcav mLeff

f

S

)1/2

. (4.18)

The effective cavity length Leff = Lcav + LDBR takes into account the pen-
etration of the photonic confined mode into the Bragg mirrors. Within this
simple model, the crossover from the weak to the strong coupling regime
occurs for V > |γex − γph|/4; the vacuum field Rabi splitting at resonance is
2~ωc = 2V . The polariton splitting is reduced in microcavities with respect
to the bulk, even when the microcavities contain several QWs3, as it can be
estimated by comparing Eqs. 4.14 and 4.18 with parameters taken from the
literature [110]. Very recently, cavity polaritons have been receiving much
attention thanks to the discovery of amplified stimulated polariton scattering
[121], which paves the way for the possible polariton-based laser, or p-laser.

4.2 Second quantization in photonic crystal

slabs

We want to extend the study of radiation-matter interaction in quantum con-
fined electron and photon systems to QWs embedded in a photonic crystal
slab. The systems attracting our attention in the present work are schemat-
ically drawn in Figs. 4.3a and b for the one- and two-dimensional periodic
lattices, respectively. They are basically composed by photonic crystal slabs
of a high refractive index material, in which one or more QWs of a compatible
material are grown within the core layer. The dielectric material constituting
the photonic crystal slab acts also as barrier material for the carriers (elec-
trons and holes) confined in the thin QW layer. Typical thickness values of
the QW layer are of the order of 10 nm, while the dielectric core layer is
between 100 and 200 nm thick. We thus assume that the confining dielectric
constant for bare photonic eigenmodes in the unpatterned planar waveguide
is constituted by ε = εdiel, i.e. the dielectric constant of the core layer, ne-
glecting the dielectric constant of the QW layer that is much thinner. The
QW is periodically patterned with the same lattice as the photonic crystal
structure. Thus, exciton center-of-mass eigenfunctions are not free as in usual
QWs, but are subject to a further confining potential provided by the etched
air regions. As a general remark, it is clear that exciton and photon wave-
functions are vertically confined and they are subject to effective potentials

3Typical values are 16 meV for bulk polaritons in GaAs, against a few meV in GaAs-
based microcavities.
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Figure 4.3: Schematic view of the systems considered in this Section: (a)
one- and (b) two-dimensional (triangular lattice of air holes) photonic crystal
membranes of dielectric constant ε = εdiel with a QW grown in the middle of
the core layer and patterned with the same lattice as the photonic structure.

in the plane having the same spatial periodicity. Roughly speaking, we could
say that confined excitons and photons display the same dimensionality in
this problem.

In the present Section we describe the quantum theory of the coupling
between QW excitons and radiation modes in photonic crystal slabs start-
ing from the second quantization of bare exciton and photon fields. It is
worth noting that a similar formalism has been used in the literature to
study, e.g., QW exciton-polaritons in planar microcavities [119], in which
both photons and excitons are one-dimensionally confined, and in cylindrical
semiconductor cavities, which display 3D confined photons versus the 1D ex-
citon confinement [122]. From a theoretical point of view, the main difficulty
of the present approach with respect to previously published works is that
the second-quantized theory has to take into account the non-trivial spa-
tial dependence of ε(r) for the quantization procedure of the electromagnetic
field. The purpose is to construct a second-quantized total Hamiltonian for
the exciton-photon coupled states, and then diagonalize it exactly to obtain
eigenenergies of the mixed modes. Starting from the general formalism, in
order to describe bare exciton and photon fields we have to solve the clas-
sical wave equations and then reformulate the solutions in terms of normal
degrees of freedom, or normal vibrating modes, by introducing creation and
annihilation operators for the field quanta, and verifying that the commuta-
tion relations are satisfied. The total Hamiltonian of an interacting radiation
and matter system is generally of the form

Ĥtot = Ĥph + Ĥmat + ĤI (4.19)

where Ĥph, Ĥmat and ĤI are the radiation, matter and interaction Hamilto-
nians, respectively. We separately consider these contributions to the total
energy of the system.

The classical electromagnetic problem in photonic crystal slabs is solved
by employing the GME method. Thus, the quantum numbers for photonic
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eigenmodes (for each polarization and parity) are k and n, where k is taken
in the first Brillouin zone, and n generically labels the band number or the
order of the guided mode in the effective planar waveguide. For convenience
of notation we can group these indices by defining µ = (k, n). The following
expressions are given in M.K.S. units, as in the previous Section, but they
can be easily converted to Gaussian units by imposing 4πε0 as unity. The
fields can generally be expressed as a linear combination of normal modes of
the system after the solution of GME equations

E(r, t) =
∑

µ

(
2π~ωµ

4πε0V

)1/2 [
âµEµ(r)e−iωµt + â†µE

∗
µ(r)eiωµt

]
(4.20)

H(r, t) =
∑

µ

(
2π~ωµ

4πε0V

)1/2 [
âµHµ(r)e−iωµt + â†µH

∗
µ(r)eiωµt

]
(4.21)

where â†µ (âµ) are creation (destruction) operators of field quanta, and verify
the following commutation relations (in the Coulomb gauge)

[
âµ, âµ′

]
=

[
â†µ, â†µ′

]
= 0

[
âµ, â†µ′

]
= δµ,µ′ . (4.22)

The fields are normalized as
∫

V
ε(r)Eµ(r)E∗µ′(r)dr = δµµ′ (4.23)

∫

V
Hµ(r)H∗

µ′(r)dr = δµµ′ , (4.24)

and they satisfy Maxwell’s equations with periodic dielectric constant, Eqs.
1.6 and 1.7. The electromagnetic Hamiltonian can be obtained by the clas-
sical expression of the electromagnetic energy

He.m. =
1
2

∫

V

[
ε0E(r, t) ·D(r, t) + µ0|H(r, t)|2] dr , (4.25)

which in Gaussian units reads

[He.m.]gauss =
1
8π

∫

V

[
E(r, t) ·D(r, t) + |H(r, t)|2] dr . (4.26)

After the expansion of the electric and magnetic fields in terms of creation
and annihilation operators, Eq. 4.25 can be rewritten in the very intuitive
and compact form

Ĥph =
∑

µ

~ωµ

(
â†µâµ +

1
2

)
. (4.27)

In the second-quantized form, the electromagnetic energy stored in the sys-
tem is seen as a sum over photons occupying the normal modes.
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The matter Hamiltonian for a QW has been partially solved in the previ-
ous Section. It has been shown that the Schrödinger equation describing the
elementary excitations of a semiconductor crystal can be written in terms
of an effective Hamiltonian for the exciton center-of-mass envelope function.
We thus treat the exciton as an elementary bosonic quasi-particle4, whose
dynamics is described by a wave function given by Eq. 4.15, which leads to
a second-quantized exciton Hamiltonian of the form

Ĥex =
∑

σ

~Ωσ

(
b̂†σ b̂σ +

1
2

)
(4.28)

where the exciton creation and destruction operators satisfy bosonic com-
mutation relations analogous to Eq. 4.22, and the index σ generically labels
the normal modes. The exciton spectrum ~Ωσ in the periodically patterned
QW structure is obtained by solving the single-particle Schrödinger equation

[
− ~2

2Mex
∇2 + V (x, y)

]
F (x, y) = (~Ωex) F (x, y) , (4.29)

where the effective potential Vxy = ∞ in air regions, while it is Vxy = 0 in
the non-patterned surface of the QW. It is basically the quantum problem of
a particle in a periodic potential with infinite height barriers. For simplicity,
we have assumed to decouple vertical and planar dynamics, by considering
only the fundamental exciton state for confinement along z and taking into
account only the planar degree of freedom. It should be noted that the
periodicity of Vxy allows to classify exciton center-of-mass eigenmodes by the
same quantum numbers used for the photonic problem, namely k = Kex

in the first Brillouin zone and G belonging to the same periodic lattice. In
general, we can label exciton modes by the indices (k, ν), where ν is an integer
labelling the exciton band number at fixed k in the irreducible Brillouin zone.
Expanding both potential and envelope functions in Fourier series, Eq. 4.29
can be written in the form

∑

G′

[
~2

2Mex
|k + G′|2 δG,G′ + V (G−G′)

]
Fσ(G′) = ~Ωσ Fσ(G) , (4.30)

which can be easily solved by using, for the matrix V (G −G′), the same
Fourier expression as the one used in the photonic problem for ε(G −G′).
The numerical diagonalization of Eq. 4.30 as a linear eigenvalue problem
yields the exciton spectrum ~Ωσ.

In order to recover the exciton-photon coupling Hamiltonian, one has to
start from the usual radiation-matter coupling described by the interaction

4In our model we neglect light-hole/heavy-hole mixing effects [109], thus considering
only heavy-hole exciton levels in-plane polarized.
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Hamiltonian [in Gaussian units the first and second term on the right hand
side are multiplied by 1/c and 1/c2, respectively]

HI = − e

m

N∑

j=1

A(rj) · pj +
e2

2m

N∑

j=1

|A(rj)|2 . (4.31)

Equation 4.31 can be expressed in a second-quantized form by following
mutatis mutandis the general procedure outlined in Ref. [119], which after
lengthy calculations leads to the expression

ĤI = i
∑
µσ

Cµσ(âµ + â†−µ)(b̂†σ − b̂−σ) +
∑

σ

∑

µ,µ′
Dµµ′σ(â−µ + â†µ)(âµ′ + â†−µ′), (4.32)

where Dµµ′σ = C∗
µσCµ′σ/~Ωσ. The photon self-interaction term coming from

the second term of Eq. 4.31 is generally small, anyway we include it in
the diagonalization of the total Hamiltonian. The exciton-photon coupling
matrix elements are generally described by the relation

Cµσ =
(

2πe2~Ω2
σ

4πε0ωµ

)1/2

〈Ψ(exc)
σ |

∑

j

Eµ(rj) · rj |0〉 , (4.33)

in which Ψ
(exc)
σ is the all-electron exciton wavefunction corresponding to

the exciton envelope eigenfunction Fσ, Eµ is the electric field profile for the
photonic mode at frequency ωµ in the PC slab (see Eq. 4.20), and the sum
is over all the QW electrons. It should be noted that Eq. 4.32 represents
the generalization to the present problem of the exciton-photon interaction
quantum Hamiltonian first introduced by Hopfield [112].

Finally, the second-quantized total Hamiltonian of the system considered
is given by

Ĥtot =
∑

k,n

~ωknâ†knâkn +
∑

k,ν

~Ωkν b̂
†
kν b̂kν + i

∑

k,n,ν

Cknν(âkn + â†−kn)(b̂†kν − b̂−kν)

+
∑

k,ν

∑
n1,n2

C∗
kn1νCkn2ν

~Ωkν
(â−kn1 + â†kn1

)(âkn2 + â†−kn2
) . (4.34)

In Eq. (4.34), the first term indicates the photonic band dispersion (real part

of the complex eigenenergies), âkn (â†kn) being the destruction (creation) op-
erators of a photon with wave vector k and band number n (labelling either
the guided mode order or the band index). The second term represents the
dispersion of exciton center-of-mass eigenmodes, whose solutions are given
by Eq. 4.29. The ground state energy has been omitted from the free fields
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Hamiltonians. In order to explicitly obtain the exciton-photon coupling ma-

trix elements, Cknν , we have to express Ψ
(exc)
kν in the effective mass approxi-

mation in Eq. 4.33, after which we get

Cknν =
(

2πe2~Ω2
kν

4πε0ωkn

)1/2

rcv ·
∫

Ekn(r)Fkν(r, rcm) dr , (4.35)

where rcv = 〈uc0|r|uv0〉. The electric field can be expanded in terms of its
Fourier components, ckn(G), as well as the exciton envelope function, owing
to the spatial periodicity in the plane of the waveguide. Thus, factorizing
the vertical and planar dynamics, we obtain

Cknν =
(

2πe2~Ω2
kν

4πε0ωkn

)1/2
(∑

G

ckn(G)Fkν(G)

)
rcv ·

∫
E(z)F (r‖ = 0, z, z) dz ,

(4.36)
and by assuming a constant electric field across the QW width, through Eq.
4.16 we obtain

Cknν ' ~
(

πe2

4πε0m

f

S

)1/2

ê ·E(zQW)
∑

G

ckn(G)Fkν(G) , (4.37)

where zQW is the QW position along the vertical direction (in our reference
frame, zQW = 0 corresponds to a QW placed at the center of the photonic
crystal slab core layer). Thus, the coupling energy results to be proportional
to (f/S)1/2, which is analogous to the result of Eq. 4.18.

The total Hamiltonian, Eq. 4.34, is diagonalized by using a generalized
Hopfield transformation [113, 122]. New destruction (creation) operators P̂k

(P̂ †
k) are defined as a linear combination of âkn (â†kn) and b̂kν (b̂†kν)

P̂k =
∑
n

Wkna−kn +
∑

ν

Xkνb−kν +
∑

n

Ykna†kn +
∑

ν

Zkνb
†
kν . (4.38)

In order to find the eigenenergies of the coupled exciton-photon modes, the
condition

[P̂k, Ĥtot] = EkP̂k (4.39)

is imposed. By explicitly calculating this expression, i.e. substituting in Eq.
4.39 the second-quantized expressions of Eqs. 4.34 and 4.38, after lengthy
calculations a non-hermitian eigenvalue problem is obtained. The diagonal-
ization of the resulting matrix, which is called Hopfield matrix, yields the
eigenenergies Ek of the coupled system. The sums in Eq. 4.38 have to be
truncated in order to deal with finite matrices. If nmax photonic bands and
νmax excitonic levels at fixed k are retained in the basis set, the Hopfield
matrix has dimensions 2(nmax + νmax)× 2(nmax + νmax), by considering both



110 Quantum theory of radiation-matter interaction

positive- and negative-defined exciton and photon energy eigenvalues. Af-
ter diagonalizing the full matrix, only eigenvalues with positive real part are
taken.
In order to include the radiation damping of excitonic and photonic oscil-
lators, we assume complex energy values for the bare exciton (~Ωkν) and
photon (~ωkn) dispersions. This model is conceptually similar to Eq. 4.17
for the two oscillators. The imaginary part of photonic modes is calculated
by the perturbative theory described in Sec. 1.2, while the intrinsic radia-
tive damping of the exciton resonance is assumed as an input parameter,
characteristic of the QW considered. It is worth stressing that with respect
to previous diagonalization approaches we diagonalize the Hopfield matrix
directly. Within our formalism, the diagonalization of the complex Hopfield
matrix directly yields the complex dispersion of mixed states of radiation
and material excitations. In particular, the real part of the eigenenergies
Ek should correspond to the photonic crystal polariton states, when the sys-
tem is in the strong coupling regime. On the contrary, in the weak coupling
regime the fundamental properties of bare exciton and photon dispersions
should be recovered after the diagonalization. The imaginary part of Ek, as
a consequence, directly gives the radiative linewidth of the coupled modes.

4.3 Photonic crystal polaritons

In this Section, results of the radiation-matter interaction effects are shown
for the systems schematically displayed in Fig. 4.35. We start from one-
dimensional periodic structures, i.e. one-dimensional photonic crystal mem-
branes with a QW at the center of the core layer. The structure parameters
chosen for these calculations are: d/a = 0.2, fair = 0.3, lattice constant
a = 350 nm. The material constituting the patterned core layer of the pho-
tonic crystal membrane is assumed to have a dielectric constant εdiel = 12.15,
as appropriate, e.g., for GaAs at optical wavelengths. The photonic band dis-
persion, i.e. real part of energy, for this structure is calculated by using the
GME method (see Sec. 1.2) with 37 plane waves and 4 guided modes in the
basis set. Results in the energy range 1.1-1.7 eV are shown in Fig. 4.4a. In
Fig. 1b we display the corresponding imaginary part as a function of the wave
vector, which shows a maximum at about 1.4 eV. The imaginary part goes
to zero at kx = 0, that is at normal incidence, and when the mode crosses
the air light line, for which the photonic mode becomes truly guided and
stationary. The complex photonic dispersion of the systems displays features
already discussed in Chapter 2.

5Similar results have been published in Refs. [51, 52].
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We are now interested in the system with embedded QW. This problem
is treated by two different approaches: diagonalization of the pure quantum
mechanical Hamiltonian (Eq. 4.34) and semiclassical solution of Maxwell’s
equations by the scattering matrix method. Within our quantum treatment,
we assume that the QW exciton transition has an intrinsic linewidth Γex = 0.1
meV, and that the QW has the typical6 oscillator strength per unit surface
of f/S = 8.4 × 1012 cm−2. These, besides the exciton fundamental energy
resonance, are the only input parameters of the theory before diagonalizing
the generalized Hopfield matrix.

If the photonic imaginary part is larger than the exciton-photon coupling
matrix element (which is of the order of a few meV in this case), a QW
placed at the center of the PC slab does not produce any important change
in the photonic band dispersion. Indeed, this result is shown in Figs. 4.4c
and d, in which the real and imaginary parts of the complex exciton-photon
coupled eigenmodes are shown, with the fundamental excitonic resonance
placed at ~Ω0 = 1.42 eV. In this weak coupling regime the photon and the
exciton are almost uncoupled, as it can be seen from the crossing of the two
dispersion relations in Fig. 4.4c. The imaginary part of the exciton increases
by an order of magnitude correspondingly to the crossing point, but this has
a negligible effect on the photonic radiative linewidth, which is still an order
of magnitude larger than the excitonic one (see Fig. 4.4d). This situation is
similar to the weak coupling regime in bulk or in planar microcavities. In
this case the exciton photon coupling can be treated by Fermi’s Golden Rule,
giving rise to a radiative decay of the exciton.

In Fig. 4.4e the classical calculation of variable-angle surface reflectance
is shown. The scattering matrix method, already employed for comparison
with the GME method in the present work (see, e.g., Sec. 2.3), has been
extended in this case in order to treat frequency dispersive dielectric layers
[97]. In particular, the complex dielectric function of the QW layer assumed
in our semi-classical model is

ε(ω) = ε∞

(
1 +

~ωLT

~(Ω0 − ω)− iΓex

)
, (4.40)

where ε∞ is the background dielectric constant of the QW material, ~Ω0 and
Γex are the same as in the quantum calculation, and the classical LT energy
splitting can be expressed as (see Eq. 4.13)

~ωLT =
2π~ e2

4πε0ε∞mΩ0 LQW

f

S
. (4.41)

6These values are appropriate, e.g., for InGaAs QWs between GaAs barriers, and can
be found in literature.
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Figure 4.4: (a) Real and (b) imaginary parts of the complex photonic energies
for the fundamental TE mode (σxy = +1,σkz = −1) as a function of the
wave vector in the first Brillouin zone, for the 1D lattice without excitonic
resonance (no QW); (c) real and (d) imaginary parts for the same structure
with a QW at the center of the dielectric core, with an excitonic resonance
at ~Ω0 = 1.42 eV. (e) Calculated variable-angle reflectance spectra by the
scattering matrix method, for the same structure as in (c) and (d).

The last formula allows to put in one-to-one correspondence the two theo-
retical approaches. To an oscillator strength f/S assumed in the quantum
treatment of radiation-matter coupling, a QW layer of width LQW and a LT
splitting ωLT obtained by Eq. 4.41 corresponds in the semi-classical theory.
Thus, in order to make a direct comparison between our complementary the-
oretical methods, we assume LQW = 8 nm and ~ωLT ' 0.42 meV in the
scattering matrix calculation, which roughly correspond to the value of f/S
given above. Moreover, the same exciton radiative damping of Γex = 0.1 meV
has been used in the frequency dependent QW dielectric constant expression.
Finally, the two theoretical approaches calculate the physical quantities for
the same structure, without adjustable parameters. The results of Fig. 4.4e
clearly confirm the ones of Fig. 4.4c, i.e. the system is in the weak coupling
regime with the parameters assumed.

In order to observe the strong coupling regime, the energy of the exci-
tonic resonance has to lie where the imaginary part of the photonic mode is
smaller than the exciton-photon coupling matrix element. This consideration
is similar to the argument given in the previous section for what concerns the
weak/strong coupling crossover in planar microcavities with embedded QWs.
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Figure 4.5: (a) Bare exciton and photon modes in the absence of interaction,
for an exciton resonance ~Ω0 = 1.58 eV. (b) Real part of complex photonic
crystal polaritons eigenenergies (points) calculated with the quantum theory,
and dispersion of excited modes [squares, from (c)]; the vacuum field Rabi
splitting is shown by an arrow. (c) Calculated variable-angle reflectance for
the same structure as in (b), with semi-classical treatment of the QW layer.
(d) Imaginary part of photonic crystal polaritons eigenenergies.

From Figs. 4.4a and b we see that for ~Ω0 = 1.58 eV the imaginary part of
the photonic quasi-guided mode is about Im(~ω) = 10−3 eV. We thus as-
sume to tune the exciton resonance to ~Ω0 = 1.58 eV, as shown in Fig. 4.5a.
The results obtained by diagonalizing the full quantum Hamiltonian of the
system are shown in Fig. 4.5b (points), where this time the photonic band
dispersion is strongly modified by the effects of the non-perturbative exciton-
photon coupling. Only two exciton center-of-mass quantized modes are taken
in the basis set, which are largely sufficient in this case because the coupling
with the photonic mode is mostly given by the lowest excitonic resonances.
The results of our quantum theory are confirmed by comparison with scatter-
ing matrix calculations (squares) of the mode dispersion, extracted from the
variable-angle reflectance spectra of Fig. 4.5c. As already pointed out in pre-
vious sections and in App. A, the sharp features appearing in the reflectance
spectrum correspond to the excitation of quasi-guided modes above the light
line, thus giving a point (k, ω) of the corresponding band dispersion through
the relation k = (ω/c) sin θ. As it can be seen from Fig. 4.5b, the quan-
tum theory is in excellent agreement with the classical approach, without
adjustable parameters7. In particular, both theories confirm the anticrossing

7In this case, for a QW width LQW = 8 nm and a fundamental exciton energy ~Ω0 =
1.58 eV, a LT energy splitting ~ωLT ' 0.38 meV has been used in the scattering matrix
calculation.
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behavior of exciton and photon modes, which is a clear effect of the strong
coupling regime. The resonant features in reflectance spectra correspond to
the excitation of new eigenstates of the system, which are mixed modes of
photonic and excitonic eigenfunctions. We call these modes photonic crystal
polaritons. With the parameters used in this work, the polariton splitting is
as high as 10 meV at the anticrossing point, kx ' 0.14, as shown in Fig. 2b.
This splitting is found to be slightly larger than in semiconductor-based mi-
crocavities [116, 117, 118], see also previous Section. This is interpreted as
follows. In a Fabry-Pérot cavity with embedded QWs, the exciton-photon
coupling is well described by Eq. 4.18, in which the effective extension of the
field Leff is usually large due to the field penetration in the Bragg mirrors.
In the systems we are considering, the coupling is mainly determined by the
overlap integral of exciton center of mass envelope function and the spatial
electric field profile (see Eq. 4.35). In particular, owing to the approxima-
tion made in Eq. 4.37, the value of the electric field at the QW position is
determinant. In photonic crystal membranes the electromagnetic field of a
quasi-guided mode is strongly confined within the core region, and thus the
field-maximum at the core center increase by a factor of ∼ 3 the strength
of the coupling. We thus predict a larger vacuum-field Rabi splitting for
photonic crystal polaritons, which is almost of the order of the bulk values
typical of GaAs crystals (∼ 16 eV) and it is larger than for cavity polaritons.

In Fig. 4.5d, finally, the imaginary part of the PCPs complex eigenenergies
is shown. At kx ' 0.14 the imaginary parts of the upper and lower polariton
branches become equal to the same value Im(E) = 10−3 eV, thereby indi-
cating that mixed states of radiation and matter form in the PC slab. The
dispersionless curve at Im(E) = 10−4 eV in Fig. 2c corresponds to the uncou-
pled excitonic modes. Plotting the imaginary part of the complex polariton
eigenenergies can be useful to clearly identify the point of exciton-photon res-
onance within the Brillouin zone, corresponding to the point in which upper
and lower polariton modes have the same linewidth.

We now turn to two-dimensional periodic systems. We consider as a
model system a photonic crystal membrane of GaAs patterned with a trian-
gular lattice of air holes, with a InGaAs QW grown at the center of the core
layer. The main physical properties of photonic eigenmodes in such systems
have been clarified in Sec. 3.1. Only photonic modes that are even with
respect to horizontal plane mirror symmetry (σxy = +1) are considered here,
because they couple with the fundamental exciton eigenmode of a QW placed
at the center of the core layer (antinode position for the electric field). For
what concerns the QW, we assume the same parameters used for the one-
dimensional case, but the fundamental exciton resonance is chosen to be
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Figure 4.6: Photonic band dispersion for a 2D lattice of air holes in a dielec-
tric membrane with parameters: d/a = 0.4, r/a = 0.3, a = 350 nm. The
exciton fundamental level at 1.48 eV is also plotted (in absence of interac-
tion). Only even modes with respect to the horizontal midplane (σxy = +1)
are shown, and for each symmetry direction the modes are classified as odd
(full lines) or even (dashed lines) with respect to the corresponding plane of
incidence.

~Ω0 = 1.48 eV8. In particular, the fundamental exciton linewidth and the os-
cillator strength per unit area are set to Γex = 0.1 meV and f/S = 8.4×1012

cm−2, respectively. Parameters of the membrane periodic patterning are:
d/a = 0.4, r/a = 0.3, a = 350 nm. In order to make a realistic calcula-
tion, the dielectric constant of the GaAs core layer has been set to the value
εdiel = 12.95, which is appropriate for GaAs at low temperature (T → 0)
and around the operation energy 1.48 eV. The actual observability of polari-
tonic effects requires, in fact, the low temperature experimental conditions.
A number of 109 plane waves and 4 guided modes were taken in the basis
set for the GME calculation.

The photonic band dispersion calculated along the main symmetry di-
rections (ΓM and ΓK) for this structure is shown in Fig. 4.6, where only
σxy = +1 modes are considered. The modes are further classified with re-
spect to the symmetry operation σ̂kz, i.e. they can be even (σkz = +1) or odd
(σkz = −1) for mirror symmetry with respect to a given plane of incidence,
identified by the symmetry direction. In Fig. 4.6 these modes are called TE-

8It is worth noting that the fundamental exciton resonance in, e.g., InxGa1−xAs QWs
can vary almost continuously from 1.3 to 1.7 eV depending on the stoichiometric concen-
tration, x, or on the doping of semiconductor materials.
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Figure 4.7: Complex energy dispersion of bare exciton and photon modes
for energies around the excitonic resonance and along the main symmetry
directions of the triangular lattice. Left: imaginary part of modes along ΓM.
Middle: real part of modes. Right: imaginary part of modes along ΓK.

(odd) and TM-polarized (even), as they can be excited in experiments by
these polarizations of incoming beam. The exciton resonance is also plot-
ted as a dispersionless line at 1.48 eV. It can be seen that peculiar effects
should arise in the two-dimensional photonic crystal slab when the exciton
dispersion crosses more than one photonic mode. As it can be seen from
Fig. 4.6, the exciton level crosses different photonic eigenmodes in different
points of the irreducible Brillouin zone, the strong or weak coupling regime
depending on the intrinsic photonic linewidth. Thus, it can happen that,
within a given symmetry direction, the exciton is in strong coupling with
one photonic mode and in weak coupling with the other, or it can be always
in strong coupling, or only in weak coupling regimes. It should be noted
that, in the absence of disorder effects, photonic crystal polariton states al-
ways form when the resonance condition occurs below the light line, owing
to the vanishing imaginary part of truly guided photonic modes. In this case
the polariton is non-radiative.

In order to understand the fundamental physical mechanism leading to
the strong coupling regime, we plot in Fig. 4.7 the complex eigenenergies
of bare exciton and photon modes in the energy window 1.46-1.50 eV. The
fundamental exciton level (dot-dashed line in the middle panel) at 1.48 eV has
dispersionless imaginary parts along all the symmetry directions, represented
by closed points at Im(E) = 10−4 eV in the left and right hand side plots. The
imaginary parts of photonic eigenmodes, calculated by the GME method and
the perturbative coupling to radiative modes (see Chapter 1), display non-
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trivial behavior as a function of the wave vector in the irreducible Brillouin
zone.

The two photonic bands along ΓM, which are odd for mirror symmetry
with respect to the plane of incidence, are marked by numbers 1 and 2
respectively. Correspondingly, the imaginary parts of mode energies for each
of these two bands are plotted in the left panel of Fig. 4.7. As it can be
noticed, band 2 has vanishingly radiative losses when crossing the light line
and becoming a truly guided mode, while band 1 has vanishingly Im(E) on
approaching the Γ point. The latter behavior is determined by symmetry
considerations [47]. What is important to notice in the left panel of Fig. 4.7
is that in correspondence of the exciton resonance, both photonic eigenmodes
have very small radiative losses (Im(E) < 10−3 eV), in particular the photonic
radiative damping is much lower than the exciton-photon coupling for this
structure (about 6 meV). We thus reasonably expect that photonic crystal
polaritons should form at two different points in the irreducible Brillouin
zone along ΓM, with two distinct anticrossings between exciton center-of-
mass levels and photonic bands.

Considering now the ΓK direction, it can be seen that the two photonic
modes have different symmetries with respect to the plane of incidence. In
particular, the quasi-guided mode starting at the Γ point is even (σkz = +1)
with respect to the plane of incidence, while the other one is odd (σkz = −1).
The even mode has vanishingly Im(E) on approaching the Γ point, like the
corresponding mode along ΓM. On the contrary, the odd mode has much
higher radiation losses (Im(E) > 10 meV). This means that excitons will
be in strong coupling with the even band, while they will display a crossing
behavior with the odd photonic mode.

We solve the quantum mechanical problem by employing 5 photonic
bands and 10 exciton center-of-mass quantized eigenmodes in the basis set
for the construction of the complex Hopfield matrix, for each k-point in the
irreducible Brillouin zone. At the same time, like for the one-dimensional
case, we solve the scattering matrix problem in order to calculate the angle-
resolved surface reflectance for comparison between quantum and classical
approaches.

In order to recover the dispersion of photonic crystal polaritons around
the Γ point, TE- and TM-polarized incident plane waves have been used for
reflectance calculations along ΓM and ΓK, respectively. In the scattering
matrix treatment, a QW layer of width LQW = 8 nm and a LT splitting
~ωLT = 0.4 meV has been assumed, which is consistent with the parameters
used in the quantum calculation. Results are plotted in Fig. 4.8a and c,
in which the reflectance spectra display the known features as a function of
the angle of incidence, marking the excitation of the radiative eigenmodes
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Figure 4.8: Photonic crystal polaritons in 2D triangular lattice along the
main symmetry directions. Scattering matrix calculations of reflectance spec-
tra along (a) ΓM (TE incident light) and (b) ΓK (TM incident light) are
compared to quantum calculations of mode dispersion in (b): small circles
are for the quantum theory results, and square points are extracted from
reflectance spectra in (a) and (c).

of the structure. Even if these resonant features are not so clear as in the
1D case, it has been possible to extract the points (k‖ = (ω/c) sin θ, E) and
to obtain the dispersion of these eigenmodes. The result is shown in Fig.
4.8b with square points, which are superimposed to the quantum theory
calculation of eigenmode dispersion. Despite a negligible discrepancy in the
high k region along ΓM, mainly due to the very small shift in the photonic
energies caused by second-order coupling to radiative modes, which is not
taken into account in the GME method (see Sec. 1.2), the overall agreement
between the two complementary theoretical approaches is very satisfactory.
In particular, coupled exciton-photon modes with two anti-crossings along
ΓM can be seen, which confirm the arguments given from Fig. 4.7. Notice
that the polariton splitting at resonance is, as in the one-dimensional case,
∼10 meV, i.e. larger than the typical values measured in III-V microcavities
[116, 117, 118]. This is due, as said before, to the strong field confinement
in the slab waveguide, as compared to semiconductor microcavities, where
the electromagnetic field has a sizeable penetration length in the distributed
Bragg reflectors. The thick line corresponding to the exciton resonance in Fig.
4.8b is due to the center-of-mass quantized energy levels calculated by solving
the Schrödinger equation for the envelope function in the periodic piecewise
constant potential, which are not resolved on this energy scale and appear as
a continuum of modes. The crossing of the odd photonic mode and center-
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of-mass quantized exciton energies along ΓK has been confirmed also by
reflectance calculations (not shown here), by using a TE incident light beam.
As a final remark, it should be noted that both in one- and two-dimensional
case, the exciton resonance is always excited in reflectance. This is due to
the fact that even in the strong coupling regime, the exciton is still radiative
in the continuum of leaky modes of the effective planar waveguide. This has
been also experimentally confirmed by transmission spectra in organic-based
distributed feedback microcavities with an excitonic active layer in the core
of the waveguide9, as reported in Refs. [13, 98].

The results shown in this Section could be the starting point of exciting
developments in this research field, and pave the way for a renewed interest
in polariton physics. Even if the present work is only theoretical, there is
great confidence that experimental proofs of our predictions could be made in
GaAs-based systems. Calculations by the scattering matrix method represent
an exact solution of Maxwell’s equations, and are the theoretical realization
of an angle-resolved reflectance experiment (see Apps. A and B). The main
challenges for experimentalists should be the low temperature set-up condi-
tions, the good fabrication accuracy the photonic crystal lattices, and the
use of an appropriate tuning parameter. Collaborations have been started
for the design and fabrication of samples in which photonic crystal polariton
states could be detected.

The future perspectives, if these statements should be proved, take ad-
vantage of the past research on microcavity polaritons. We believe that many
of the interesting physical properties studied in the last 10 years for planar
microcavities with embedded QWs could be studied also for photonic crys-
tal polaritons. Among the other things, the very interesting phenomenon of
amplification of stimulated scattering due to the peculiar dispersion charac-
teristics of light around the Γ point, in analogy to what has been discovered
for cavity polaritons [121], greatly attracts our attention.

9Roughly speaking, these systems are analogous to the one represented in Fig. 4.3a, but
with a weak index in-plane modulation and low index contrast along the vertical direction;
the active medium is constituted by organic-based QW layers, whose excitons behave as
Frenkel-type quasi-particles (i.e., not free in the plane of the QW).





Conclusions

In this work, a theoretical study of one- and two-dimensional photonic crys-
tals embedded in planar dielectric waveguides, or photonic crystal slabs, has
been presented. These systems have recently attracted much attention, be-
cause they allow for a full three dimensional control of light propagation or
confinement, and they are much easier to fabricate than three-dimensional
photonic crystals. The theoretical investigation of photonic crystal slabs has
been undertaken by using a recently developed theoretical approach [46, 47],
which has been defined Guided-Mode Expansion (GME) method.

The GME method has been described in detail in the first chapter. First
of all, an introduction to the formalism and to the main physical concepts re-
garding photonic eigenmodes in periodic dielectric media has been provided,
by introducing the plane-wave expansion method. After that, the physics of
planar dielectric waveguides has been explained, and a comparison between
experimental data and calculated photonic dispersion of guided modes in
Silicon-on-Insulator (SOI) waveguides has been shown. This introductory
Section has been intended to provide the non-specialized reader with a com-
plete theoretical background in order to understand the GME method, which
basically relies on separating the planar and vertical dynamics of the prob-
lem. Photonic eigenmodes in a photonic crystal slab are expanded in a set
of factorized basis functions, which are constituted by plane waves for the
planar coordinates and by the guided modes of an effective planar waveguide
with spatially averaged dielectric constant for the vertical coordinate. The so
called light line issue has been introduced and clarified, according to which
only the modes whose dispersion falls below the light line of the cladding
(or claddings if the waveguide is asymmetric) material are truly guided and
stationary. The guided modes of the effective planar waveguide that, owing
to the in-plane periodicity, are folded back into the irreducible Brillouin zone
and fall above the light cone are defined quasi-guided. These modes have a
finite radiative linewidth due to perturbative coupling to the continuum of
leaky modes. A theory has been formulated to calculate both intrinsic (i.e.
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due to the periodicity of the dielectric constant in the plane of the waveg-
uide) and extrinsic (i.e. induced by disorder effects) losses in photonic crystal
slabs. The approximations assumed in the numerical implementation of the
method have been extensively discussed. The GME approach represents not
only a fast and accurate method to calculate photonic mode dispersion and
radiation losses in photonic crystal slabs, but also a clear theoretical frame-
work for the understanding of the basic physical properties of these systems.
Although it can be applied also to low contrast structures, accuracy of the
method has been thoroughly checked mainly for what concerns high index
contrast photonic crystal slabs, thus we have restricted our theoretical anal-
ysis to membranes or SOI structures.

The presentation of scientific results is organized into three chapters,
whose main results are summarized in the following.

In Chapter 1 we have presented results for one-dimensional photonic crys-
tal slabs, namely high index contrast and strong dielectric modulation waveg-
uide gratings [49]. Even if these systems are known from the literature of
diffraction gratings, no systematic study and fundamental understanding of
their physical properties has been published before. In this chapter we ad-
dress the problem of clarifying the nature of photonic eigenmodes, in both
symmetric and asymmetric waveguide structures, as compared to the uniform
dielectric slab and to the reference one-dimensional system, namely the well
known distributed Bragg reflector. A thorough analysis of gap maps, calcu-
lated by considering both truly- and quasi-guided photonic modes, has been
presented for different waveguiding layer thicknesses. The main conclusion
is that a complete (i.e. common to all polarizations and parities of photonic
modes) photonic band gap is generally not found in such systems, owing to
the different confinement conditions of transverse and longitudinal polariza-
tion modes. This is at variance with the reference one-dimensional system
for in-plane propagation, in which the two polarizations are degenerate and
a complete band-gap is always found at normal incidence. A comparison
with measured photonic band dispersion in SOI samples has been presented,
thus showing the reliability of our theoretical approach. Then, a systematic
study of intrinsic diffraction losses for quasi-guided modes in one-dimensional
systems has been presented, showing the non-trivial behavior of the out-of-
plane radiative mechanisms of Bloch waves as a function of band index and
structure parameters.
In the second part of the chapter, a theoretical study of cavity modes in SOI-
based one-dimensional photonic crystal slabs has been shown [54]. The cavity
design was intended for an operation wavelength λ = 1.5 µm. The analysis of
quality (Q) factors of cavity modes has been performed by using three differ-
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ent theoretical approaches, namely GME, scattering matrix method (SMM),
and Fourier modal expansion (FME) method. The Q-factors obtained by
the FME method increase with the number of periods in the Bragg mirrors
and tend to the vertical Q determined by GME or SMM methods when the
effect of escape in the finite 1D structure is negligible. We have concluded
that Q-factors of cavity modes can be obtained from experiments by cou-
pling from the surface of the waveguide and measuring the reflectance of a
periodized cavity system. The cavity mode in reflectance spectra is more
easily detectable close to grazing (normal) incidence for structures with first-
(second-) order mirrors. This may be advantageous over transmission mea-
surements that are made difficult by the length of the structure, when the
transmission in the cavity mode is very low owing to diffraction losses. Fi-
nally, a comparison between calculated and experimentally determined pho-
tonic dispersion in periodized cavity systems (realized with the proposed
design) has shown a very good agreement, which is important for prospec-
tive studies on the experimental determination of Q-factors through these
kind of measurements.

In Chapter 2 we addressed the problem of photonic eigenmodes in two-
dimensional photonic crystal slabs. As model system, we have considered
the most studied structure in literature, namely the triangular lattice of air
holes both in membrane and SOI configurations. In the first part, an intro-
duction to the basic properties and symmetry classification of quasi-guided
modes has been given, and compared to dispersion properties of the uniform
planar waveguide and the ideal two-dimensional photonic crystal. Then, the
formation of propagating defect modes in straight line defect waveguides in
the triangular lattice of air holes is described, by using the GME method
with a supercell approach. In a photonic crystal slab, these defect modes
can be guided, besides the total internal reflection mechanism to the dielec-
tric/air interface, by the in-plane photonic band gap properties. This issue
is a crucial one, because they could be useful as optical interconnects also
with sharp bends in prospective applications to photonic integrated circuits.
A comparison between GME calculations and measured dispersion charac-
teristics of both truly- and quasi-guided photonic modes has been shown for
SOI-based line defects photonic crystal waveguides with supercell repetition.
A very good agreement has been found, by assuming nominal sample param-
eters, in particular for what concerns the theoretical fit of defect modes of
both parities with respect to the plane of incidence [53].
A very important issue, for prospective applications of these systems to inte-
grated photonics, is the non-trivial problem of out-of-plane radiation losses
induced by structural imperfections of the periodic lattice [50]. In the second
part of this chapter, we have shown a systematic study of disorder-induced



124 CONCLUSIONS

losses as a function of the main structural parameters and degree of disorder.
The extrinsic losses of truly guided defect modes, whose dispersion lies below
the cladding light line, increase quadratically with the disorder parameter.
This indicates that small advances in the fabrication accuracy could lead to
sensible lowering of these losses, giving rise to effective applications of these
systems. For what concerns the dependence on structural parameters, ex-
trinsic losses have been found to depend weakly on the air fraction, while
they slightly increase on decreasing the core layer thickness. It has been
shown that disorder-induced losses are very sensible to the increase of the
channel width, i.e. to the distance of the row of holes surrounding the linear
defect. In particular, propagation losses of ∼ 0.15 dB/mm are predicted [52],
which are definitely comparable to those of Silicon wires in the monomode
frequency region [91]. These results still await for experimental confirmation,
but they show that these systems are very promising in view of all-optical
integration. A comparative analysis of disorder-induced losses in membrane
and SOI systems has been also presented. Finally, our theoretical model has
been tested through a favorably good agreement with available experimen-
tal measurements of losses in single-line defect photonic crystal waveguides
made in Silicon membranes. In future developments of the present model,
inclusion of side-wall roughness of each hole could be considered, with the
purpose of making a direct comparison with strip Silicon waveguides and to
prove the advantages of photonic crystal waveguides.

In the last Chapter we have shown the formulation of a pure quantum
mechanical theory of radiation-matter interaction in photonic crystal slabs.
Radiation-matter coupling in confined electronic and photonic systems has
been one of the major source of research in Solid State Physics after the
discovery of strong exciton-light interaction in planar microcavities with em-
bedded quantum wells [116]. This strong coupling regime leads to the for-
mation of mixed states of radiation and material excitations, called cavity
polaritons.
In this work, we have addressed systems like one- and two-dimensional pho-
tonic crystal slabs with one or more quantum wells grown at the center of
the core layer [51, 52]. The quantum well has the same in-plane periodic
patterning as the photonic lattice. We assumed realistic parameters for both
the dielectric material constituting the guiding layer for the electromagnetic
field and the quantum well material. We assumed the latter to have a strong
excitonic resonance in the energy range considered in the calculations. Our
analysis has been restricted to photonic crystal membrane structures, in or-
der to illustrate the main physical concepts of the problem. Extension to
asymmetric systems are also being considered. We have shown that in pho-
tonic crystal slabs polaritonic effects can arise, and the exciton-photon cou-
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pling is ∼ 3 times larger than for microcavity polaritons. Results from the
quantum treatment of radiation-matter interaction have been compared to
semi-classical results from a scattering matrix approach, in which the quan-
tum well layer has been assumed to have a frequency dispersive dielectric
constant, showing an impressive good agreement. No adjustable parameters
were considered in the calculations with the two complementary theoreti-
cal approaches. These results, if experimentally confirmed, should pave the
way for new interesting research developments. Further applications of the
present theory concern the study of nanocavity polariton states, in which QW
excitons interact with three-dimensionally confined photonic eigenmodes in
a photonic crystal membrane nanocavity. The interplay of photonic band
gap properties and polaritonic effects within the same structure is expected
to yield a renewed interest in topics such as the stimulated polariton scatter-
ing [121] and the polariton laser. Another interesting perspective, which has
not been discussed in the present work, is the possibility to exploit high-Q
photonic crystal nanocavities in order to observe strong coupling effects in
three-dimensionally confined exciton and photon systems. In this case, a
single quantum dot exciton should be placed at the electric field antinode
position of a point defect cavity in a photonic crystal slab [55].

Future developments of the present work go in many directions, and some
of them are briefly outlined here.
For what pertains one-dimensional systems, a perspective of the work pre-
sented in the first chapter is the application of GME to treat non-linear op-
tical systems. The study of higher-order harmonics generation in waveguide-
embedded photonic crystals is a very complicated problem. Concerning, e.g.,
second-harmonic generation in materials with a second-order optical non-
linearity, gap maps calculations represent a powerful tool in order to find
resonance conditions for the fundamental and the second-harmonic fields, by
using different dielectric constants for the two resonant frequencies. These
studies are being performed within the European project COST P11, in con-
nection with the problem of phase-matching in one-dimensional gratings as
a means for enhanced second-harmonic generation.
Disorder effects on propagation losses of linear defect modes in photonic
crystal slab waveguides are being studied with the purpose of extending the
model of disorder employed in the present work. In particular, a model to
study scattering losses of guided modes induced by surface roughness is un-
der investigation. This could bring a direct comparison of propagation losses
between strip waveguides and photonic crystal linear waveguides of compara-
ble dimensions. We believe that reduced scattering losses in photonic crystal
waveguides can be reached with current fabrication technology, with the ad-
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vantage of monomode propagation for dimensions of the system of the order
of the dimensions of strip waveguides.
The study of the modifications of radiation-matter interaction induced by
the spatial periodicity of the dielectric constant in the plane of the waveg-
uide is not restricted to the strong coupling regime. In particular, peculiar
modifications of spontaneous emission properties of active materials within
a photonic crystal slab are expected to occur in the vicinity of a photonic
band edge. Furthermore, the formation of photonic crystal polaritons in such
systems opens the way for the study of stimulated polariton scattering. The
quantum formalism could be extended to treat polariton-polariton scattering
processes, analogous to what previously studied for microcavity polaritons
[123].

The first book dedicated to the basic properties of photonic crystals dates
back to 1995 [5], and it was intended as a starting tool for beginning re-
searchers in this field. Since then, about nine years ago, a huge amount
of work has been produced by the scientific community, and it is almost
impossible to take account of the whole literature on this argument and of
the many groups involved in photonic crystals research projects all over the
world. Anyway, there is still a lot of work to do, and many physical as-
pects have to be clarified independently of the questions concerning the so
called killer application of photonic crystals, which sometimes seems to be
the only task moving research efforts. It is hard to predict, at the present
stage, if photonic crystal-based integrated circuits will enter daily life, thus
revolutionizing the technology market, but we hope that the present work
can represent a useful step towards a full understanding of these interesting
systems, which for physicists should be a good result regardless of application
perspectives.



Appendix A

Experimental techniques

Since the beginning of the research field of photonic crystals in 1987 [2, 3],
one of the main purposes has been the determination of the photonic band
dispersion in photonic band gap materials, for which various methods have
been proposed in the last 15 years. The most efficient technique for measur-
ing quasi-guided modes in photonic crystal slabs, and indirectly their disper-
sion above the light cone, has been separately introduced in Refs. [13, 14].
It is based on the measurement of the optical transmittance or reflectance
spectra at variable angles with respect to the slab surface. In the opti-
cal spectroscopy laboratory of the Department of Physics “A. Volta” of the
University of Pavia, a variable-angle reflectance (VAR) set-up has been de-
veloped. It is worth remarking that all the experimental results shown in
the present thesis have been obtained in Pavia (see also introductory notes).
The VAR technique will be briefly outlined in this Appendix, and the reader
will be referred to other publications for details. The present Appendix is
necessary in order to better understand the comparisons between theory and
experimental data shown throughout the present work.

The variable-angle reflectance

The technique basically consists in coupling an external light beam of known
polarization to the photonic modes of the layered planar waveguide with a
periodic patterning, as schematically shown in Fig. A.1a. These modes,
folded in the first Brillouin zone owing to the periodicity in the plane, may
become radiative. The excitation of a photonic mode is characterized by a
particular resonant feature superimposed to the otherwise smooth reflectance
spectrum of the unpatterned waveguide, coming from the interference fringes
of the multilayered structure. The VAR is important also because it allows
the measurement of both the real and imaginary parts of photonic eigen-
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Figure A.1: (a) Geometrical scheme concerning the variable-angle reflectance
experimental set-up; (b) description of the experimental realization of the
variable angle reflectance set-up (courtesy of M. Galli).

modes, the latter being related to the spectral linewidth of the reflectance
features. Thus, this technique can also be exploited, in principle, to esti-
mate the propagation losses of quasi-guided modes. The same study can be
performed on defect states, to infer the band dispersion and the attenuation
length of guided modes in photonic crystal slab channel waveguides1. The
angle θ is defined with respect to the direction perpendicular to the slab
surface, and the polarization of the incoming beam is defined with respect
to the vertical plane of incidence, as illustrated in Fig. A.1a.

The optical scheme of the set-up for variable angle reflectance is shown
in A.1b. The light source is an arc lamp (both a Xenon and Mercury lamps
were used) whose light, after being focused on the diaphragm (500 µm, 300
µm and 100 µ pinholes have been used, not shown in the scheme) and then
collimated by a number of plane and circular mirrors, is sent in a Bruker IFS
66/S Fourier Transform spectrophotometer. The reduced light emitting area

1M. Galli, private communication.
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of an arc lamp and so its increased brilliance with respect to normal halogen
lamps give the advantage of a greater signal from the detector and so a
smaller spot on the sample. At the exit of the instrument the parallel beam
passes through a second diaphragm, so to reduce the numerical aperture of
the system, thus increasing its angular resolution (which is better than ±1◦).
While parallel, the light passes through a Glann-Taylor polarizer (to select
between TE and TM polarized light) and is focalized on the sample by the
parabolic mirror with long focal length, thus obtaining a 1 to 1 image of the
pinhole on the sample’s surface. The reflected light is collected by a lens
and sent to the detector. The detectors used were a InSb nitrogen cooled
photodiode, an InGaAs PIN photodiode and a Si photodiode. The output
signal of the detector is then preamplified (integrated preamplifier in the first
case, external in the second) before being sent to the electronic processing
board of the IFS 66/S. Both the sample and the detector are placed on a
circular rotation stage that allows them to independently rotate by an angle
of 360◦; furthermore, the sample is vertically placed on a x-y-z translation
system with micrometric actuators in order to keep it in the optical focus of
the system, choose a particular area of it (with the aid of a CCD camera) and
switch between sample and reference mirror (a silver mirror, whose absolute
reflectivity has been measured with the V-W method). The sample can be
also rotated around an axis perpendicular to its surface, so to choose the
proper lattice direction for the experiment.

How to extract, then, the photonic bands? The incoming momentum has
an angle θ with respect to the vertical direction, and in general an angle φ
with respect to the periodicity direction. The in-plane wave vector is sim-
ply determined by the kinematic process: k = (ω/c) sin θ(x̂ cos φ + ŷ sin φ).
Thus, for each frequency and angle of incidence of the incoming beam the
corresponding wave vector is completely determined. For a fixed high sym-
metry direction of the periodic lattice, x̂, we can set, without loss of gen-
erality, φ = 0. Then, the corresponding wave vector is simply obtained as
k = (ω/c)x̂ sin θ. By varying ω, and θ, one can sample the whole band dis-
persion lying above the light line along the main symmetry directions. From
the energy position of the spectral resonances in VAR spectra and knowing
the incident angles, the points in the (k, ω) plane can be marked giving a
direct measurements of photonic eigenmodes in photonic crystal slabs.

The attenuated total reflectance

An extension of this technique is the angle-resolved Attenuated Total Re-
flectance (ATR). The latter basically relies on the use of a prism between
the incident beam and the sample surface, in order to couple the external
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radiation to the evanescent modes of the structure, thus allowing for a di-
rect measurement of the photonic dispersion of truly guided modes. When
coupling with evanescent modes is considered, care must be taken to con-
trol the distance between the prism and the slab surface. Details concerning
the practical realization of this experimental set-up are given in Ref. [53].
An example of application of ATR has been shown, e.g., in Fig. 1.6 for
what concerns the measurement of truly guided modes in a homogeneous
asymmetric slab made of a thin Silicon layer on a Silicon dioxide cladding.
As in the case of ordinary VAR experiments, the dispersion in the (k, ω)
plane can be mapped by the knowledge of the incident angle and through
the energy-momentum conservation law.



Appendix B

The scattering matrix method

The scattering matrix method (SMM) [31] allows to calculate reflection,
transmission and diffraction for any layered structure having a one- or two-
dimensional pattern, as schematically shown in Fig. B.1. It is the theoretical
implementation of the experimental techniques described in App. A. The
method is based on the idea of representing the electromagnetic field in each
layer by two-dimensional plane-wave expansion and propagating the set of
amplitudes through the layers by means of the scattering matrix, instead of
the usual transfer matrix, because of better numerical stability.

Considering the j-th layer of a PhC slab, the magnetic field can be ex-
panded on a zero-divergence plane-wave basis:

Hk,q(x, z) =
∑

G

(
cx(k + G, q)

[
x̂− 1

q
(kx + Gx)ẑ

]
+

+ cy(k + G, q)
[
ŷ − 1

q
(ky + Gy)ẑ

])
ei(k+G)·x+iqz , (B.1)

where k is the in-plane Bloch vector, q is the wave-vector along the vertical
direction, G is a reciprocal vector and cx, cy are the expansion coefficients;
x̂, ŷ, ẑ are the axes unit vectors. Eventually, in each layer, one has to solve
the following master equation

[[H]][[C]] = q2[[C]] , (B.2)

where the form of the hamiltonian [[H]] can be obtained by plugging the
magnetic field expansion into Maxwell’s curl equations. The coefficients are
grouped in the vector [[C]] = ([[cx]], [[cy]])

T , where [[ci]]G = ci(k + G, q), i
being either x either y. If N is the number of reciprocal vectors used in the
expansion, the “hamiltonian” matrix has dimensions 2N × 2N . The fields in
each layer can be expressed as a combination of backward and forward waves
with vertical wave-vector qn, where q2

n are the eigenvectors of Eq. B.2, and
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Figure B.1: Kinematics of reflection and diffraction in air. The angle of
incidence θ is defined with respect to the vertical direction z. The index j
labels the layers along the vertical direction.

complex amplitudes an and bn. These amplitudes have to be determined by
applying the boundary conditions at each dielectric interface, plus an initial
condition. Since the boundary conditions are easily worked-out on the in-
plane field components, it is convenient to find the relationship between the
latter and the amplitudes an and bn. Using the following matrix notation for
the in-plane field components [[h‖(z)]]G = (hx(k + G; z), hy(k + G; z))T the
linear combination reads

[[h‖(z)]] =
∑

n

[[C]]n
(
eiqnzan + eiqn(d−z)bn

)
, (B.3)

where [[C]]n are the eigenvectors of Eq. B.2, d is the thickness of the layer
and 0 ≤ z ≤ d. The arbitrary sign in

√
q2
n is chosen to make Im{qn} > 0.

An expression similar to Eq. (B.3) holds for the electric field components.
The scattering matrix relates the amplitudes of forward and backward

waves in different layers of the structure. More precisely, the ingoing waves
are found in terms of the outgoing ones. Since the amplitudes are vectors of
dimension 2N , the scattering matrix [[S]] must have dimensions 4N × 4N :

(
[[a]]j
[[b]]j′

)
= [[S(j′, j)]]

(
[[a]]j′
[[b]]j

)
. (B.4)

where j and j′ represent two layers. The scattering matrix contains the elec-
tromagnetic boundary conditions, i.e. continuity of the in-plane field com-
ponents of E and H. In a reflectance calculation, if j = 0 labels the surface
and j = N the substrate, [[a]]0 is determined by the incident geometry and
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[[b]]N = 0, and thus [[b]]0 refers to reflected and diffracted waves at the sur-
face, while [[a]]N is for transmitted and diffracted waves in the substrate (see
Fig. B.1). The SMM is particularly suited for modelling realistic conditions,
including both material dispersion, ε(ω), and absorption, Im{ε} 6= 0.

The incident TE or TM plane wave has to be translated into the amplitude
[[a]]0. If the lattice period is sufficiently short that the in-plane wave-vector
lies within the Brillouin zone, the incident fields correspond to the G = 0
components of the amplitudes [[a]]0 and the others (G 6= 0) are all zero. The
reflected wave (r) is obtained from the G = 0 component of the amplitude
[[b]]0, which is then resolved into TE-TM polarization using the polarization
projector operators. The reflection coefficient R is simply the Poynting vec-
tor of the reflected wave. All the G 6= 0 components of [[b]]0 correspond to
evanescent waves and contribute to the near field.
When the in-plane wave-vector of the incident wave is sufficiently large to
lie outside the Brillouin zone, diffraction takes place. If G is the recip-
rocal vector that brings the ave-vector inside the Brillouin zone, the inci-
dent wave provides the G-th components to [[a0]], while all others are zero.
The reflected wave is obtained by taking the same G-th components of the
fields calculated from [[b]]0. All the other components corresponding to non
evanescent waves will contribute to diffraction (D). The same rule apply for
transmission and diffraction in the substrate. If all media are lossless, then
(T + R + D)(TE) + (T + R + D)(TM) = 1. On the contrary, in the presence of
absorption, the sign = must be replaced by <.
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[81] O. Painter, J. Vučković, and A. Scherer, “Defect modes of a two-
dimensional photonic crystal in an optically thin dielectric slab,”
J. Opt. Soc. Am. B 16, 275 (1999).

[82] Ph. Lalanne and J.P. Hugonin, “Bloch-wave engineering for high-Q,
small-V microcavities,” IEEE J. Quantum Electron. 39, 1430 (2003).
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