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We consider spontaneous four-wave mixing in a microring resonator, presenting photon-pair generation rates
and biphoton wave functions. We show how generation rates can be simply predicted from the performance of
the device in the classical regime and that a wide variety of biphoton wave functions can be achieved by varying
the pump pulse duration. © 2010 Optical Society of America
OCIS codes: 130.3990, 190.4380, 270.0270.

Traditional photon-pair sources require bulk optical ele-
ments that limit scalability beyond a research laboratory.
More compact structures, often initially used to enhance
a stimulated (classical) nonlinear optical process, have
recently attracted interest as potential integrated or “on-
chip” sources of quantum correlated photon pairs [1–9].
These include structured media such as microtorroids,
photonic crystal cavities, and microring resonators.
Yet, while microring resonators have been studied theo-
retically with respect to efficiencies for second-harmonic
generation [10], spontaneous parametric downconver-
sion [11], and classical four-wave mixing (FWM) [12],
spontaneous FWM in a microring resonator has not been
thoroughly investigated. Previous theoretical studies of
spontaneous FWM considered fiber geometries [13,14],
and only recently has photon-pair generation from a si-
licon microring resonator been demonstrated [4]. How-
ever, as advances in fabrication technology continue
[15,16], lower losses and greater compatibility with exist-
ing infrastructure will lead to tailored, efficient, and inte-
grated sources of photon pairs. Particularly important is
understanding the range of quantum correlated states
that can be generated.
Here we consider spontaneous and stimulated FWM

in a microring resonator side coupled to a single-
channel waveguide [see Fig. 1(a)]. We study quantum
and classical processes within the same framework
[17] and relate the efficiency of photon-pair generation
via spontaneous FWM to that of the corresponding
stimulated (classical) process. We calculate the quantum
state at the output of the structure for a given input state,
including the possibility of the generation of multiple
pairs, limited only by the undepleted pump approxi-
mation; for photons generated at a single pair of reso-
nances, we show that it is easy to control the Schmidt
number [18] by varying the temporal duration of the
pump pulse.
As usual, we treat the coupling between the ring

and the channel as weak and occurring at a single point
[11]. The FWM processes are described by the third-
order nonlinear Hamiltonian Ĥ ¼ Ĥch þ Ĥcp þ ĤR,
where

Ĥch ¼
X
μ
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with ψ̂μ being the channel waveguide field operator, b̂μ
the ring-resonator operator, ωμ the eigenfrequency,
and vμ the group velocity of mode μ ¼ ðm;NÞ, where
m identifies the transverse mode and N its associated
ring-resonance order; cμ is a coupling constant defined
later, Sμ1μ2μ3μ4 describes the nonlinear effects in the reso-
nator and is given by a straightforward extension of an
earlier expression [17], and we have assumed that the
free spectral range of the ring resonances is large enough
that the ψ̂μ associated with one resonance commutes
with all the others. Then, following [10,11], we consider
a coherent state jψ ini ¼ eαÂ

†
μP−h:c:jvaci in the channel at

the point of coupling, where Â†
μP ¼ R

dkϕPðkÞâ†μP ðkÞ and
âμP ðkÞ ¼ ð2πÞ−1

2
R
ψ̂μP ðzÞe−ikz, such that jαj2 gives the num-

ber of photons in the pulse. We work in the undepleted
pump approximation, assuming that the mode profiles
and group velocities of the modes involved vary little
over the frequency range of interest and find the state
of generated photons resulting from a spontaneous FWM
process. In the present calculation, we neglect loss me-
chanisms, such as absorption, scattering, and Raman
effects, as well as self- and cross-phase modulation

Fig. 1. (a) Schematic of a single-channel ring resonator.
(b) Cross section of the channel.
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effects. We plan to include them in future work, but they
can be safely ignored in the structure we consider [7].
Regardless of howmany photons are generated, within

our approximations the state of generated photons re-
sulting from jψ ini is a two-mode squeezed vacuum. We
write it as jψgeni ¼ eβĈ

†

II−h:c:jvaci, where Ĉ†
II jvaci ¼

1ffiffi
2

p
P

μ1;μ2
R
dk1dk2ϕμ1μ2ðk1; k2Þâ†μ1ðk1Þâ†μ2ðk2Þjvaci is a nor-

malized two-photon state characterized by the biphoton
wave function ϕμ1μ2ðk1; k2Þ. In deriving jψgeni, the main
subtlety (cf. [10]) is that the exact expression for the state
of the output field contains noncommuting operators and
cannot simply be split into an undepleted pump field and
a generated field; we use the Baker–Campbell–Hausdorff
formula [19] to keep only leading-order terms in the ex-
ponential that involve two-photon creation operators. We
then define jβμ1μ2 j2 ¼ jβj2 R dk1dk2jϕμ1μ2ðk1; k2Þj2, and thus
jβj2 ¼ P

μ1;μ2 jβμ1μ2 j2. The biphoton wave function is sym-
metric, ϕμ1μ2ðk1; k2Þ ¼ ϕμ2μ1ðk2; k1Þ, so for jβμ1μ2 j ≪ 1, the
average number of photon pairs generated in modes μ1,
μ2 per pump pulse is 2jβμ1μ2 j2.
Here we consider only Type I FWM, in which the

pump, signal, and idler are all TM polarized; we assume
a Gaussian pump waveform sufficiently narrow to excite
only the resonance order NP :

ϕPðkÞ ¼ expð−ðk − kNP
Þ2=ð4Δ2

kÞÞ=ð
ffiffiffiffiffi
2π

p
ΔkÞ1=2;

where Δk is the wavenumber associated with that reso-
nance order, andΔk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þp

=vNP
T; where T is the in-

tensity FWHM of the pulse in time. This implies that if one
photon is generated near the k associated with resonance
order N on one side of the pump, the other will be gen-
erated near the k associated with resonance order
�N ¼ 2NP − N on the other side, thus reducing double
sums over the modes to single sums. Our approach can
deal with more complicated situations, including non-
classically described pump pulses, but the above assump-
tions greatly simplify the notation; without ambiguity we
now write N in place of μ.
With these considerations, we calculate the relation

between 2jβN �N j2 and jαj2 to be

2jβN �N j2 ¼ 4γ2ℏ2ωNω �N jαj4
Ω2
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4
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where

JN �N ¼
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;

Δωðk1; k2Þ ¼ vNk1 þ v �Nk2 þ ωN þ ω �N − 2ωNP
, and

ΔΩNðkÞ ¼ ivNðk − kNÞ − ΩN . Here L ¼ 2πR is the ring
circumference, with half the FWHM of a resonance line-
width in (circular) frequency ΩN ¼ πjcN j2=vN , simply
related to the usual self-coupling constant, σN , via
ΩN ¼ ð1 − σNÞvN=L; γ ¼ 3�χ3ωNP

=ð4ε0v2NP
�n4AeffÞ is the

usual nonlinear parameter; Aeff is an effective area
[10]; �n and �χ3 are, respectively, a refractive index
and third-order nonlinearity introduced solely for
convenience [17].

We consider long (short) pulses, for which ΩNP
T ≫ 1

(ΩNP
T ≪ 1). For ΩNP

T ≫ 1, we find a normalized bi-
photon probability density

jβϕN �Nðk1; k2Þ=βN �N j2
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with JN �N ¼ π3ðΩN þ Ω�N þ 2ΩNP
ÞðΔ2

kvNv�Nv
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We now apply these results to a specific 47:5 μm radius
structure (see Fig. 1) [7]. We calculate that, for N (and
thus �N) not too far from NP ¼ 310, we have vNP

≈

vN ≈ v�N ≡ v ¼ c
n ¼ 171 μm=ps, and ΩNP

≈ ΩN ≈ ΩN ≡ Ω ¼
2πð0:74 GHzÞ; we also Taylor expand the dispersion
relation for the ring according to ωN ¼ ωNP

þ
vNP

ðkN − kNP
Þ þ ΞðkN − kNP

Þ2, where Ξ ¼ 0:01 μm2=ps.
In Fig. 2, we plot the biphoton probability densities cor-
responding to each of the above limits, with T ¼ 5 ns and
T ¼ 5 ps, for N ¼ 311. The long-pulse-limit biphoton
probability density is long and narrow, whereas the
short-pulse limit is rather circular. Quantifying this, the
Schmidt number for the biphoton wave function, [18]
K ≡ ðPi λ2i Þ−1, where the λi are the eigenvalues of the re-
duced density operator, is 10.00 for the 5 ns pulse, natu-
rally becomes greater for longer pulses, and is 1.09 for
the 5 ps pulse.

In a classical undepleted pump (and signal) calculation
starting from the same microring resonator Hamiltonian,
the idler power generated for a given cw input pump
(signal) power near resonance NP (N) is
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P �N ¼ ðγPNP
LÞ2jFN j2jFN j2jFNP

j4PN; ð5Þ

where the field-enhancement factor is FN ¼ ið1 − σ2NÞ1=2=ð1 − σNeiL�nδN=cÞ for frequency detuning δN from reso-
nance N . We note that this expression agrees with pre-
vious results [7,12], in the limit of no loss and weak
coupling, σN ≈ 1. If we had instead considered the true
cw limit in our quantum calculation, we would have
found, using the same assumptions as above,

2jβN �N j2 ¼
�γPNP

L

�
2 16ωNω �Nv

3Λ
ω2
NP
ΩððωN þ ω �N − 2ωNP

Þ2 þ 4Ω2Þ :

Here we have taken the pump waveform to be a top-hat
function, of length Λ in real space in the long pulse limit,
ΩNP

Λ
v ≫ 1, and identified PNP

¼ ℏωNP
vjαj2=Λ as the aver-

age pump power. Strictly speaking, this corresponds to
the average number of generated photon pairs generated
near resonance orders N and �N per unit time, but multi-
plying by ℏω �Nv=Λ will give the average power of all
photons generated near the resonance order �N :

P �N ¼
�γPNP

L

�
2 16ℏω2

Nω �Nv
4

ω2
NP
ΩððωN þ ω �N − 2ωNP

Þ2 þ 4Ω2Þ :

Lastly, by assuming that, for N (and �N) very close to NP ,
we may take ωNP

≈ ωN ≈ ω �N ≡ ω0, we arrive at

P �N ¼ ðγPNP
LÞ2jF0j6ℏω0v=ð2LÞ; ð6Þ

where F0 is an on-resonance (δN ¼ 0) field enhance-
ment factor. Comparing with (5), we identify ℏω0v

2LjF0j2 as

playing the role of the classical “seed” power in the spon-
taneous calculation.

In conclusion, we have theoretically studied sponta-
neous and stimulated FWM in a ring resonator side
coupled to a single channel, deriving power scaling
relationships for both that should allow the use of experi-
mental results in the classical regime to predict photon-
pair generation rates in the quantum regime. More
generally, we have derived the biphoton wave function
that will result. Considering different pump pulses, we
have shown a dramatic variation in the Schmidt number
of the biphoton component associated with a single pair
of resonances, from near unity for a 5 ps pulse incident
on a standard ring [7] to orders of magnitude larger for
pulses in the nanosecond regime and longer.
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Fig. 2. (Color online) Biphoton probability density for a pump
pulse centered at NP ¼ 310 with (a) T ¼ 5 ns and (b) T ¼ 5 ps.
We consider N ¼ 311 and �N ¼ 309.
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