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We consider spontaneous four-wave mixing (SFWM) in a single-channel side-coupled integrated spaced sequence
of resonators within a fully quantum formalism. We show that the probability of photon pair production can scale
quadratically with the number of resonators, a phenomenon we call super SFWM, in analogy with super-radiant
spontaneous emission. Remarkably, in this situation the spectral probability density of the generated photons is
independent of the number of rings. © 2012 Optical Society of America
OCIS codes: 130.4310, 190.4380, 270.1670.

Quantum correlated photon pair sources continue to get
smaller and more intricate. Starting from bulk-crystal
optics [1], the catalog of sources has expanded to include
Bragg reflection waveguides [2], photonic crystal slab
waveguides [3], and microring resonators side-coupled
to bus waveguides [4–7]. Yet there are still more exotic
structures that have been investigated in the framework
of classical nonlinear optics, and only a few of them
have been studied for their use in quantum optics (see,
e.g., [8]).
In this Letter we focus on a single-channel side-

coupled integrated spaced sequence of resonators
(SCISSOR) composed of N identical rings of radius R
and quality factor Q, with Λ the distance between two
consecutive coupling points [see Fig. 1(a)] [9]. We inves-
tigate the biphoton wave function (BWF) of photon pairs
generated by spontaneous four-wave mixing (SFWM) in
a SCISSOR, demonstrating a simple relation between
this expression and that describing SFWM in a single
microring resonator side-coupled to a channel wave-
guide [10].
Following the asymptotic-in/out field formalism of

[11] and employing the backward Heisenberg picture
approach [12], one can describe SFWM in an arbitrary
integrated device. For a generic structure with two ports,
left (L) and right (R), taking the pump beam to be inci-
dent from the left and the generated photons to exit the
structure to the right, the BWF can be written as
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where ϕP�ω� describes the pump pulse spectrum, vg�ω� is
the group velocity evaluated at ω, and jαj2 and jβj2 are the
average number of pump photons and generated pairs
per pump pulse in the limit of a low probability of pair
production [10], respectively. Here
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is the overlap integral of the asymptotic-in fields
Dasy-in

mk �r�, where for simplicity we have considered a
single-mode channel, and Γijkl

3 �r� characterizes the mate-
rial third-order optical nonlinearity, neglecting disper-
sion and magneto-optic effects, and is simply related
to the usual nonlinearity χijkl3 �r� [12].

Fig. 1. (Color online) (a) Sketch of a one-channel SCISSOR
and (b) transmission phase delay as a function of frequency de-
tuning from ωP for a SCISSOR composed of N � 10 rings with
R � 10 μm, Q � 104, and Λ � 30 μm. Possible signal and idler
frequencies are indicated. Inset: Magnification near ωP .
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Turning now to the specific device discussed above, in
the linear regime and when losses can be neglected, the
entire SCISSOR is an all-pass filter and the fields Dasy-in

mk �r�
at the coupling points of two consecutive rings differ only
by a phase factor eiθ�ω�. In particular, this phase shift at a
given ω is the sum of the contribution θr�ω� given by the
transmission through a single ring and the phase shift
k�ω�Λ due to the propagation between the two coupling
points. Thus we can write

JRR;LL�ω1;ω2;ω3;ω4� � J1;RR;LL�ω1;ω2;ω3;ω4�

×
XN
m�1

eiΘm�ω1;ω2;ω3;ω4�; (3)

where J1;RR;LL�ω1;ω2;ω3;ω4� is the field overlap integral
for a single ring, and
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where
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Here L � 2πR and σ is the self-coupling coefficient de-
scribing the single-point coupling between the channel
and a ring [10].
We now consider a pulse centered at one ring reso-

nance ωP (i.e., k�ωP�L � 2πq, with q ∈ Z) long enough
that we can take ω3 ≃ ωP and ω1 � ω2 ≃ 2ωP in Eq. (1);
we take the phase shift for the pump fields as constant
[13], and the expression for the BWF becomes
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is the normalized BWF for a single ring, with jβ1j2 the
corresponding average number of generated pairs. The

normalization of Eq. (8) gives the number of photon pairs
generated by the SCISSOR:
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When group velocity dispersion (GVD) can be neglected,
one can verify that Eq. (6) is independent of m, and thus
see that the average number of generated pairs jβj2 �
N2jβ1j2 scales quadratically with the number of rings.
In the limit of a true CW pump [14], this leads to a rate
of entangled photon generation that scales quadratically
with the number of rings, in analogy with Dicke super-
radiance [15], where the emission rate scales quadrati-
cally with the number of atoms. The analogy goes beyond
a simple superlinear scaling, in that the vacuum fluctua-
tions that are important for the photon generation have
to be understood as acting over all the rings as a single
quantum system just as they act over all the atoms in
Dicke super-radiance, and hence we refer to this
phenomenon as super SFWM.

Under these conditions the total BWF is the same
(normalized) BWF as for a single microring resonator
side-coupled to a channel waveguide,

ϕRR;LL�ω1;ω2� � ϕ1�ω1;ω2�; �11�

and is independent of N . Note that in a single-channel
SCISSOR there is no mechanism of contradirectional
coupling between the rings, and thus, unlike in coupled
resonator optical waveguides (CROWs) [8], the super
SFWM is not due to the formation of photonic bands.

An interesting problem is the effect of a finite GVD. In
the telecom range, guided mode dispersion of silicon
nanowires can be easily tuned, with GVD from positive
to negative [2000 to −1000 ps∕�nm · km�], by changing
the cross-sectional shape of the waveguide [16]. Thus,
we consider the limit of small dispersion, with

k�ω�≃ k�ωP� �
1
v
�ω − ωP� �

1
2
ξ�ω − ωP�2; (12)

where v and ξ are the group velocity and the GVD para-
meter evaluated at ωP , respectively. A finite GVD implies
that generated photon frequencies spaced equally on
opposite sides of the pump frequency ωP do not have
corresponding wave vectors spaced equally on opposite
sides of the pump wave vector k�ωP�, since

δk≡ 2k�ωP� − k�ω1� − k�ω̄� � −ξ�ω1 − ωP�2; (13)

so that

θm�ω1; ω̄;ωP;ωP�≃ �m − 1�δk
�
Λ� L� 2Lσ

1 − σ

�
; (14)

where the first term in the final parentheses is due to the
wave vector mismatch between pump and generated
fields as they propagate between rings, and the last
two terms are due to the transmission through a single
ring, i.e., using Eqs. (12) and (13) in Eq. (7). In general,
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for high-Q resonators (σ ≃ 1), the final term in Eq. (14)
dominates, and we can define a coherence number
similar to the usual coherence length Lcoh � π ∕jδkj:

Ncoh � ⌊ π

jθm ∕�m − 1�j⌋≃ ⌊ πωP

4Qvjδkj⌋; (15)

where ⌊x⌋ is the floor function and Q≃ ωPL ∕�2�1 − σ�v�
is the quality factor of the ring. The coherence number is
the maximum number of rings for which the generation
efficiency scales with N2. It is inversely proportional to
Q, as well as the GVD parameter and the spectral dis-
tance of the two resonances on which we consider the
SFWM process [see Eq. (13)]. As expected, this number
diverges when jξj → 0.
If we consider a silicon ring with representative values

[16] R � 10 μm, Q � 104, and take ωP � 2π · 200 THz,
v≃ 108 ms−1, ξ≃ 0.01 ps2∕m [−8 ps∕�nm · km�], we find
Ncoh ≃ 1000 for ωP − ω1 ≃ 2πFSR � c∕�nR� (i.e., the
nearest neighbor resonances). In particular, in Fig. 2, we
plot the coherence number given by Eq. (15) as a func-
tion of the frequency difference between the pump and
high energy generated photons. We also show the curve
corresponding to the coherence number calculated con-
sidering the exact phase factor given by Eq. (6). As ex-
pected, the two curves agree best when photons are
generated near a ring resonance, which corresponds to
the largest generation rate [10], with the approximate ex-
pression [Eq. (15)] providing a lower bound. So while the
inclusion of GVD invalidates Eq. (11), the quadratic
scaling of the rate of generated photons with the number
of rings remains approximately valid for up to several
hundreds of rings in an ideal SCISSOR when the idler
and signal are sufficiently close to the pump frequency.
Of course, in a real system, fabrication imperfections
might cause the misalignment of ring resonances and
prevent quadratic scaling from continuing for hundreds
of rings. However, recently SFWM in a 35-ring CROW
structure was demonstrated [8], as were pair generation

rates of several megahertz in a single resonator [5]. Thus
even for 35 rings we expect that pair generation rates of
several megahertz could be achieved in a SCISSOR, but
with a reduction in pump power of over three orders of
magnitude compared to [5].

In conclusion, we have derived very general expres-
sions for both the rate of SFWM in a single-channel
SCISSOR and the BWF that describes the entangled
photons. We have shown that in the limit of negligible
GVD the pair generation rate scales superlinearly with
the number of rings N , while the BWF is independent
of N . We have generalized these results to include the
effects of small GVD.
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