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Photonic Bands and Gap Maps in a
Photonic Crystal Slab

Lucio Claudio Andreani and Mario Agio

~ Abstract—The photonic bands of a two-dimensional (2-D) lat- In the present work, the energies of photonic modes in a
tice patterned in a planar waveguide are calculated by expanding deeply patterned waveguide are calculated by expanding the
the magnetic field on the basis of waveguide modes. The method magnetic field on the basis of guided modes, where each layer

yields both the truly guided modes of the structure as well as the L . .
quasi-guided modes (or guided resonances) which lie above theOf the waveguide is taken to have an average dielectric constant.

light line in the first Brillouin zone. Representative results for the ~ This method goes beyond the nearly free approximation of [26],
photonic bands are shown in the cases of strong- and weak-con-since no perturbative approximation is made and the method is

finement waveguides patterned with a triangular lattice of holes. valid even for a strong modulation of the dielectric constant. The
The gap maps as a function of hole radius are calculated and show guided modes of the “effective” waveguide are folded in the first

significant differences with respect to the ideal 2-D case. A compar- Brilloui d led by the | dielectric t iust
ison of the photonic bands with those extracted from the calculated riflouin zone and coupled by the inverse dielectric tensor, Jus

surface reflectance shows very good agreement, thereby indicating like plane waves in ideal 2-D photonic crystals. The eigenmodes
the reliability of the approach. which fall below (above) the light line are identified with guided

(quasi-guided) modes, respectively, and the energy dispersion of
both kinds of modes is obtained at the same time.

In Section I, we give a short outline of the method, including
. INTRODUCTION some symmetry aspects. In Section Ill, we discuss represen-

WO-DIMENSIONAL (2-D) photonic crystals embeddedtative results for the photonic bands of two kinds of photonic
fabricated at optical wavelengths and may allow control gielectric contrast between the core and cladding is small and
in-plane light propagation to be achieved. These structurds layers are .patterned). We focus on the triangular Iattige of
support two kinds of modes. If the waveguide thickness is n@les, which is the 2-D structure of the utmost technological
too small, guided modes exist whose energies lie below the lighterest. In Section 1V, the gap maps as a function of hole ra-
asymmetric). These modes are true stationary Bloch states &§§tion V, we test the soundness of the method by comparing
are not subject to scattering losses in an ideal structure withgﬂ_ff’ photonic bands obtained by expansion in waveguide modes
roughness. Above the light line of the cladding material, thepdth those extracted from surface reflectance calculated by the
exist quasi-guided modes, or guided resonances, which $feattering matrix method [10]. Section VI contains a summary
within the continuum of leaky modes of the waveguide arff the results.
therefore have intrinsic radiation losses related to out-of-plane
diffraction. IIl. METHOD

The dispersion of guided modes has first been calculated in-, . . .
. : : o ! Let us consider the second-order equation for the magnetic
troducing a supercell in the vertical direction and using a threﬁ:-ld
dimensional (3-D) plane-wave expansion [6], [19]. Both guidede
and quasi-guided modes can be obtained from the position of 1 w2
resonances in the transmission spectra calculated by the finite V x @ VxH=7H 1)
difference time-domain (FDTD) method [15], [25]. Recently, a

nearly-free photon approximation which starts from the guidegherec(r) is the spatially dependent dielectric constant. If the

modes of the slab taken with a homogeneous refractive indemgnetic field is expanded in an orthonormal set of basis states
was formulated by Ochiai and Sakoda [26]; the effect of the nopbeled by the index as

homogeneous components of the dielectric tensor is included
within degenerate perturbation theory.
g P y H(r) = E c, H,(r) 2

Index Terms—Modeling, optical materials, waveguides.
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where the “Hamiltonian” matri%{,,,. is given by a (

i‘-l_ -
L]

Moo = [ 5 (VX H@) - (VX H@)dr. (9
In the present case of a photonic crystal slab, we have a wave-
guide alongz and a periodic 2-D patterning in they plane.

The basis seH,,(r) is chosen to consist of the guided modes
of an effective waveguide, where each layas taken to have

a homogeneous dielectric constant given by the spatial average BB
of ¢;(x, y) within the unit cell [i.e., theG = G’ Fourier com- I I l

ponent of the dielectric matrix; (G, G')]. The indexy of the I I I I I I I I

basis states can be written as= (k + G, «), wherek is |

the Bloch vector in thery plane,G is a 2-D reciprocal lattice

vector ande = 1, 2, ..., amax IS @ discrete index which la- -

bels the guided modes at wavevecko# G. The matrix ele-

mentsH,,, = Hxia,a:k+a’, o Of (4) can be calculated by Fig. 1. Upper panels: triangular lattice of circular air holes in a photonic
noting that thelz dy integral in each layey yields the Fourier crystal slab. (a) Slab waveguide of thicknesgatterned with a triangular
transformffl(G, G’) of the inverse dielectric function. This lattice. (b) Definition of lattice constant. and hole raql|u§r. (c) The

. J . . 2-D Brillouin zone and symmetry points. Lower panels: side view of the
is the same quantity that appears in the 2-D case and canpl@med waveguides considered in this work. (d) Strong-confinement
calculated as usual by e\/aluatiELQG7 G’) and inverting the symmetric wa\_/eguide consisting_ ofaself-s_,tanding dielectric sakb(idge).
resulting matrix [28]. This procedure, which was also used fi:gwi"’l‘é;Xgﬁgeaﬂifkfég‘geggtx‘)’e(g;'ggymf‘:;nocf Jvr;r\'f;gﬁ%t;eggidsi ;:;%er
metallic gratings [29], [30] and has been given a rigorous matér-air/patterned core/unpatterned lower cladding (e.g., SOI system). In this
ematical basis [31], yields a fast convergence in the numberpafper, we present results for the structures (d) and (e).

reciprocal lattice vectors; moreover, it allows one to compare di-

rectly with 2-D photonic structure calculations performed wit

the Eame_(\;vac\j/evegtor CUtOff'f he “effective’ d The same symmetry exists in the ideal 2-D case for in-plane
The guided modesl,,(r) of the "effective” waveguide rep- o4 4ation, where even solutions are referred t& asodes
resent an orthonormal set of states, however the basis set ISABhzero field component#l., E,, E,) and odd solutions
. . Z ) k
complete since the leaky modes of the waveguide are not e calledE-modes (nonzero compo?\en&, H,, H,). For

cluded. When the guided modes are folded in the first Brillow,gbme special symmetry directions in the Brillouin zone (e.g.,
zone, most (sometimes all) of them fall above the light line, i. he ['—M and I'-K directions in the triangular lattice), a

in the energy region of leaky modes: these quasi-guided mo Stical pIane(I%, 2) containing the Bloch vectck is also a

are found here with zero linewidth, since it is the coupling iy or plane of the system: the photonic modes along these
leaky modes which gives rise to out-of-plane diffraction and .\ etry jines may also be classified as even or odd with
therefore to afinite linewidth. Coupling to leaky modes mayalﬁ%spect to specular reflection,.. A more general approach

produce a shift of the resonance energies of quasi-guided mog@gi, contains all symmetry aspects is the group-theoretical
like in the Fano resonance problem [32]: a comparison with @@y 1 o60n as performed in [25].

“exact” reflectance calculation, to be shown in Section V, indi-
cates that such a real energy shift is small under usual circum-
stances. The present method is therefore suited to calculate the
(real) energies of guided and quasi-guided modes: it is concepin Fig. 1, we show schematically the triangular lattice of
tually similar to the commonly used plane wave expansion holes in a dielectric slab (a)—(c) and different kinds of patterned
the 2-D case. Besides the wavevector cutoff, it is also usefulw@veguides (d)—(f), with the assumed values of the dielectric
specify a maximum number of guided modes of the effectienstant. Fig. 1(d) shows ttar bridge, which represents the
waveguide; moreover, the present choice of the average dielgpical strong-confinement waveguide. Takiag= 12 for the
tric constant in each layer is by no means unique. Both issudislectric material is appropriate for a GaAs or Si membrane.
are discussed in the next sections in connection with specifig. 1(e) exemplifies a weak-confinement waveguide, which
examples. is realized, e.g., in the GaAs—AlGaAs system. In both cases,
The waveguide modes at waveveclor G can be of the the waveguide is symmetric. An asymmetric structure is shown
transverse electric (TE) or transverse magnetic (TM) typie, Fig. 1(f), which represents a silicon-on-insulator (SOI)
where “transverse” refers to a vertical plane containing theaveguide where only the Si layer is patterned. In all cases, the
wavevector. TE and TM waveguide modes at different wavevedadding layers are assumed to be semi-infinite. In this paper,
tors are coupled to each other by the off-diagonal components treat only the structures of Fig. 1(d) and (e). Experimental
of the inverse dielectric tensor, thus both must be includeshd theoretical determination of the photonic bands of SOI
at the same time in the basis set. In the case of a symmepiwtonic crystal slabs is reported in [27].
waveguide, mirror symmetry,, with respect to a horizontal  Fig. 2 shows the photonic bands of the air bridge for a hole
zy plane bisecting the waveguide is a symmetry operation kdiusr /¢ = 0.24 (air fraction~0.21) ford/a = 0.3 and0.6,
the system, and the solutions of Maxwell's equations can bempared with the bands in the ideal 2-D case. These and the

Blassified as even or odd with respect to specular refleetjgn

I1l. RESULTS FORPHOTONIC BANDS
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Fig. 2. Photonic bands for the air bridge structure of Fig. 1(d), for a hole radiu$.24a: (a) waveguide thickness= 0.3a; (b) waveguide thicknesé= 0.6a;
and (c) ideal 2-D case. Solid (dashed) lines represent photonic bands which are even (odd) with respect to the horizontal miyoDplt@e lines in (a) and
(b) represent the dispersion of light in air and in the effective waveguide material with the average dielectric constant.

following results were obtained using 109 plane waves and wfth d/a = 0.3, the photonic modes up toa/(27¢) ~ 0.57
to four guided modes at each wavevedtor G for both even can be put in one-to-one correspondence with the bands of the
and odd states. Convergence in the number of plane waves &d3 case [Fig. 2(c)], thereby indicating that the waveguide is
carefully checked in the 2-D case, where a much larger cutoffonomode. A second-order waveguide mode appears above
can be used: 109 plane waves are found to give stable photani¢/(27¢) ~ 0.57. Analogous considerations can be made for
bands up to a dimensionless frequenay/(27¢c) = 0.7 over the case of waveguide thicknegsa = 0.6 [Fig. 2(b)], where
the whole range of hole radii from zero to the close-packirtge confinement produced by the waveguide is less pronounced.
conditionr/a = 0.5. Keeping four guided modes in each parityMoreover, a second-order waveguide mode starts already at
sector also gives very good convergence, except in the casevof (2w¢) ~ 0.3 and the bands at higher frequencies become
thick waveguides with several higher order modes. more complex.

The 2-D bands of Fig. 2(c) display well-known features This example allows us to discuss the trend with respect to
[33]-[37], notably a gap between the first and second bandsveguide thickness: for a small value &fa, the waveguide
for even (orH) modes. The photonic bands of the patternad monomode over a wide frequency range and the photonic
waveguide fall partly into the guided mode region, where thdyands can be interpreted as 2-D bands which are strongly blue-
agree with those calculated in [6], and partly in the leaky modifted, waveguide-induced confinement being stronger for odd
region above the light cone where they must be viewed a®des. When increasing the ratiga, the blue shift is reduced
resonances. Fat/a = 0.3 [Fig. 2(a)] the lowest bands areand a second-order waveguide mode appears with a decreasing
qualitatively similar to their 2-D counterparts, but they areutoff frequency. Forl/a > 0.6 (at a fixed hole radiug/a =
strongly blue-shifted due to confinement in thedirection 0.24), the second-order mode falls into the gap of even modes,
produced by the waveguide. The gap in the even modes op#rereby contributing to losses when linear defects or cavities are
between 0.29 and 0.34 [in terms of the dimensionless frequenmgsent. In view of achieving guided-wave propagation with the
wa/(2wc)], while it lies between 0.2 and 0.23 in the 2-D casdowest possible losses, it is advisable to employ structures with
The confinement effect is stronger for odd modes. This ® quasi-guided modes in the photonic gap; for the air bridge
interpreted as follows: the dielectric tensor of the waveguidsgstem, small values @f/a are more favorable.
in the long-wavelength limit is that of a uniaxial medium, Fig. 3 shows the photonic bands in the weak-confinement sit-
with ¢ = e.. given by the spatial average of the dielectriziation [structure of Fig. 1(e)] for three different values of the
constant and being larger than = ¢,, = ¢, [38]. In the waveguide thickness. Due to the small dielectric contrast be-
2-D case, odd modes have the electric field alengnd feel tween the core and cladding, there are no truly guided modes
the largest of the dielectric tensor components; hence, they aral all photonic modes lie in the radiative region. The dispersion
better confined in the waveguide and have a larger blue shiftquasi-guided modes is very similar to the 2-D case [Fig. 2(c)]
compared to even modes. The six photonic modes af'theand confinementin the waveguide is much less pronounced than
point in each polarization can be interpreted as the fundamerftal the air bridge. However, it is interesting to observe that the
waveguide mode at the lowest nonzero reciprocal lattigap in the even modes iscreasedcompared to the 2-D case.
vectors, which are folded in the first Brillouin zone and spliThe three patterned waveguides are monomode in the whole fre-
by the dielectric matrix. Note that, in the patterned waveguidpiency range shown in the figures, exceptdds = 1 where a
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Fig. 3. Photonic bands for the weak-confinement structure of Fig. 1(e), for a hole radius.24a: (a) waveguide thickness = 0.3q; (b) d = 0.6a; and
(c)d = 1.0a. Solid (dashed) lines represent photonic bands which are even (odd) with respect to reflection in the horizontgl Datted lines represent the
dispersion of light in the effective core and cladding materials.
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Fig. 4. Gap maps for the air bridge structure of Fig. 1(d): (a) waveguide thickhes$.3q«; (b) waveguide thickness = 0.6«; and (c) ideal 2-D case. Solid
(dashed) lines represent the edges of photonic bands which are even (odd) with respect to specular sefledtf@ndotted line in (b) represents the cutoff of
the second-order waveguide mode.

second-order mode appearssal/ (27c) ~ 0.65. Similar to the Indeed, the 2-D gap map of Fig. 4(c) agrees with well-known
previous example of the air bridge, the results of Fig. 3 suggessults for the triangular lattice of holes [35]-[37]; in particular,
that in order to maximize the even gap it is more convenient égbandgap common to even and odd modes is present for a hole
use small values of waveguide thickness. radiusr/a > 0.40. In the plots of Fig. 4(a) and (b), on the other
hand, there is no gap in the odd modes for any hole radius and
therefore no complete bandgap. The bandgap for even modes
occurs at higher frequencies than in the 2-D case, again due to
Fig. 4 displays the gap maps as a function of hole radius feertical confinement in the waveguide.
the air bridge structure of Fig. 1(d) (waveguide thicknéss = It should be remarked that the upper edge of the gap lies inthe
0.3 and 0.6) and in the 2-D case. The purpose of Fig. 4(c) is tadiative region for a hole radius larger than alibdt: [it can be
set a reference for the gap maps in a waveguide and to shewen from Fig. 2(a) and (b) that the upper edge is at the K point,
that the calculation with 109 plane waves is well convergedhere the light line in air has a frequeney/(27¢) ~ 0.58];

IV. RESULTS FORGAP MAPS
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Fig. 5. Gap maps for the weak-confinement structure of Fig. 1(e): (a) waveguide thickress3a; (b) d = 0.6a; and (c)d = 1.0«. Solid (dashed) lines
represent the edges of photonic bands which are even (odd) with respect to specular reflgction

thus, the even gap is formed partly in the guided mode regibe made. First, the weak-confinement waveguide has no truly

and partly in the radiative region. The bandgaps obtained hgided modes in the considered range of waveguide thicknesses:

are larger than those calculated by Johrestaad.[6], where only all photonic modes are resonances in the radiative region and

the guided mode region was considered. Moreover, in [6], it wdse photonic gap lies entirely in this region. A 2-D photonic gap

concluded that the optimal waveguide thickness for a gap in thed defect modes in GaAs—AlGaAs waveguides have been ob-

even modes is around/a = 0.6 and that the bandgap wouldserved and are very promising in view of achieving guided wave

decrease for smaller thicknesses. By considering both guidedpagation [3]—[5], [20], [21]. This lends support to the point

and leaky mode regions, we find instead that the even gapadfview adopted above, that a bandgap should be defined by the

the triangular lattice of holes remains large even for waveguidbsence of photonic modes in both the guided and radiative re-

thicknessesl/a = 0.3 and below. gions. Second, on decreasing the waveguide thickness the gap
The dotted line in Fig. 4(b) represents the cutoff frequendgr odd modes opens at smaller values of the hole radius and

of a second-order waveguide mode [which can be seensiill overlaps the even gap: a full band gap common to even and

Fig. 2(b)]. Strictly speaking, the even gap exists only betweenld modes can exist even for hole radii of the orde).8fs,

the lower gap edge and the second-order cutoffdfer = 1  provided waveguides witli/a ~ 0.3 are employed.

(not shown), the second-order cutoff falls below the lower

gap edge and there is no even gap altogether. However, it

should be remarked that in the present method it is difficult to V. COMPARISONWITH REFLECTANCE

calculate higher order cutoffs very accurately and that cutoff

freq‘lrlenue_s r?ay be un_derestlmated. Thls Is due to the choic ]) that the bands of fully periodic waveguides can be derived
the “effective” waveguide for the basis states. Although mo . : . . .

) oretically by solving the diffraction problem, i.e., by calcu-
features of the photonic band structure (e.g., the gap edgﬁﬁn the Bragg reflection spectra to all orders. On the exper-
are rather insensitive to the assumed value of the effectije o o >'a99 . P ) P

mental side, photonic bands of deeply patterned waveguides

this parameter. Since the patterned dielectric slab is a uniaxidf’ be measured by the surface coupling technique employed
medium withe,, = ¢,, < ¢.., higher order cutoffs calculated” [8], [9], and [11]: opugal reflectancg from the surface of thg
considering the dielectric anisotropy will be larger than thod10tonic crystal slab displays a series of sharp features with
estimated using.. only. Thus, it is quite possible that the ever? well-defined dispersion as a function of thg |nIC|dence anglg
gap ford/a = 0.6 is larger than that deduced from the positioﬁ- These resonances corre_spond to the excitation of photonic
of the dotted line in Fig. 4(b). In any case, in order to avoiiodes which are matched in frequency and wavevector to the
possible complications related to a multimode waveguide, it'i3c0ming bgam. Eac-h resqnant feature marks a féint) of
more convenient to employ valuesdfa smaller than 0.6. the photonic band dispersion, the wavevector component par-

In Fig. 5, we show the gap maps for the weak-confinemealiel to the surface being given in modulus by= (w/¢) sin 6.
waveguide of Fig. 1(e) (waveguide thicknefs: = 0.3, 0.6 By rotating the sample around its normal, all directions in the
and 1). They are rather similar to the 2-D map of Fig. 4(c®-D Brillouin zone can be mapped. This technique allows one
again because the confinement effect in the waveguide is muolprobe the photonic bands above the light cone, i.e., in the re-
less important than for the air bridge. Two observations mugibn of quasi-guided modes. The photonic bands of patterned

If is known from grating theory (see e.g., the review paper

dielectric constant, cutoffs of higher order modes do depend



896 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 38, NO. 7, JULY 2002

I'K, T™™
0=60

Reflectance (a.u.)
wa/2mc

0.3 04 0.5 0.6 0.3 : . ;
wa/2nc M T K

Fig. 6. Calcylat_ed su_rface reflec_tanqe of aTM-po‘Iarized plane wave incidq:qb_ 7. Photonic bands of the air bridge [waveguide structure of Fig. 1(d)],
along thel'-K orientation of the air bridge [waveguide structure of Fig. 1(d)]\yith thickness? = 0.3« and hole radiug = 0.24a. The lines represent the

with thickness? = 0.3a and hole radius = 0.24a. The angle of incidence is ands calculated from the expansion in waveguide modes, while the points are
varied fromé = 0° to§ = 60° with a step of 8. extracted from the calculated reflectance. Solid lines and closed circles: even
modes with respect to a vertical mirror plafle, =), probed by TM-polarized
light. Dashed lines and open circles: odd modes with respect to a vertical
SOl waveguides have been recently measured by the surfager plane(k, =), probed by TE-polarized light. The dotted line represents

coupling technique [27]. A scattering matrix formalism to calthe dispersion of light in air.
culate the reflectance was developed in [10]; this approach is

essentially an exact numerical solution of Maxwell equations TE polarized light. Notice that a linearly polarized plane wave
(apart from the presence of a wavevector cutoff) for the phincident from the surface couples to both even and odd modes
tonic crystal slab in the presence of a plane wave incident fragith respect tar,.,. There is very good agreement between the
the surface. photonic bands calculated by the method of Section Il and those
Here we calculate the surface reflectance by the methodd#duced from reflectance, when the proper parity with respect
[10] and we extract the photonic band dispersion in order to o4 is taken into account. This shows that the expansion in
compare with the dispersion calculated by the expansionwaveguide modes of the slab is a reliable method for calculating
waveguide modes. This allows for the assumption of neglectitige energies of quasi-guided modes above the light line, and that
leaky modes in the expansion to be tested. In Fig. 6, we shewe choice of the effective dielectric constant as the spatial av-
the reflectance of a TM-polarized plane wave incident alorgrage ofe;(x, y) in each layer is appropriate.
the I'-K orientation on the surface of an air-bridge photonic Other symmetry aspects of the reflectance calculation and
crystal slab [Fig. 1(d)], for a hole radius = 0.24¢ and a of the photonic bands are worth a comment. First, notice that
thicknessd = 0.3a. Sharp resonance features are readityiere are a few bands which are even with respect;to
apparent on the reflectance curves and may have the forma@ding the™-A/ direction and become odd along the-K
maxima, minima, or dispersive lineshapes. direction, or vice versa. They correspond to photonic states
In Fig. 7, we show the photonic band dispersion which is dethich have a three-fold, but not a six-fold, symmetry at khe
termined from the curves of Fig. 6 (and the analogous ones farint. Second, most resonance features in reflectance become
other orientations and polarization, not shown) by taking the aganishingly small at normal incidence, except for a structure at
proximate central position of each resonance. Solid (open) cira/(27¢) ~ 0.57 (see Fig. 6) which remains strongéat= 0°
clesin Fig. 7 represent the points extracted from the reflectarared which splits into two at oblique incidence. Since the only
curves for TM (TE) polarization with respect to the plane gbhotonic modes which can be excited are those which have
incidence. They are compared with the photonic bands of ttlee same symmetry of the electromagnetic field, and the latter
air bridge, which were already given in Fig. 2(a), but for thbelongs to a two-fold degenerate representation of the point
I'-M andI'-K directions are now classified in terms of paritygroup at thel" point, nondegenerate bands must be optically
with respect to specular reflectien . (see Section Il)—the ver- forbidden at¢ = 0. The two-fold degenerate photonic mode
tical plane(fe, ) containing the Bloch vector coincides with theat wa/(2r¢) = 0.57 is optically allowed and its energy can
plane of incidence. Modes which are even with respeet;to be determined from normal-incidence reflectance. The same
(indicated by solid lines) couple only to TM polarized incidenargument implies that nondegenerate bands have zero radiative
light, while odd modes with respect4q.. (dashed lines) couple linewidth atk = 0 [25].
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VI. CONCLUSION [71

The photonic bands below and above the light line of photonic
crystal slabs can be calculated by expanding the electromagt®!
netic field on the basis of waveguide modes, where each layer
of the effective waveguide is defined to have a spatially aver-
aged dielectric constant. The method is conceptually analogou#!
to the usual plane-wave expansion for 2-D systems. Photonic
bands and gap maps of strong- and weak-confinement waveg-
uides have been presented and compared to their 2-D counté}0]
parts: a photonic gap is defined here by the absence of pho-
tonic bands in both the guided and radiative regions. In ther1]
strong-confinement (air bridge) structure, photonic bands are
strongly blue-shifted with respectto the 2-D case due to confine-
ment in the waveguide, the blue shift being stronger for modeg 2
which are odd with respect to the horizontal symmetry plane.
The gap maps of the air bridge display only a gap for even
modes (not for odd modes). The even gap remains large eveiy;
for small waveguide thicknesses, while it tends to be eliminated
by a second-order waveguide modedgt; ~ 0.6. In the weak- [14]
confinement (GaAs—AlGaAs) waveguide, the photonic bands
are relatively similar to the 2-D bands; however, the gap maps
show quantitative differences. In particular, a complete bandgagsl
opens for smaller values of the hole radius compared to the 2-
case. Comparison of the photonic bands with those extracted
from calculated surface reflectance shows good agreement, pr@ﬁl
vided the proper parity with respect to a vertical mirror plane
(coinciding with the plane of incidence) is taken into account17]
in the classification of the bands. Thus, tleal part of the en-
ergy shift due to coupling with leaky modes is not an importantug]
effect, at least for the lowest lying bands. Tingaginary part
of the energy shift is, of course, important, since it describes
propagation losses due to out-of-plane diffraction; calculating, o
these losses will require an extension of the present formalism.
The expansion in waveguide modes in its present form can also
be used to calculate the dispersion of linear defects in photon
crystal slabs within a full three-dimensional treatment.

[21]
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