
2138 OPTICS LETTERS / Vol. 34, No. 14 / July 15, 2009
Proposal for in-fiber generation of telecom-band
polarization-entangled photon pairs using

a periodically poled fiber
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We treat spontaneous parametric downconversion in a periodically poled fiber, quasi-phase matched to allow
for the generation of photon pairs at wavelengths within the low-loss telecommunications window. For an
appropriate pump polarization, the unusual properties of such a fiber’s effective ��2� result in a biphoton
wave function that is symmetric upon simultaneous exchange of downconverted photon frequencies and po-
larizations and that is nonzero over a wide range of downconverted frequencies. This could lead to a signifi-
cant technical simplification of sources of in-fiber telecom-band polarization-entangled photons. © 2009 Op-
tical Society of America
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Ongoing improvements in the generation and pro-
cessing of single photons and entangled photon pairs
in the low-loss telecommunications window are help-
ing to make a high-speed, high-capacity, quantum
communication network a reality [1–5]. Pairs of pho-
tons have been created via spontaneous parametric
downconversion (SPDC) in two orthogonally ori-
ented, periodically poled, KTP crystals, and then col-
lected in single-mode fibers [6]. More recently, spe-
cially engineered waveguides have been used to
generate polarization-entangled photons efficiently
and compactly [7–9]. Yet, as is always the case when
coupling light into fiber, such schemes incur undesir-
able photon losses. To avoid this, the in-fiber genera-
tion of photon pairs has also been proposed and dem-
onstrated [10–13]. However, to date, the generation
of polarization-entangled photons for telecommunica-
tion systems has relied on spontaneous four-wave
mixing with dual pumps in a counterpropagating
loop geometry. Although this can be done at room
temperature in photonic crystal fibers [11], cryogenic
cooling is typically required in conventional telecom-
munications fibers to suppress background noise
from Raman scattered photons [10,13].

In this Letter we propose using a straight piece of
periodically poled fiber [14,15] at room temperature
to generate pairs of orthogonally polarized photons in
a SPDC process. The poling allows the ordinarily iso-
tropic material to possess an effective ��2� that is then
selectively erased to enable quasi-phase matching
(QPM). Two years ago it was shown experimentally
that SPDC could be used in these types of structures
to produce photon pairs [16]. However, it does not
seem to have been realized that this process allows
for the possibility of Type II QPM, i.e., orienting the
polarization of the pump photons such that the down-
converted photons are polarized orthogonally to each
other. These pairs of orthogonally polarized photons
can then be further processed to serve as either a

source of single photons, if passed through a polariza-
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tion beam splitter so that one photon can herald the
other, or polarization-entangled photons, as de-
scribed below.

Our proposed scheme offers many advantages.
There are minimal photon losses when such fibers
are spliced to a transmission fiber; orthogonally po-
larized photon pairs are generated naturally upon
the pass of a single pump pulse through the poled fi-
ber; and using a SPDC process ensures that the gen-
erated photons are far away in frequency from any
Raman scattered photons. In addition, because we
need only a short length of fiber, polarization mode
dispersion does not limit our approach as it would if
four-wave mixing, where long lengths of fiber are
typically required, was used to generate orthogonally
polarized photons [17].

We estimate the efficiency of this scheme by ex-
tending an earlier approach [18] to include polariza-
tion effects. The photon mode operators satisfy
�am�k ,am���k�

† �=�mm�������k−k��, with all other com-
mutators zero. m restricts the range of frequencies
involved in an expression to be near that of the fun-
damental field �m=F� or second harmonic �m=S�,
and � labels the specific mode type in the range of
frequencies labeled by m. Taking the z direction as
the propagation direction, � might indicate either the
LP01-like mode with the majority of its polarization
in the x direction ��=x� or the LP01-like mode with
the majority of its polarization in the y direction ��
=y�; �m�k are the eigenfrequencies of the modes. The
coupling Hamiltonian is

�
�,�,�

� dk1dk2dkS����k1,k2,k�c�k1

† c�k2

† b�k + H.c.,

�1�

where we have set aF�k→c�k, aS�k→b�k, have labeled
the mode types with Greek letters as above, have

kept only terms associated with the downconversion
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of photons, and the coupling coefficient S����k1 ,k2 ,k�
is given by a straightforward extension of an earlier
expression [18]. We consider a pump pulse polarized
mainly in the y direction (m=S, �=y), orthogonal to
the poled DC (static) field in the fiber [see Fig. 1(a)],
and write it as a coherent state with an expectation
value ���2 of the number of pump photons and a pulse
profile described by a normalized function 	P�k�; the
asymptotic-in state [18] for such a pulse is �	in�
=exp��	dk	P�k�byk

† −H.c.��vac�. Following Yang et al.
[18], in the undepleted pump approximation, the
asymptotic-out state is then

�	out� = exp�
CII
† − H.c.��	in�, �2�

where

CII
† =

1


2
�
�,�
�

0

�

dk1�
0

�

dk2	���k1,k2�c�k1

† c�k2

† , �3�

and

	���k1,k2� =
i�



� dk	P�k�S��y�k1,k2,k�

����Syk − �F�k1
− �F�k2

� �4�

is the biphoton wave function associated with pho-
tons with wavenumbers k1 ,k2 in modes � ,�, respec-
tively; it is naturally symmetric, 	���k1 ,k2�
=	���k2 ,k1�. The quantity 
=�, where  is set so
that the biphoton wave function is normalized. If we
switch to a frequency representation, where

Fig. 1. (Color online) DC Poling and biphoton probability
density. (a) Fiber core, with arrows representing direction
of DC field. (b) Fiber profile, with arrows representing di-
rection of DC field and � the QPM period. (c) Biphoton
probability density �	̂xy���1 ,��2��2= �	̂yx���1 ,��2��2, where
ˆ −1˜
	�����1 ,��2�=� 	����1 ,�2�.
	̃����1 ,�2� is associated with photons with frequen-
cies �1 ,�2 in modes � ,�, respectively, the normaliza-
tion condition takes the form

�
�,�
�

0

�

d�1�
0

�

d�2�	̃����1,�2��2 = 1. �5�

In Eq. (2) we see that in the limit of a low probability
of pair production (�
��1, characteristic of a pulse
rather than a cw pump), we have �	out���	in�
+
CII

† �	in�+¯, and so �
�2 gives the probability of pair
production.

As a specific example, we consider a fiber similar to
those fabricated by Myrén et al. [15]. We use the Sell-
meier equation to model the refractive index of the
fused silica cladding [19] and take the core to have a
refractive index shifted 0.023 higher than the clad-
ding, independent of frequency. We find that the core,
with a radius of 2.3 �m, is, to a very good approxima-
tion, modeled as residing in an infinite background of
cladding material; thus we set kFx����kFy���
→kF���, kSy���→kS���. Around the
center frequencies we model these dispersion rela-
tions as kF,S����kF0,S0

+ ��−�F0,S0
� /vF,S+�F,S��

−�F0,S0
�2, with kF0,S0

=kF,S��F0,S0
�, �S0

=2�F0
, �vF,S�−1

= �dkF,S��� /d���=�F0,S0
, and �F,S= �d2kF,S���

/d�2��=�F0,S0
/2. In a simple model where ��2� results

from the ��3� effect of a frozen DC field, for a DC field
in the x direction, we have �xxx

�2� =3�xyy
�2� =3�yxy

�2� =3�yyx
�2� ,

which we take to be 0.04 pm/V [20,21], with all other
components vanishing. This makes the relevant ten-
sor elements for our proposed Type II QPM process
�xyy

�2� =�yxy
�2� =0.013 pm/V. We note that in this model

light polarized in the y direction cannot generate co-
polarized photon pairs; i.e., there is no Type I QPM
process for y-polarized photons. We assume that ��2�

exists solely within the fiber core, and to achieve
QPM for a pump centered at 1.6 eV �775 nm�, we
take its profile along the fiber as a square wave with
a 50% duty cycle and a period of �=46.5 �m [see Fig.
1(b)]. Keeping only the fundamental period in the
square wave, which will serve as a good approxima-
tion here, the usual phase integral in
S��y�kF��1� ,kF��2� ,kS��1+�2�� [18] takes the form
L sin � / ����, with �= �kS��1+�2�−kF��1�−kF��2�
−2� /��L /2, where L is the length of the poled fiber.

At the QPM condition, ��S0
=1.6 eV, we cal-

culate vF=201.4 �m/ps, vS=200.7 �m/ps, �F=−8.4
�10−9 ps2/�m, and �S=1.7�10−8 ps2/�m. We take a
Gaussian pump pulse 	̃P��P�, centered at �P=�S0

,
and an intensity FWHM of 5 ps. For a pulse with an
energy of 1.61 pJ, containing ���2=6.27�106 photons,
we calculate that on average there would be �
�2
=4.3�10−3 orthogonally polarized downconverted
photon pairs generated in a 1-m-long fiber. We note
that this conversion rate is comparable to that of Li-
ang et al. [10], where 5 ps duration pulses containing
the same number of photons yielded 4.4�10−3 en-
tangled pairs per pulse in a 300-m-long dispersion-

shifted fiber.
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We sketch the biphoton probability distribution
function in Fig. 1(c). Note that as ��1−��2 and ��1
+��2−��P range over their allowed values, the range
of ���1−�2� over which �	̂xy���1 ,��2��2 is significantly
nonzero is much larger than the range of ���1+�2
−�P� over which it is significantly nonzero. The first
of these ranges is set by fiber length and the disper-
sion factor �F and is given approximately by
4�
� / ���F�L� at the QPM condition; the second of
these is largely determined by the group velocities vF
and vS and the FWHM � of the pulse and is given
approximately by min�2�
2 ln�2� /� ,2�����1/vS
−1/vF��−1� /L� at the QPM condition. The large sepa-
ration of these ranges means that while there is a
small region in the center of Fig. 1(c) in which the
photons are energy degenerate, this represents only a
small fraction of the total downconverted photons,
and to good approximation we can restrict ourselves
to the region (�1��P /2, �2��P /2) and to the region
(�2��P /2, �1��P /2) in the integrals in Eq. (3) once
the variables are changed to �1 and �2. Then using
the symmetry properties of 	̃����1 ,�2� we can write
CII

† �vac� as, to good approximation,


2�
�P/2

�

d�1�
0

�P/2

d�2	̃xy��1,�2���x�1;y�2�

+ �y�1;x�2��, �6�

where �x�1 ;y�2�� c̃x�1

† c̃y�2

† �vac�, etc., with c̃��
† as the

frequency representation analog of c�k
† . By routing

the frequency components ���P /2 and ���P /2 in
different directions, states that are polarization en-
tangled over large distances would result.

Our approach is robust against a uniform effective
birefringence in the fiber even if it were large enough
to alter phase-matching conditions such that the
pump frequency required for Type II QPM would be
effectively shifted away from that required for other
types of QPM. Indeed, from a practical point of view,
this would ensure that all downconverted photon
pairs would be orthogonally polarized when the fiber
was pumped in the neighborhood of a particular fre-
quency, even if the polarization of the pump photons
was not well aligned.

In conclusion, we have proposed a scheme for the
in-fiber production of telecom-band polarization-
entangled photons that reduces the need for compli-
cated interferometric setups and cooling to mitigate
Raman background noise. The result is made pos-
sible by the presence of tensor elements in the effec-
tive ��2� within a periodically poled fiber that, with an
appropriately polarized pump pulse, lead to the pro-
duction of pairs of SPDC photons in which the down-
converted photons are naturally orthogonally polar-
ized.
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