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Strong enhancement of second-harmonic generation �SHG� is expected in one-dimensional microcavities
when double resonance for the pump and the harmonic fields, as well as phase matching, are achieved. The
realization of a doubly resonant microcavity with dielectric mirrors made of nonbirefringent materials is
difficult because of the refractive index dispersion of the constituent media. Here we present a powerful
method, based on photonic crystal concepts like gap maps and their generalization to defect modes, for the
design of doubly resonant microcavities with periodic dielectric mirrors. The material dispersion is compen-
sated by using the angle of incidence as a tuning parameter, thanks to the polarization splitting of cavity modes.
The cavity enhancement of SHG increases exponentially with the number of periods in the dielectric mirrors
and can be much larger than in single-resonant microcavities with comparable �or even larger� quality factors.
The roles of phase delay and of thin versus thick configurations in the dielectric mirrors, of the growth
orientation, and of the polarization degrees of freedom in achieving double resonance with phase matching are
discussed. Significant examples of doubly resonant SHG with high conversion efficiency are given for
Al0.25Ga0.75As cavities with Al0.4Ga0.6As/Alox �oxidized AlAs� mirrors.
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I. INTRODUCTION

Since the first studies on second-harmonic generation
�SHG�, periodic structures have been indicated as a suitable
solution for achieving phase matching even in cubic materi-
als like GaAs, where there is no birefringence to compensate
the refractive index dispersion �1,2�. Other forms of phase
matching have also been proposed, like using form birefrin-
gence induced by refractive index modulation in the long-
wavelength limit �3,4� or incorporating a separated quantum
well region in the nonlinear media �5�. In the last few years
the concept of photonic crystal has been increasingly applied
to nonlinear optics �6,7�, especially for what concerns fre-
quency conversion. The possibility of tailoring the dispersion
relation through a periodic modulation of the refractive index
gives additional degrees of freedom to achieve phase match-
ing, moreover using the high density of states at the band
edges allows increasing the amount of pump power available
in the nonlinear layers �8–13�.

Another possible route for increasing SHG is to embed
the nonlinear source in a Fabry-Pérot cavity, in order to en-
hance the pump field intensity or to optimize the extraction
efficiency of the harmonic field. Several studies have been
conducted on external cavities �14,15�, where it is relatively
easy to achieve double resonance for both the pump and
harmonic frequencies. Concerning monolithic cavities with
dielectric mirrors, most studies focused on SHG in the pres-
ence of a single resonance �16,17�. A doubly resonant micro-
cavity is desirable since the performance of the structure can
be optimized at both pump and harmonic frequencies. This
problem has been discussed by Berger �18� who provides an
analytic expression of the cavity enhancement of SHG for a
doubly resonant monolithic cavity in the undepleted pump
limit. In that work the double-resonance problem is studied
for the case of metallic and pseudo-metallic mirrors, and for
the latter case the concept of dual-wavelength dielectric mir-
rors �DWDM� based on non-�/4 periodic structures is ap-

plied �18�. Experimental realization of a doubly resonant
Al0.3Ga0.7As/AlAs microcavity has been reported by Simon-
neau et al. �19� but with the use of a specially designed
structure with nonperiodic mirrors.

Starting from a previous work �20�, in this paper we pro-
vide a systematic analysis of double resonant microcavities
�DRMs� with periodic dielectric mirrors, describing in detail
the main issues in the design of such structures and evaluat-
ing their nonlinear conversion efficiency. The fundamental
brick which is used in order to construct a DRM is a dual
wavelength dielectric mirror �DWDM�, which is a distrib-
uted Bragg reflector �DBR� characterized by two stop bands
centered at the pump frequency and at the second harmonic.
The design of such mirrors is strongly limited by the refrac-
tive index dispersion of the constituent materials. Starting by
considering a one-dimensional photonic crystal �1DPC�,
which represents the infinite system corresponding to a finite
DBR, we provide an efficient method for the design of a
DWDM taking into account the material dispersion. Several
examples are discussed in Sec. II. The design of a DRM can
also be performed by working with a corresponding photonic
crystal system, in which the microcavity is described by the
insertion of a defect in the 1DPC and the cavity structure is
repeated with a supercell periodicity. In Sec. III the linear
properties of DRM made of a Al0.25Ga0.75As layer embedded
in Al0.4Ga0.6As/oxidized AlAs�Alox� dielectric mirrors are
studied, with particular emphasis on the possibility of using
the incident angle as a tuning parameter and to take advan-
tage of the polarization splitting of the cavity resonances. In
Sec. IV we present the nonlinear results for SHG in two
microcavity structures, designed for operation in different
polarization conditions, and the DRMs performance is com-
pared with the one of a single resonant microcavity �SRM�.
We discuss also the issue of phase-matching versus antiphase
matching in a DRM. In Sec. V the results and conclusions of
this work are summarized.

PHYSICAL REVIEW E 73, 016613 �2006�

1539-3755/2006/73�1�/016613�11�/$23.00 ©2006 The American Physical Society016613-1

http://dx.doi.org/10.1103/PhysRevE.73.016613


The main advances with respect to our previous work �20�
are as follows: �i� we consider Al0.25Ga0.75As cavity layers
and optimize the DRM structures for a pump wavelength
�=1.55 �m �instead of GaAs cavities for �=2 �m�; �ii� the
design of a phase-matched DRM is made for a �001� growth
orientation �instead of �111��; and �iii� a systematic discus-
sion of the design strategy, of thick- and thin-DBR configu-
rations, of the issue of phase-matching versus antiphase
matching, and of the role of cavity Q factors is given here.

II. DUAL-WAVELENGTH DIELECTRIC MIRRORS

The possibility of designing a doubly resonant structure,
in order to enhance the second-harmonic generation process,
depends on the capability of growing dual-wavelength di-
electric mirrors characterized by two stop bands, at the pump
and harmonic frequencies. In this case one has to depart from
the usual � /4 condition, for which no stop band is present
for the harmonic field, and look for a more general design.
Different approaches are possible: optimizing the perfor-
mances of the mirrors by building them layer-by-layer in a
nonperiodic structure �19�, or working with non-� /4 periodic
mirrors �18,20,21�. Here we assume to work only with peri-
odic structures formed by the repetition of a bilayer period as
sketched in Fig. 1�a�. The equivalent infinite system is an
ideal 1DPC, characterized by a periodic dielectric function
along the z direction.

The solution of the Helmholtz equation for the electro-
magnetic field can be reduced to an eigenvalue problem,

where the field is described by Bloch functions and the ei-
genvalues represent the energies allowed to the propagating
modes. In perfect analogy with the electronic problem in a
crystal, the eigenvalues can be organized in a photonic band
structure �22�. The dispersion relations �=��k� for the
propagating modes are found by the transfer-matrix method
and Bloch-Floquet theorem in the form of an implicit equa-
tion that is the optical analog of the Kronig-Penney model
�25�:

cos�q�� = cos�k1,zL1�cos�k2,zL2�

−
1

2
��1

�2
+

�2

�1
�sin�k1,zL1�sin�k2,zL2� , �1�

where �=L1+L2 is the DBR period, q is the Bloch vector,
L1 and L2 are the layer widths �see Fig. 1�a��,
ki,z= �� /c�nicos �i, i=1,2, are the z components of the wave
vectors in the layers, ni=ni��� are the refractive indices in-
cluding material dispersion, while �i depends on the incident
angle � and the external refractive index next through Snell’s
law �i=arcsin��next /ni�sin ��. Since we work at a finite inci-
dence angle we have to distinguish between transverse elec-
tric �TE or s polarized� and transverse magnetic �TM or p
polarized� modes, with the following expressions for the fac-
tors �i of Eq. �1�:

��1 = n2cos �1

�2 = n1cos �2
� TM modes,

��1 = n1cos �1

�2 = n2cos �2
� TE modes.

A notable feature of the formalism is that the material dis-
persion of the refractive indices can be easily taken into ac-
count. In the following examples we shall use the material
dispersion of GaAs, AlAs, and Alox and of the AlxGa1−xAs
alloy as reported in the literature �26�.

As in the case of the Kronig-Penney model we find for-
bidden frequency intervals or photonic gaps, for which the
Bloch vector is completely imaginary, corresponding to non-
propagating electromagnetic modes. Solving numerically Eq.
�1� we can easily provide a map of the position of the gaps
by varying the DBR parameters or the incidence angle. We
show an example in Fig. 1�b�, where the gap position of a
DBR made of oxidized AlAs �or Alox, layer 1� and
Al0.4Ga0.6As �layer 2� is plotted as a function of the filling
factor f =L1 /� with �=292 nm, for an incidence angle
�=30° and p polarization. Notice that, when the � /4 condi-
tion is fulfilled, the first-order gap has a maximum width
while the second-order gap vanishes: the corresponding fill-
ing factor will be called f 	 f�/4. Under this condition, the
reflectance at the center of the first-order stop band is also
maximum.

The gap maps available in the literature are usually re-
ported in dimensionless units, since they are calculated for
fixed values of the dielectric constant and they are scalable
with the period of the photonic lattice �22�. Here the gap
positions are reported in energy units because our goal is to

FIG. 1. �Color online� �a� Scheme of a distributed Bragg reflec-
tor. �b� Gap map as a function of the filling factor f =L1 / �L1+L2�,
for a DBR consisting of Alox �material 1� and Al0.4Ga0.6As �mate-
rial 2� with period �	L1+L2=292 nm. The reflection phase delay
within the photonic gap is shown in color scale. All the calculations
are performed assuming incidence angle �=30° and p-polarized
electric field.
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study the relative positions of the photonic gaps at � and 2�,
hence the material dispersion cannot be neglected and the
gap maps are not scalable.

Dielectric mirrors offer the advantage of great flexibility
and the possibility of tuning the reflectance varying the num-
ber N of periods in the multilayer. A remarkable difference
with respect to metallic mirrors is the phase change of the
field associated to reflection. Indeed, while in a metallic mir-
ror the phase of the field changes only of multiples of �,
dielectric mirrors are characterized by a complex reflection
coefficient

r = 
Reı�, �2�

where R= �r2� is the mirror reflectance, while � is the reflec-
tion phase which is, in general, a complicated function of the
mirror structure, the external medium refractive index next,
and the field polarization and frequency.

In the case of periodic mirrors in the limit R�1 �i.e., for
sufficiently large N�, it has been demonstrated by Apfel
�23,24� that the reflection phase delay within the stop bands
depends only on the period composition and external me-
dium refractive index but is independent of N. Moreover, the
phase delays seen by two different external media, of refrac-
tive index n0 and nc, respectively, are related by the simple
equation

n0tan
�0

2
= nctan

�c

2
. �3�

In Fig. 1�b� we report an example of a map of reflection
phase delay as a function of filling factor. The phase is
shown in a color scale within the photonic gaps where, for
the case of finite N, the reflectance is close to unity. The
results for the phase delay in reflection will play a crucial
role for the second-harmonic generation problem to be dis-
cussed in Sec. IV.

Let us look for a DWDM whose first-order gap �for the
pump beam� is centered around the convenient wavelength
�=1.55 �m. In Figs. 2�a� and 2�b� we plot the gap maps for
two systems with weak and strong refractive index contrast,
respectively. The energies of the second-order gap �for the
harmonic beam� are divided by 2 in order to visualize better
the filling factors for which two gaps occur simultaneously at
� and 2�: the darkest regions in the plots correspond to their
superposition. In both cases we consider p-polarized pump,
s-polarized second-harmonic beams and an angle of inci-
dence �=30°.

Figure 2�a� refers to the case of AlAs/GaAs mirrors with
�=250 nm. This material combination present a low refrac-
tive index contrast, therefore the photonic gaps are quite
small, moreover the relatively high dispersion in the energy
range under consideration makes the harmonic gap to lie
below the pump one. The combination of these features al-
lows designing a periodic DWDM only for a narrow range of
filling factors 0.63	 f 	0.83, with a very small superposi-
tion region in energy.

In Fig. 2�b� we present the case of a Alox/Al0.4Ga0.6As
DBR with �=292 nm. Now the harmonic gap is almost en-
tirely contained in the pump one, hence a DWDM can be

realized for any filling-factor values, except the one corre-
sponding to the � /4 condition for which no harmonic gap
occurs. With a filling factor f =0.4, which is the case indi-
cated by arrows in Fig. 1�b�, the pump gap is centered
around 0.8 eV ��=1.55 �m�. The situation presented in Fig.
2�b� is the most advantageous one, indeed the small material
dispersion guarantees that the pump and harmonic gap cen-
ters are close to each other for any filling factor values, while
the high refractive index contrast allows us to achieve large
gaps with a wide superposition region, and also to get high
reflectance in the stop bands with a small number of DBR
periods.

The solution presented in Fig. 2�b� for a
Alox/Al0.4Ga0.6As DWDM centered at 0.8 eV is not unique,
since the period � or the incidence angle can be tuned in
order to center the pump and harmonic gaps at the desired
energy. The structures with a pump gap centered at 0.8 eV
will be thinner when f is small, therefore we speak of a thin
configuration when f 	 f�/4 and a thick configuration in the
opposite case f 
 f�/4. It will be clear in Sec. IV that, in the
case of a DRM, the choice of working in thin or thick con-
figuration is not arbitrary. Indeed, as shown in Fig. 1�b�,
these two configurations are characterized by a different re-
flection phase: this fact has important consequences in the
phase matching of the second-harmonic generation process.

FIG. 2. Gap maps as a function of filling factor in a low index
contrast AlAs/GaAs DBR with �=250 nm �a� and a high index
contrast Alox/Al0.4Ga0.6As DBR with �=292 nm �b�. The energies
of the harmonic gaps are divided by 2. In both cases we assume
p-polarized pump, s-polarized harmonic, and an incidence angle
�=30°.
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Using the gap map technique it is possible to design a
dual-wavelength dielectric mirror taking into account the re-
fractive index dispersion. It has been shown that periodic
DBR structures cannot be usefully employed in the case of
low index contrast, highly dispersive material combinations
like AlAs/GaAs. For these materials, nonperiodic structures
like those of Ref. �19� may remain the best solution for the
realization of dual-wavelength dielectric mirrors. In the
more favorable case of high index contrast DBRs like
Alox/Al0.4Ga0.6As, the superposition region between pump
and harmonic gaps is sufficiently large to have a robust
DWDM structure which can be tuned by changing either the
DBR period �in the design� or the incidence angle �in the
experiment�. In the following section we discuss how such a
DWDM can be used to achieve double resonance in a micro-
cavity structure.

III. DOUBLY RESONANT MICROCAVITY

The possibility to obtain doubly resonant microcavities
has been already investigated for pseudo-metallic mirrors at
normal incidence �18� or for nonperiodic mirrors �19�. With
metallic or pseudo-metallic mirrors the phase delay in reflec-
tion is �=0 or � and therefore the position of the resonances
depends exclusively on the cavity length Lc. The index dis-
persion of the cavity material can be compensated by taking
Lc to be equal to the coherence length �18�. Moreover, the
temperature dependence of the refractive index is taken as an
experimental tuning parameter. On the other hand, for non-
periodic dielectric mirrors, the cavity length is of the order of
the wavelength of light and the angle of incidence is used as
a tuning parameter �19�. The disadvantage of nonperiodic
mirrors is that the structure is very sensitive to small devia-
tions in the layer thicknesses, and also it is not easy to derive
clear trends for the Q factors and the conversion efficiency as
a function of structure length.

In this section we investigate the possibility of realizing a
microcavity with two resonances centered at � and 2�, even
in the presence of dispersive materials.

The idea is to employ periodic DWDM with high refrac-
tive index contrast and to use the angle of incidence as a
fine-tuning parameter.

We consider a microcavity composed by a layer of width
Lc embedded between two identical mirrors characterized by
a complex reflection coefficient r���=
R���exp�ı�����.
The linear transmittance is

T��� =
�1 − R����2

1 + R���2 − 2R���cos ����
�4�

with

���� = 2kc,z���Lc + 2���� , �5�

where kc,z= �� /c�nccos �c is the z component of the wave
vector, nc is the refractive index in the cavity layer, and �c is
found again by Snell’s law. The system is resonant at specific
frequencies �m when ���m� is a multiple of 2�. The phase
change ���� of a DBR is strongly dependent on frequency
�23,24,27–30�, thus the resonance position of the cavity
mode inside the stop band is a complicated function of the
structure parameters and of the incidence angle. Analytic ex-
pressions for the resonance position are available only when
the cavity mode is close to the center of the stop band �29�,
where ���� can be approximated by a linear function of
frequency.

Once a DWDM at the working frequency regions is de-
signed �i.e., �, f , and � are known�, the DRM is obtained by
introducing a defect with length Lc in the periodic structure,
as shown in Fig. 3�a�. We consider an equivalent infinite
periodic system constituted by the repetition of a super-cell
composed by P+ 1

2 periods of the DWDM and by the defect,
as shown in Fig. 3�b�. The presence of periodically repeated
defects in the 1DPC structure introduces localized states in
the photonic band gaps �31�. The problem of finding the
desired cavity width for double resonance can be solved as
follows. If we consider the transfer matrix M of a single

FIG. 3. Scheme of a doubly
resonant microcavity �a� and the
corresponding ideal periodic sys-
tem �b�.
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mirror period and the transfer matrix D of the bilayer Lc /L2
�see Fig. 3�b��, then the transfer matrix T of the super-cell is
given by

T = DMP. �6�

By indicating with E0 and E�s
the electric field vector at the

beginning and at the end of a single super-cell, discrete trans-
lational symmetry implies that

E�s
= eıqs�sE0, �7�

where �s= P�+L2+Lc is the super-cell length and qs is the
Bloch vector. Thus it follows that exp�±ıqs�s� are the eigen-
values of T and therefore

Tr�T� = 2 cos�qs�s� . �8�

This equation is the generalization of Eq. �1� and it contains
implicitly the dispersion relation of the photonic system de-
scribed above. In perfect analogy with the strategy we used
in Sec. II, it is possible to provide a defect map, i.e., the
positions of defect modes inside the gap can be evaluated as
a function of the cavity length Lc or the incidence angle �.

In Fig. 4 we show an example of a defect map, where the
defect positions are plotted as a function of fcav=Lc /� �32�.
As the thickness of the cavity layer increases, the defect
modes move across the gap but with different slopes because
of the material dispersion. For a wide range of fcav values we
find that the p-polarized defect mode is close to the
s-polarized harmonic one. The small difference could be
compensated by changing the angle of incidence. Here we
choose the parameters in such a way that the double-
resonance condition occurs close to the center of the stop
bands, where the Q factor of the cavity modes is largest.

In the design of microcavity structures we chose to fulfill
the double-resonance condition at a finite � and for different

polarizations of the pump and harmonic waves. In Fig. 5 we
show the linear transmittance of a DRM for the pump and
harmonic fields in both s and p polarizations. The harmonic
energies were divided by 2 in order to visualize better the
occurrence of a double resonance. Because of the polariza-
tion splitting of cavity modes, four resonances �two at � and
two at 2�� are present. When the angle grows from �=25° to
�=40°, the resonances shift towards higher energies, and at
�=33° the p-polarized pump resonance overlaps the
s-polarized harmonic one.

The power of the incidence angle as a tuning parameter
depends on the strength of the polarization splitting �29,33�.
A careful study of this problem, conducted through the
defect-map method, has shown that the polarization splitting
is extremely sensitive to the DBR parameters. In particular,
the splitting is larger for a high refractive index contrast and
when f is far from f�/4. In actual experiments, besides the
incidence angle, the thickness variation of the epitaxial struc-
ture due to growth inhomogeneity could also be used to ad-
just the energy position of the double resonance.

As a general remark in closing this section, the gap- and
defect-map methods represent an efficient tool for the design
of microcavity structures. Moreover, this method can be ap-
plied even working at normal incidence when other reso-
nance tuning parameters �e.g., temperature� can be used.
Since the results are not scalable when material dispersion is
considered, the design should be studied for each specific
case. In the following we give examples of microcavities that
are optimized for efficient SHG at double resonance.

IV. NONLINEAR RESULTS

In this section we analyze the results for second-harmonic
generation �SHG� in a doubly resonant microcavity. Numeri-
cal calculations are performed using the nonlinear transfer
matrix method �34� with the measured nonlinear susceptibili-

FIG. 4. �Color online� Position of p-polarized pump �solid lines�
and s-polarized harmonic �dashed lines� defect modes inside their
respective gaps as a function of fcav=Lc /�. The mirror is composed
by P=20 periods of alternating L1=116.8 nm �Alox� and
L2=175.2 nm �Al0.4Ga0.6As� layers, with �=292 nm; the incidence
angle �=30°. Harmonic energies are divided by 2. The white region
indicates an harmonic gap superimposed to the pump one �light
gray�, while the darkest zone indicates the absence of a gap.

FIG. 5. �Color online� Tuning of the resonance positions by
changing the incidence angle in a DRM: linear transmittance for p
�solid� and s �dashed lines� polarizations for the pump and
harmonic fields at �=25° ,33°, and 40°. Structure parameters:
L1=116.8 nm �Alox�, L2=175.2 nm �Al0.4Ga0.6As�, and
Lc=449.7 nm �Al0.25Ga0.75As�, with N=7 periods in the DBRs.
Double resonance occurs at �=33°.
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ties of the AlxGa1−xAs alloy �35� and are valid in the limit of
negligible pump depletion. This assumption allows us to di-
vide the SHG process in three independent steps: �i� linear
propagation of the pump field, and �ii� generation of a non-
linear polarization and of a source field at the harmonic fre-
quency, and �iii� propagation of the second-harmonic field
along the structure. We show that in DRM all these aspects
can be optimized simultaneously and a great enhancement of
the nonlinear conversion can be achieved.

The second harmonic generated by the DRM can be com-
pared to the one by the isolated cavity layer �or single-pass
conversion�. The ratio between the nonlinear transmittance
of the cavity Tcav

NL and the one of the correspondent single
layer Tlayer

NL represents the enhancement due to the resonant
cavity. Berger �18� has given an analytic expression for the
cavity enhancement factor � of a symmetric structure:

� =  T�

T2��1 + R�


R2� exp�ı�m��
�1 − R�exp�ı����2�1 − R2�exp�ı�2���

2

, �9�

where ��=���� and �2�=��2�� have been already specified
in Eq. �5�, while

�m = � j,� + �k,� + 2kz,�L + �i,2� + kz,2�L , �10�

where i , j ,k are the Cartesian components coupled by the
nonlinear susceptibility ijk

�2�. The factor �m describes the
phase mismatch between the nonlinear polarization PNL and
the free harmonic field.

From Eq. �9� we observe that the cavity enhancement
of SHG depends on the terms in curly brackets, which
describe the effects of pump and harmonic field distributions
�in the denominators� and of their phase mismatch �in the
numerator�. When a resonance at � and 2� occurs, the de-
nominators of the expression �9� tend to vanish: this is the
signature of a double-resonance condition. However, the
SHG efficiency is enhanced only when the quantity
�m���2��, otherwise the numerator also tends to vanish
and the efficiency is reduced. The cavity enhancement is
maximum when all the factors ��, �2�, and �m are multiples
of 2�. Starting by the relations �5� and �10�, it is easy to
demonstrate that, in a symmetric cavity with double reso-
nance, �m must be an integer multiple of �: the two situa-
tions that can occur are analyzed below.

When �m=2n�, which we call a phase matching condi-
tion, the nonlinear polarization is in phase with the harmonic
field. For high reflectance mirrors we get

�pm �
4

�1 − R��2�1 − R2��
� Q�

2 Q2�. �11�

In this situation all aspects of the harmonic generation pro-
cess are optimized, and the cavity enhancement of SHG
grows with the Q factors at � and 2�.

When �m= �2n+1��, which is called antiphase matching
condition, the nonlinear polarization PNL in the cavity layer
is exactly out of phase with respect to the free harmonic
field. This means that the coupling between the nonlinear
polarization and the free harmonic field is weak, yielding a
low extraction efficiency. Again we look at the R�,2�→1
limit and obtain

�apm �
�1 − R� +

1

2
�1 − R2���2

�1 − R��2�1 − R2��
. �12�

Here we observe that there are two types of behavior accord-
ing to the rapidity with which R� and R2� tend to unit. In
particular we obtain

�apm �
1 − R2�

4�1 − R��2 �
Q�

2

Q2�

�13�

when �1−R�� / �1−R2��→0, and

�apm �
1

�1 − R2��
� Q2� �14�

when �1−R�� / �1−R2��→� �36,37�. This result shows that,
in the case of antiphase matching, the enhancement of SHG
is much smaller than in the phase-matched situation.

The expressions �11�, �13�, and �14� can be compared
with the enhancement factor of a single-resonant microcav-
ity. We treat only the case of a resonance at the pump fre-
quency �. The cavity enhancement can be expressed as

�SRM =
1

�1 − R��2T2�M� � Q�
2 , �15�

where M��� is a function describing the mismatch between
the nonlinear polarization and the harmonic field. In general,
since T2� and M do not present any resonance, pump field
confinement is the only relevant effect.

The cavity enhancement factor is a function of mirror
reflectance at � and 2� and therefore of the number N of
periods in the DBRs. It is useful to express the Q factors as
Q�exp�2N���, where � is the imaginary part of the Bloch
vector in the photonic gap. From expressions �11� and �13�–
�15� we can derive the trend of the cavity enhancement as a
function of N:

�DRM,pm � exp�2N�2�� + �2���� , �16�

�DRM,apm � �exp�2N�2�� − �2���� , �� � �2�,

exp�2N��2���� , �� 	 �2�,

�17�

�SRM � exp�4N��� , �18�

The conversion efficiency � is largest in the phase matched
DRM when

Q�,DRM
2 Q2�,DRM 
 Q�,SRM

2 �19�

and the exponential growth with the number of period is
faster when

2��
DRM + �2�

DRM 
 2��
SRM . �20�

This condition can be fulfilled by proper structure design, as
illustrated below.

In expression �9� we have implicitly considered the case
in which the generated second harmonic has a specific polar-
ization and, in particular, that only one element ijk

�2� of the
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nonlinear susceptibility is involved in the process. In general,
for specific in/out polarization configurations, more than one
tensor component is involved and the phase-matched one �if
any� will be dominating. Also, Eq. �9� is derived by assum-
ing that only the cavity layer be nonlinear. Thus Eq. �9�
should be viewed as a useful guide for the design of micro-
cavities with high SHG efficiency, but it cannot replace the
numerical calculations to be presented below.

Although it is not possible to provide a general rule which
tells a priori which DRMs are characterized by phase match-
ing for a specific �2� configuration, the DRMs can be di-
vided in two classes, namely thick and thin, which depend on
the DWDM used. We observe that, in general, these two
classes are characterized by complementary behavior of �m.
This fact is a consequence of the different phase delay which
we have in thick and thin configurations at 2�, in particular
by looking at Fig. 1 we can notice that the phase delay
changes by � when f�/4 is crossed. In our previous paper the
design of a DRM was made in thick configuration �20�,
while in the present work a thin configuration is assumed. In
the following we discuss examples of doubly resonant mi-
crocavities for p-s and s-p nonlinear conversion, respec-
tively.

A. p-s configuration

The DRM is composed by a Al0.25Ga0.75As cavity layer of
width Lc=449.7 nm, embedded in two DWDM that are com-
posed by alternated layers of Alox and Al0.4Ga0.6As, whose
gap map is presented in Fig. 2�b�. When f =0.4 we get a wide
superposition of the pump and harmonic gaps around 0.8 eV,
which corresponds to the following mirrors parameters:
L1=116.8 nm �Alox� and L2=175.2 nm �Al0.4Ga0.6As�. The
pump resonance is tuned at the convenient wavelength of
1.55 �m �E=0.8 eV�. This corresponds to the thin configu-
ration marked with arrows in Fig. 2.

The microcavity has been designed in order to achieve
double resonance in p-s configuration and phase matching
when the growth orientation is �001� so that the only relevant
element of the nonlinear susceptibility tensor is yzx

�2� . In the
case of a �001� growth direction �see Fig. 6�a��, the
s-polarized nonlinear polarization is proportional to the prod-
uct ExEz and, as it turns out, we get phase matching. In the
opposite case of a �111� growth direction �Fig. 6�b��, instead,
the nonlinear polarization is proportional to E�

2. In this case
the antiphase matching situation is realized.

If we look at the s-polarized nonlinear polarization and
harmonic fields at the resonance frequencies, shown in Fig.
7, we notice that the two quantities oscillate in phase in the
phase matching case �a� but are out of phase in the antiphase
matching case �b�. This figure allows us to visualize in physi-
cal terms the reason for the strongly increased SHG effi-
ciency in the case of phase matching. However, these condi-
tions are satisfied only inside the cavity layer. Since the �2�

of the Al0.25Ga0.75As and Al0.4Ga0.6As are comparable �35�,
the contributions of the nonlinear layers of the DWDM have
to be considered. Nevertheless we observe that, in both
cases, the behavior of the system is well described by Eq.
�9�: indeed at 0.8 eV the pump field is strongly confined in
the cavity layer which represents the dominant contribution
to harmonic generation.

Let us demonstrate more generally that the same struc-
tures parameters can be used in order to achieve double reso-

FIG. 6. Scheme of nonlinear microcavity, with two different
growth directions �001� �a� and �111� �b�. In the former case the
nonlinear polarization is proportional to ExEz, while in the latter
case PNL is proportional to E�

2.

FIG. 7. �Color online� Nonlinear polarization �solid line� and
free harmonic field �dashed line� in the DRM structure at the reso-
nance frequency E=0.8 eV in the case of phase matching �a� and
antiphase matching �b�. The growth orientation is taken to be �001�
and �111�, respectively. The number of periods N=7 and the inci-
dence angle �=33°. The white area represents the cavity region.
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nance with phase- or antiphase matching when the growth
direction is changed from �001� to �111�. From Eq. �10� we
evaluate �m for the two different cases:

�m
�001� = �x,� + �z,� + 2kz,�L + �y,2� + kz,2�L , �21�

�m
�111� = ��,� + ��,� + 2kz,�L + ��,2� + kz,2�L . �22�

Since �z,�=�x,�+�, if we subtract �21� from �22� we obtain
that

�m
�001� − �m

�111� = � . �23�

Thus for the present p-s configuration it possible to switch
from the phase-matching to the antiphase matching condition
by changing the substrate orientation.

We compare the DRM with a single-resonant microcavity
formed by a � /2 layer of Al0.25Ga0.75As with Lc=242.8 nm
embedded between two identical � /4 DBRs constituted by
N=7 periods of Alox/Al0.4Ga0.6As with L1=231.6 nm, and
L2=123.8 nm. The linear transmittance at � and 2� and the
cavity enhancement factor of the SRM and DRM in the
phase matching and antiphase matching case are plotted in
Fig. 8 as a function of pump wavelength. In the case of the
SRM the pump linear transmittance exhibits two resonances
tuned around 1.55 �m, while the transmittance at 2� is
structureless. Both DRMs are characterized by the same lin-
ear transmittance spectra, in particular we observe reso-
nances for the p and s modes at � and 2�, double resonance
being achieved in p-s configuration. From the linear spectra

of Fig. 8 it is possible to have indication about the values of
the Q factor for the pump and the harmonic resonances, in
particular we notice that in the single-resonant microcavity
Q� is greater than in the DRM. Nevertheless the cavity en-
hancement factor is about ten times larger in the DRM with
phase matching because it is proportional to the product
Q�

2 Q2�. Also, the DRM in phase-matching configuration has
104 higher SHG efficiency than in the antiphase matched
case.

In Fig. 9�a� we compare the trends of the cavity enhance-
ment factors calculated through the nonlinear transfer matrix
method to the ones predicted by the analytical formulation as
a function of the number N of mirror periods for the DRM.
In all cases we observe an exponential growth. The phase-
matched DRM exhibits the highest cavity enhancement for
all values of N. For N�6 periods the enhancement factor is
higher than 106. The analytical results are generally close to
the numerical ones, except in the SRM, for which the mirror
layers give a significant contribution and the analytic for-
mula �9� underestimates the conversion efficiency.

In Fig. 9�b� we report the quality factors of the resonances
involved in the nonlinear process. Note that, while the Q
factors of the pump resonances are comparable, the Q factor
of the harmonic one is considerably higher, therefore the
cavity enhancement in the antiphase matching condition fol-
lows the trend predicted by Eq. �14�. The higher Q factor at
2� follows from choosing a p-s configuration �the DBR re-
flectance at finite angle of incidence is obviously higher for s
than for p polarization�. In real samples, the Q factors of

FIG. 8. �Color online� Linear transmittance versus pump wavelength for a single-resonant microcavity with �001� growth direction �a�
and doubly resonant microcavities in the phase matching ��001� growth direction� �b� and antiphase matching ��111� growth direction� �c�.
The respective cavity enhancement factors are reported in panels �d�,�e�, and �f�. The SRM and DRM are constituted by a cavity layer of
Al0.25Ga0.75As embedded in two mirrors composed by N=7 periods of alternating Alox/Al0.4Ga0.6As. In the case of SRM Lc=242.8 nm,
L1=231.6 nm, and L2=123.8 nm, while for the DRM Lc=449.7 nm, L1=116.8 nm, and L2=175.2 nm. The pump and harmonic fields are p
and s polarized, respectively. The incidence angle �=29° for SRM and �=33° for DRMs.
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Fabry-Pérot in high-quality microcavities can be of the order
of a few thousands: thus the enhancement factor for the
present DRM is limited by the Q factor at 2�. In the follow-
ing subsection a different configuration with more balanced
Q-factor values is proposed.

As compared to our previous work �20�, the present struc-
ture has several novel features. First, the use of
Al0.25Ga0.75As �instead of GaAs� as a cavity layer allows
designing a DRM for 1.55 �m pump wavelength. Second,
working in the thin �instead of thick� configuration leads to a
phase-matched structure for the more convenient �001�
growth orientation. Finally, a DRM in thin configuration is
always shorter than a thick DRM �or even a SRM� with the
same number of periods and is therefore desirable when try-
ing to minimize the device length.

B. s-p configuration

In this subsection we present a DRM with phase matching
in which the Q factors at � and 2� are of the same order. We

choose to work in s-p configuration in order to reduce the Q
factor at the harmonic frequency, while maintaining the po-
larization splitting of the cavity resonances in order to use
the incidence angle as a tuning parameter. We consider only
a �001� growth direction: in order to have a finite nonlinear
polarization with s-polarized pump, the plane of incidence
must be oriented along a �110� crystallographic axis. In other
words, as compared to the structure shown in Fig. 6�a�, the
sample must be rotated by an azimuthal angle �=45°.

Following the gap-map method developed in Secs. II and
III, we design a DRM in which double resonance is achieved
for an incidence angle close to �=40° at the pump wave-
length �=1.5 �m. We found the following parameters: the
DRM is formed by a Al0.25Ga0.75As layer of width
Lc=744 nm embedded in Al0.4Ga0.6As/Alox DWDM with
L1=170 nm �Al0.4Ga0.6As� and L2=140 nm �Alox�. The
SRM is made of a � /2 Al0.25Ga0.75As layer of width
Lc=245 nm embedded between two Al0.4Ga0.6As/Alox � /4
mirrors with L1=113 nm�Al0.4Ga0.6As� and L2=230 nm
�Alox�. Note that the DBR layer nearest to the cavity is
Alox, unlike in Sec. IV A.

In Fig. 10 the linear transmittance at � and 2� is plotted
as a function of pump wavelength for the DRM �a� and the
SRM �b� in s-p configuration. Again for the DRM we get a
superposition of the pump and harmonic resonances, while in
the SRM we have only one resonance centered around
1.5 �m for the s-polarized mode. It is interesting to observe
that the Q factors of the DRM resonances are both lower
than the SRM one. Nevertheless, the enhancement factor of
the DRM is superior to that of the SRM by more than two
orders of magnitude. Therefore in the present s-p configura-
tion a DRM can have higher nonlinear conversion as com-
pared to a SRM while requiring lower Q factors. Thus the

FIG. 9. �Color online� �a� Cavity enhancement factor in p-s
configuration as a function of the number N of mirror periods for a
double-resonant microcavity in phase matching and antiphase
matching, and for a single-resonant microcavity. The symbols de-
note the results of the transfer matrix calculation, while the lines
represent the exponential trend predicted by the analytical formula-
tion. �b� Quality factors of the resonances at the pump and harmonic
frequencies. Structure parameters are as in Fig. 8. The incidence
angles are �=29° and �=33° for the SRM and DRM, respectively.

FIG. 10. �Color online� Linear transmittance versus pump wave-
length for a phase-matched DRM �a� and a SRM �b� and their
respective cavity enhancement factors in s-p configuration �c� and
�d�. The growth direction is assumed �001� and the incidence angle
�=41°. The DRM and SRM are formed by a defect of
Al0.25Ga0.75As embedded in two mirrors composed by N=5 periods
of alternating Al0.4Ga0.6As/Alox. In the case of DRM Lc=744 nm,
L1=170 nm, and L2=140 nm, while for the SRM Lc=245 nm,
L1=113 nm, and L2=230 nm.
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DRM is in all respects more convenient than a SRM.
In Fig. 11 we plot the cavity enhancement and the quality

factors as a function of the number N of mirrors periods.
Again the cavity enhancement � grows exponentially with
N, moreover, there is good agreement between numerical and
analytical calculations. This result follows from the different
DBR configuration, in which the Alox layer is adjacent to the
cavity one. In this way the index contrast close to the cavity
increases; moreover, the two Alox layers do not present a
�2� nonlinearity, so that their contribution is vanishing.

The present DRM structure in s-p configuration allows
achieving a cavity enhancement of the order of 107 with a
device length smaller than 4 �m and Q factors of the order
of a few thousands. The notable feature of this configuration
is that the Q factors at � and 2� are comparable. Thus the
present structure may be a convenient one in view of obtain-
ing high nonlinear conversion in a double-resonant cavity
system.

V. CONCLUSIONS

We have shown that it is possible to design doubly reso-
nant microcavities using cubic materials where there is no

birefringence to compensate the refractive index dispersion.
To this purpose it is essential to realize dual-wavelength di-
electric mirrors with two stop bands centered around the
pump and the second-harmonic frequencies. The use of pe-
riodic mirrors allows the design to be carried out by means
of the photonic gap map concept and makes the sample
growth more robust against imperfections. Analogously, a
planar microcavity can be viewed as a one-dimensional pho-
tonic crystal with a repeated defect layer. All the structure
parameters can be found as a function of incidence angle and
field polarizations. In this way the incidence angle can be
used as a powerful experimental parameter in order to tune
the relative pump and harmonic resonance positions, in par-
ticular by exploiting the polarization splitting in p-s and
s-p configurations. The use of the angle of incidence as a
tuning parameter can be very useful from an experimental
point of view in order to compensate for possible growth
inhomogeneities.

The symmetric doubly resonant microcavity is character-
ized by the presence of a precise phase relation between the
nonlinear polarization and the harmonic field within the cav-
ity layer. In particular we observe two different situations,
namely phase matching and antiphase matching. In the
phase-matched case the nonlinear polarization is perfectly in
phase with the harmonic field, resulting in a very high cavity
enhancement factor which can be more than two orders of
magnitude greater than in an equivalent single resonant mi-
crocavity. Furthermore, the increase in nonlinear conversion
can be achieved with Q factors at the pump and harmonic
frequencies which are lower than in the reference single-
resonant microcavity with � /4 mirrors, therefore being less
sensitive to growth imperfections. The conversion efficiency
has been presented in terms of a cavity enhancement factor:
according to the pump power level one may be able to reach
the interesting �and potentially useful� situation in which the
SH intensity is an appreciable fraction of the pump intensity.
In this case, however, pump depletion effects can no longer
be neglected and a more general treatment of the nonlinear
conversion for the already optimized structure should be
given. In the antiphase matched situation, the second-
harmonic generation turns out to be much less efficient since
the nonlinear polarization is out of phase with respect to the
harmonic field and the extraction efficiency of the generated
harmonic field is drastically reduced. In all these cases there
is exponential growth of the conversion efficiency as a func-
tion of the number of periods in the dielectric mirrors. Spe-
cific design for phase-matched, doubly resonant microcavi-
ties in both p-s and s-p configurations have been provided
that are amenable to experimental verification.
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FIG. 11. �Color online� �a� Cavity enhancement factor in s-p
configuration for a phase-matched double-resonant microcavity and
for a single-resonant microcavity. The symbols denote the results of
the transfer matrix calculation, while the lines represent the expo-
nential trend predicted by the analytical formulation. �b� Quality
factors of the resonances. Parameters are as in Fig. 10.
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