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Abstract: We analyze high-refractive-index-contrast subwavelength grating structures
using truncated coupled mode theory (CMT). CMT not only provides physical insight into the
role of each mode in the overall response but also allows for improved design. An analytic
expression is derived for the design of broadband reflectors, providing a near-optimal design
that is within 0.08% of the maximum broadband reflectivity calculated by the finite-difference
time-domain method. Furthermore, the CMT is used to design a high-quality narrow-band
reflector with 28% improved quality factor over previously reported results, as quantified by
rigorous coupled wave analysis.

Index Terms: Photonic materials and engineered photonic structures, theory and design,
engineered photonic nanostructures, subwavelength structures.

1. Introduction
Coupled mode theory (CMT) has been widely used for analysis of guiding structures in the optical
regime for predicting the effects of periodic perturbations (periodic in the longitudinal/transverse
directions) in an otherwise perfect guide [1]. Since its first introduction in early 1950s for microwave
devices [2], CMT has experienced a long series of developments, and by the early 1970s, it was
applied to optical devices [3], [4]. The method is rigorous if all modes are included. CMT can yield
extremely accurate results even if a small subset of the modes is retained; however, CMT can be
more efficient than other methods, such as rigorous coupled wave analysis (RCWA) or the finite
difference time domain (FDTD), by selecting the appropriate modal expansion. Furthermore, CMT
is not limited to periodic boundaries and can be applied quite generally; for example, recently, the
perfectly matched layer (PML) has been introduced into the formalism of CMT to simulate an
unbounded geometry by discretizing continuous radiation modes while having negligible effect on
the bound guided modes [5].

Optical diffraction gratings have been studied for years for their applications in filtering,
spectroscopy [6]–[8], lasers, and other optoelectronic devices [9], [10]. Recently, these structures
have been employed for bio-sensing applications as well [11]. Gratings with period smaller than the
incident wavelength are referred to as subwavelength gratings, and as a result, all higher order
modes are evanescently bound, which leads to interesting effects. Typical applications include
reflectors for vertical cavity surface emitting lasers (VCSELs) [12]–[14], high-efficiency light-emitting
diodes [15], and ultra broadband mirrors [16]. High-index-contrast gratings (HCGs), which are also
known as suspended gratings, differ from the conventional subwavelength gratings by the fact that
the grating structure is surrounded by a low index material. The HCG was first proposed in 2004
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[16], [17] and since then has attracted attention for the development of broadband high-reflectivity
mirrors due to the high index contrast in the in-plane direction. In the past, numerical methods such
as RCWA [18] and the FDTD method [19] have been used to analyze such structures; however,
those methods can be computationally taxing and do not provide the physical insight of CMT.

In this paper, we present a CMT approach for the design and analysis of HCGs to achieve close-
to-optimal dimensions for a specific application and to understand the underlying physics as it
relates to the coupling between optical modes. For the HCG problem, while CMT mode selection
provides only a modest reduction in expansion order over RCWA, the CMT method allows for clear
insight into the physics of the HCG operation in different parameter regimes, as well as efficient
design of near-optimal structures. For the HCG examples considered here, CMT provides accurate
results for as few as three modes, showing that these modes indeed have a dominant role in the
response of the system. In Section 2, we present the HCG structure and describe the CMT method.
Section 3 presents the results and discussions. First, the constraint on coupling coefficients to yield
broadband response is derived, and the results obtained are compared with FDTD and RCWA
simulations. Second, high-quality (Q) resonators are considered in order to maximize the Q-factor
by the adjustment of parameters, and the results are compared with RCWA.

2. CMT Formulation
Fig. 1 shows the HCG structure to be analyzed, the structure is periodic in the x -direction, and the
three parameters that dictate the reflectivity of the grating are period ð�Þ, width ðwÞ, and thickness
ðdÞ. The ratio of width ðwÞ to period ð�Þ is defined as the duty cycle ð�Þ. The periodic structure is
assumed to be surrounded by a homogeneous low index material with refractive index ðn1Þ,
whereas the refractive index of the grating is ðn2Þ. The polarization of incident excitation is taken to
be transverse electric (TE) with respect to the xz-plane.

The coupled mode equations governing the mode amplitudes are given as (from [5])

Nm
dam
dz
þ j�mam

� �
¼ � j

XM
n¼1

�mnan � j
XM
n¼1

�mnbn (1a)

Nm
dbm
dz
� j�mbm

� �
¼ j
XM
n¼1

�mnan þ j
XM
n¼1

�mnbn (1b)

where am and bm are the mode amplitudes of forward and backward traveling modes, respectively,
�m is the propagation constant, and �mn and �mn are the coupling coefficients between co-directional

Fig. 1. High-Index Contrast Grating (HCG) with period �, width w , thickness d , and spacing s. Incident
electric field is parallel to the grating (TE).
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and contra-directional propagating waves, respectively. These are defined as

�mn ¼
!"o
4

ZZ
ðen2 � n2Þ etm:etn �

n2en2
ezm:ezn

� �
dx dy (2a)

�mn ¼
!"o
4

ZZ
ðen2 � n2Þ etm:etn þ

n2en2
ezm:ezn

� �
dx dy (2b)

�mn ¼�nm: (3)

In the case of TE polarization

�mn ¼ �mn: (4)

Finally, the normalization constants Nm are defined as

Nm ¼
1
2

ZZ
ðetm � etnÞ dx dy (5)

where ! is the angular frequency of the incident excitation, "o is the permittivity of free space, n and
~n are the refractive indices of the unperturbed and perturbed structures under investigation, re-
spectively, and etm and ezm are the transverse and longitudinal components of the mth mode,
respectively.

Due to the periodic nature of the problem, the chosenmodes bare close resemblance to the Fourier
modes found in RCWA, and the choice of a cosine wave expansion (motivated by the symmetry
within the period) does not provide significant reduction in themodes used. Therefore, in this case, as
a pure computational method, CMT is not better than RCWA for the HCG problem; however, as we
will show in the following analysis, CMT provides additional physical insight into the HCG operation in
terms of mode coupling and analytic design criteria can be advised with this approach.

In the following analysis, we consider only three modes ðM ¼ 3Þ: the fundamental excitation
(plane wave with amplitude a1) and the first two evanescent higher order modes (cosine waves with
amplitudes a2 and a3). The coupling equations are given as

½X �0 ¼ ½A� � ½X � (6a)

where 0 signifies differentiation with respect to z, and

½X � ¼ a1 a2 a3 b1 b2 b3½ �T (6b)

½A� ¼ j

�K11 � �1 �K12 �K13 ��11 ��12 ��13

�K21 �K22 � �2 �K23 ��21 ��22 ��23

�K31 �K32 �K33 � �3 ��31 ��32 ��33

�11 �12 �13 K11 þ �1 K12 K13

�21 �22 �23 K21 K22 þ �2 K23

�31 �32 �33 K31 K32 K33 þ �3

2666666664

3777777775
(6c)

where Kmn ¼ �mn=Nm, and �mn ¼ �mn=Nm. We define all these variables in terms of the dimensions
of grating and the incident wavelength, and after performing the required integrations, we obtain

K11 ¼ �1q (7a)

K12 ¼K11sincð�w=�Þ (7b)

K13 ¼K11sincð2�w=�Þ (7c)

K21 ¼ 2
�1
�2

K11sincð�w=�Þ (7d)

K22 ¼
�1
�2

K11 1þ sincð2�w=�Þð Þ (7e)
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K23 ¼
�1
�2

K11 sincð�w=�Þ þ sincð3�w=�Þð Þ (7f)

K31 ¼ 2
�1
�3

K11sincð2�w=�Þ (7g)

K32 ¼
�1
�3

K11 sincð�w=�Þ þ sincð3�w=�Þð Þ (7h)

K33 ¼
�1
�3

K11 1þ sincð4�w=�Þð Þ (7i)

where q and propagation constants are defined as

q ¼
n2
2 � n2

1

� �
w

2�
(8a)
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2�
�o
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1� 2�o

�
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s

: (8d)

Equation (6) is a system of coupled first-order differential equations; it merely represents an
eigenvalue problem, and the solution is given as

½X � ¼ e�azVa e�bzVb e�czVc e�d zVd e�ezVe e�f zVf

� �
� ½C� (9a)

½C� ¼ c1 c2 c3 c4 c5 c6½ �T (9b)

where elements of C are the unknown coefficients that need to be determined from the boundary
conditions, �i are eigenvalues, and Vi are the corresponding eigenvectors. We need six boundary
conditions to solve the system of (9). The structure is excited with a forward propagating plane wave
only, with amplitude a1 ¼ 1 at z ¼ 0; thus, the backward propagating plane wave b1 has an
amplitude of 0 at z ¼ d . The remaining boundary conditions are dictated by the possibility of
existence of the evanescent waves. Evanescent waves a2 and a3 are exponentially increasing with
respect to z; therefore, these must have zero amplitudes at z ¼ d and similar constraints apply to b2
and b3 at the z ¼ 0 boundary. Application of these boundary conditions results in

½C� ¼ F�1 � 1 0 0 0 0 0½ �T (10a)

where

½F � ¼

Va1 Vb1 Vc1 Vd1 Ve1 Vf1

e�adVa2 e�bdVb2 e�cdVc2 e�d dVd2 e�edVe2 e�f dVf2

e�adVa3 e�bdVb3 e�cdVc3 e�d dVd3 e�edVe3 e�f dVf3

e�adVa4 e�bdVb4 e�cdVc4 e�d dVd4 e�edVe4 e�f dVf4

Va5 Vb5 Vc5 Vd5 Ve5 Vf5

Va6 Vb6 Vc6 Vd6 Ve6 Vf6

2666666664

3777777775
(10b)

where Vjn is the nth element of j th eigenvector.
It is interesting to note that at a specific wavelength and dimensions of the gratings, F is nearly

singular; this is the condition that results in exponential rise of C, and thus, we observe huge field
enhancement of the higher order modes, as will be shown in the results.
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3. Results and Discussions
We analyzed HCG for two different applications, namely (a) broadband mirrors and (b) high-Q
resonators. Comparisons with RCWA [20] and FDTD verify that this approach produces accurate
and insightful results.

3.1. HCG for Surface-Normal Broadband Mirrors
We first demonstrate the accuracy of the results obtained by using CMT with only three lowest

order modes. Fig. 2 shows the reflectivity of HCG designed to operate at a wavelength of 850 nm
at normal incidence. The grating is comprised of rectangular strips of AlGaAs with refractive index
of 3.2 surrounded by air. The dimensions of the grating are period � ¼ 620 nm, width
w ¼ 220 nm, and thickness d ¼ 140 nm. The reflectivity spectra obtained using RCWA and
FDTD are also plotted in Fig. 2 for comparison. It should be noted that CMT and RCWA give
exactly the same results when equal numbers of modes are used; therefore, the results presented
using RCWA are equivalent to that of CMT results (fully converged for eight modes). The
advantages of using CMT with few modes are the ability to visualize the mode amplitudes as a
function of distance along the propagation direction and the understanding of their interaction with
each other. While RCWA matches FDTD, the CMT response is slightly shifted toward longer
wavelengths. Nevertheless, it should be noted that although the result is obtained using only three
modes, it is in good agreement with those of RCWA and FDTD.

One of the advantages of a CMT approach is the possibility of an analytic design for broadband
applications. To derive the necessary conditions for broadband response, we rewrite matrix A of
(6c) but for the case of M ¼ 2 as

A ¼ j
D E
�E �D

	 

(11)

where D and E are 2 � 2 matrices representing the coupling between co-directional and contra-
directional propagating modes. For broadband response, we look for the condition when the
absolute difference between co-directional coupling and contra-directional coupling changes
slightly over the band of operation; therefore, the required condition is jDj ¼ jE j. Since the off-
diagonal elements cancel, we have

ðK11 þ �1ÞðK22 þ �2Þ ¼ K11K22: (12)

Fig. 2. HCG designed to operate as surface-normal broadband mirror at wavelength of 850 nm, period
� ¼ 620 nm, width w ¼ 220 nm, and thickness d ¼ 140 nm. Reflectivity using the CMT and RCWA
with only three lowest order modes, along with fully converged RCWA (8-modes) and FDTD.
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Therefore, when the product of self-coupling approaches the product of coupling coefficients of the
same but contra-directional propagating modes, then broadband response is observed. Fig. 3
shows a plot of (12) designed to operate at wavelength of 600 nm; it is this small difference around
the center wavelength that causes the broadband response. Equation (12) leads us to the
following condition for broadband operation:

�22 ¼
�q
ð1þ qÞ�

2
1 1þ sinc

2�w
�

� �� �
: (13)

For a specific grating index and wavelength of interest, (13) can provide the required period � and
duty cycle �. Fig. 4(a) shows the points satisfying (13) for a grating index of 3.2 designed to
operate at a wavelength of 600 nm. Once the period and width are determined from (13), the next
step is the determination of grating thickness d . It should be noted that the design rule of (13) is
not just for broadband high reflectivity. It can also be used for the design of broadband high
transmittance structures, depending on the thickness d . With the dimensions obtained from
Fig. 4(a), we can calculate the required grating thickness resulting in a minimum transmitted power
through the grating, which corresponds to the zeros of the fundamental mode a1 at z ¼ d . Fig. 4(b)
shows the mode amplitude of the forward propagating mode a1 at z ¼ d as a function of thickness,
dictating the thickness to be 99 nm (d ¼ 138 nm will result in broadband high transmittance). Our
proposed design guideline provides following dimensions for design A with center wavelength of
� ¼ 600 nm, � ¼ 443 nm, w ¼ 160:8 nm, and d ¼ 99 nm. Fig. 4(d) shows mode amplitudes as a
function of distance along the propagation direction z of the incident excitation.

To investigate the accuracy of the design procedure, comprehensive numerical simulations using
FDTD method were carried out. (FDTD was used here because it is efficient for broadband
calculations; however, a few calculations were selected and showed agreement with RCWA.) A
comparison of the results obtained using CMT and FDTD methods is shown in Fig. 4(c). FDTD
verifies the broadband characteristic of the design. For design criteria of reflectivity higher than 99%
over the entire band of operation, FDTD results show that the width w can range from 153 nm to
178 nm. It is noted that the value of 160.8 nm predicted by the proposed design rule falls within this
range. Furthermore, it is also observed from FDTD results that the minimum ripple in reflectance is
achieved for w ¼ 167 nm, resulting in reflectance value of higher than 99.48%, whereas Design A
gives a reflectance higher than 99.4% over the entire bandwidth. This confirms that in this case, this
design approach provides near-optimal results in terms of ripple. Achieving a large reflection over
the band of operation is desired for many applications, such as VCSELs [12]–[14].

Fig. 3. Same mode co-directional (blue solid line) and contra-directional (green dashed line) coupling as
a function of wavelength for the determination of broadband response. Parameters are � ¼ 443 nm,
w ¼ 160:8 nm, d ¼ 99 nm, and n2 ¼ 3:2.

IEEE Photonics Journal Design and Analysis of HCGs Using CMT

Vol. 2, No. 6, December 2010 Page 889



3.2. HCG for High-Q Resonators
Another interesting application of HCG is its use as a very narrow-band reflector or high-Q

resonator. Precise adjustment of the dimensions can lead to the condition that the average energy
in the forward going mode is completely coupled into the backward propagating modes at the
opposite interface of structure over a very narrow band of frequencies. This condition is achieved
when the matrix F given by (10b) becomes nearly singular, which is approached when any two
rows of F become linearly dependent [21]. This results in very large values of the coefficients C of
(9) with strong coupling to higher order modes.

To calculate the quality factor of such a resonator, we compare the response to a Fano-
resonance [23], which is given by

R ¼ r 2ð!� !oÞ2 þ t2ð1=�Þ2 � 2rtð!� !oÞð1=�Þ
ð!� !oÞ2 þ ð1=�Þ2

(14a)

where !o is the resonant frequency, � is the resonance lifetime, and r and t are reflectivity and
transmittance of a slab of the same thickness as the grating structure being studied. Fano-
resonance occurs due to the interference between a narrow-band and broadband scattering
phenomenon, which in the case of HCG comes from the transverse higher order harmonic
interference with the zero-order mode. The quality factor of the resonator is given as

Q ¼ !o�: (14b)

Fig. 4. (a) Design of broadband reflector for center wavelength of 600 nm, with grating index of 3.2.
(b) Forward propagating fundamental mode amplitude at z ¼ d for the determination of the optimal
thickness. (c) Reflectivity obtained using CMT and FDTD for design A and for slight variations in width.
Dimensions for design A are � ¼ 443 nm, w ¼ 160:8 nm, and d ¼ 99 nm. (d) Mode amplitudes as a
function of distance along the propagation direction z of the incident excitation.
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The stronger the interaction of the incident normal mode with the in-plane higher order harmo-
nics, the narrower the resonance. It should be mentioned here that these narrow-band resonator
structures are extremely sensitive to dimensions, and the numerical calculations can require a large
number of modes to be accurate.

Fig. 5(a) shows the points of maximum field strength for the first higher order mode a2 as a
function of period and duty cycle of the gratings with a slab thickness of d ¼ 625 nm and grating
index n2 ¼ 3:078, using the proposed method. Two designs are pointed out for comparison and to
demonstrate the strength of the method in finding an improved configuration. Design C with period
of 812 nm was proposed previously [22]. Design D results in a Q-factor of 46 times higher than
Design C. It should be noted that these values were obtained using only three modes. To obtain full
convergence, however, RCWA requires at least 18 modes, as shown in Fig. 5(c). (In this case,
RCWA is better suited for the high-quality simulations, which require long simulation times with
FDTD; however, close agreement was found with FDTD simulations with a long integration time.)
The Fano-fit is also plotted in Fig. 5(c). Q-factor values obtained from the fit are 66� 103 for Design C
and 85� 103 for Design D. There is a significant reduction in the actual Q factor in the fully

Fig. 5. (a) Maximum field strength of the first higher order mode a2 versus period � and duty cycle � with
thickness d ¼ 625 nm and grating refractive index of 3.078 using CMT. (b) Comparison of the two
designs regarding the strength of interaction between the incident and the evanescent higher order
modes. (c) Reflectivity using RCWA with 18 modes. For Design C, w ¼ 519:68 nm and � ¼ 812 nm,
and for design D,w ¼ 519:27 and � ¼ 828 nm. Q values obtained from the fit are 66� 103 and 85� 103

for design C and D, respectively.
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converged case; however, the trend of increase in Q is maintained for the RCWA (as with the CMT
method): Going from Design C to D shows an increase of 28% in the Q value. Therefore, the CMT
method improves the performance of these high-Q resonators, as well as providing suitable
parameters for strong coupling to the first higher order mode.

4. Conclusion
We presented a CMT method to explore the characteristics of HCGs over a wide range of design
parameters such as period, duty cycle, thickness, and wavelength of operation. A design procedure
was presented for broadband high reflectivity applications that showed near-optimal performance in
terms of broadband reflection with minimal ripple. Such broadband reflectors are of interest for
numerous applications, including tunable VCSELs. The method was also used to search for higher
Q resonators, with a 28% improvement over past results demonstrated. These high-Q resonators
are of particular interest for sensor applications. Other desirable features of the CMT method are its
efficiency, simplicity, and ability to provide physical insight. It should be mentioned that the method
provides estimates for an optimal design, and once the dimensions are estimated for desired
operation, RCWA/FDTD or any other rigorous method (including higher order CMT) can be used to
accurately describe the optical properties of these structures.
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