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Asymptotic fields for a Hamiltonian treatment of nonlinear electromagnetic phenomena
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We discuss the use of asymptotic-in and -out fields in a Hamiltonian treatment of nonlinear electromagnetic
problems. Our approach allows a description of nonlinear phenomena in a number of geometries and is suitable to
treat integrated photonic structures, particularly cavities. We present examples in which the nonlinear phenomena
are weak enough for pump depletion to be neglected, and we report some results related to the description of
second-order nonlinear processes in ring resonators and layered structures.
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I. INTRODUCTION

Optical cavities and their properties play a central role
in photonics. In classical linear optics, they arise in the
development of slow-light structures [1], where it has recently
been suggested that novel designs can lead to robust delay lines
that are topologically protected [2]. In quantum optics, the
Purcell effect [3] has enabled a host of exciting developments
in the control of spontaneous emission and has served as
the paradigmatic example of the effect of the environment
on the optical properties of material systems. In nonlinear
optics, the role of cavities in confining light and enhancing
electromagnetic fields has inspired developments in fields
ranging from optical bistability [4,5], to all-optical switching
[6–8], to harmonic generation [9–12], to the use of light both
to drive mechanical resonances and to cool them to their
quantum limit [13]. Similarly, photonic crystal waveguides,
which can be viewed as open cavities, are promising platforms
for the enhancement of nonlinear optics phenomena using slow
light [14]. With this wide-ranging interest in optical cavities, it
is perhaps not surprising that they are being investigated for use
in the enhancement of processes in nonlinear quantum optics
[15–19], such as the generation of quantum correlated pairs
of photons by either spontaneous parametric down-conversion
(SPDC) or spontaneous four-wave mixing.

In such applications, where a fully quantum treatment of
the electromagnetic field is desired, the natural starting point
would be a linear Hamiltonian that involves cavity modes,
modes of the electromagnetic field that can carry energy
to and away from the cavity, and a coupling Hamiltonian
between them. Such a Hamiltonian is often referred to as a
Gardiner-Collett Hamiltonian [20], and was used by those
authors in their treatment of damped quantum systems [21].
In some structures this approach can be easily implemented.
For example, in the coupling of a waveguide channel to a
ring resonator the coupling is often idealized as occurring at
a single point [see Fig. 1(a)] [22]. Within this approximation,
it is straightforward to build an effective Hamiltonian of the
Gardiner-Collet type that models the optics of the resonator
and channel [15,17]. However, the problem is nontrivial for
other cavity structures, such as even a simple one-dimensional
(1D) Fabry-Pérot cavity. There is a large literature about how
quasimodes can be introduced for a Fabry-Pérot cavity and

their coupling with the outside world described [23]; a review
of the history of the subject, and a very careful approach to the
problem, has been presented by Dutra [20]. A careful analysis
of more complicated structures even in one dimension, such as
the photonic crystal cavity shown in Fig. 1(b), would certainly
be more difficult. In more complex structures such as that
indicated schematically in Fig. 2 the problem would be even
worse.

A different strategy harks back to the elementary theory
of scattering in quantum mechanics. There one can introduce
asymptotic-in and asymptotic-outstates, as was done in the
classic paper of Breit and Bethe [24]. These are full so-
lutions of the (linear) Schrödinger equation, including the
scattering potential, and exist everywhere in space. But they
are built so that a natural superposition of them corresponds
to an incident wave packet at t = −∞ (asymptotic-in), or
an exiting wave packet at t = ∞ (asymptotic-out) [25]. In
elementary quantum mechanics the construction of these states
constitutes a solution of the scattering problem itself. In
photonics the construction of the corresponding solutions of
the linear Maxwell equations for a structure such as that in
Fig. 2, which can often be found numerically even if not
analytically, constitutes a solution of only the linear scattering
problem. Indeed, as we show in detail below, that linear
scattering problem can be encapsulated in a transformation
from the asymptotic-in to the asymptotic-out fields. However,
those fields also form the natural basis for the treatment
of a nonlinear optics problem, especially if the nonlinearity
can be idealized as restricted to an “interaction” region as
indicated schematically in Fig. 2; in the particular examples of
Figs. 1(a) and 1(b) this would correspond to the ring or the
photonic crystal structure.

In this strategy there is no introduction of artificial “cavity
modes,” which of course do not really exist in structures
such as those shown in Figs. 1(a) and 1(b). The enhancement
of nonlinear optical effects due to the time light spends in
a cavitylike structure (such as the ring or photonic crystal
structure in our two examples) is completely captured by the
distribution of the asymptotic-in and asymptotic-out fields.
Hence the problem of trying to correctly identify approxi-
mate quasimodes and their effective coupling to input and
output channels is completely bypassed. We will see that the
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FIG. 1. A sketch of (a) a ring resonator and (b) a one-dimensional
planar microcavity.

strategy we develop here simplifies not only quantum optics
calculations but even more traditional calculations in classical
nonlinear optics.

While earlier work has anticipated some aspects of what
we present here in optics [26,27], and analogous approaches
have arisen in the treatment of electron transport in channels
and cavitylike structures [28], here we develop a general
framework for problems in nonlinear quantum optics. The
formalism can consider single-particle states, as in elementary
quantum scattering theory, as well as more complicated states
including coherent states, squeezed vacua, and Fock states.
Additionally, both the material and modal dispersion of the
input and output channels, such as those sketched in Fig. 2,
can be important in the analysis of real artificially structured
materials; our approach can include them very naturally.
Scattering of light out of the structure and absorption losses
are sometimes also important, but we defer their inclusion to
later presentations.

In Sec. II we introduce some terminology for the generic
structure sketched in Fig. 2. The linear optics of such a structure
is considered in Sec. III, where we introduce the asymptotic-in
and -out fields at the classical level and then turn to the
quantization of these fields. Conditions on the transmission
coefficients are derived, and the natural treatment of linear

FIG. 2. A sketch of the kind of structure of interest. The origin of
the laboratory frame is at the center of the interaction region, which
is where the local z coordinates of the channels take the value 0.

scattering in terms of these fields is presented in the simple
case of coherent states incident on the interaction region.
In Sec. IV we formulate the general scattering problem in
the presence of nonlinearities in terms of the asymptotic-in
and -out fields and give two examples in the following
two sections. In Sec. V we consider the ring resonator of
Fig. 1(a), where we show that this strategy easily reproduces
the usual results obtained with a Gardiner-Collett Hamiltonian
for SPDC. In Sec. VI we consider a photonic crystal structure
and show that our theory reproduces the results for classical
second harmonic generation (SHG) with more ease than
the traditional calculation. We demonstrate that the same
formalism can also be employed to predict both the SPDC
efficiency and the biphoton wave function characterizing the
entangled photons generated. Our conclusions are presented
in Sec. VII.

II. STRUCTURES OF INTEREST

We consider structures of the form indicated schematically
in Fig. 2, where there are a number of channels connected by
an interaction region. The channels could all be of the same
type, or of different types, as indicated in the figure. They can
also be understood more generally than the ridge and photonic
waveguides that are sketched, as we will see later. However, it
will be useful to adopt the language appropriate for the kinds of
channels sketched in Fig. 2 to fix the notation. The only really
important assumption is that these channels identify all the
ways that energy can move toward or away from the interaction
region, i.e., all pathways of any significance are taken into
account; we plan to generalize this to include absorption and
scattering losses in a later presentation. We leave the details of
the interaction region, indicated only in “cartoon fashion” by
the central circular region, unspecified for the moment. When
we include nonlinear effects we will assume they arise only in
the interaction region.

Associated with each channel we indicate a local coordinate
system, with unit vectors x̂n, ŷn, and ẑn, where n identifies the
channel. The orientation of these vectors is restricted only
in that each of the ẑn points toward the interaction region,
and the values zn = 0 occur at a point that would lie near the
center of the interaction region. We denote the coordinates of a
position vector in one of these local frames by rn = (xn,yn,zn),
reserving r = (x,y,z) to denote the coordinates in a laboratory
frame, placing r = 0 at the center of the interaction region.

It is clear from Fig. 2 that we assume each channel must
“end” at a certain point, either at the boundary of the interaction
region or somewhere within it. So below when we indicate
functions of rn, f (rn), what we mean are such functions
truncated at the ending point of the indicated channel. That
is, we take f (rn) to really mean

f (rn) → f (rn)θ (Dn − zn), (1)

where θ is the usual step function, θ (z) = 0 when z < 0 and
θ (z) = 1 when z > 0, and Dn is a (negative) number (recalling
the definition of zn = 0) that indicates the end of the channel.
Functions of r, on the other hand, are taken to be defined
everywhere in space.

We also consider individual channels that carry on infinitely
in the local propagation direction, but are of the same type
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FIG. 3. The channels are assumed infinite in length and sep-
arated far enough from each other that they can be considered
isolated.

as the channels appearing in our actual structure. These are
shown schematically in Fig. 3, and are to be imagined far
enough apart so they can be considered as isolated systems.
When considering these isolated channels we simply use x̂, ŷ,
and ẑ to indicate the unit vectors, with ẑ pointing along the
propagation direction.

Returning to Fig. 2, we see that as |r| increases the
distance between the channels also increases. In writing
general functions of r, F (r), we use F (r) ∼ · · · to indicate
that |r| is large enough so that the channels can be taken to be
isolated, with · · · then a good approximation of F (r).

III. LINEAR OPTICS OF THE STRUCTURES

We begin by neglecting the presence of any nonlinearity,
and formulate both classical and quantum descriptions of the
linear optical properties of our structures.

A. Asymptotic-in and -out fields

A starting point for our calculations will be the classical
optics of the isolated channels sketched in Fig. 3. Since the
displacement field D(r,t) and the magnetic field B(r,t) are
divergenceless, it is useful to consider them as our fundamental
fields. We imagine that the modes of a particular channel n are
found and will be labeled by a discrete index I and a continuous
index k, with frequency ωnIk > 0; we denote the displacement
and magnetic mode fields as DnIk(r) and BnIk(r) respectively,
so that the electromagnetic field in a set of isolated channels
as shown in Fig. 2 can be written as

D(r,t) =
∑

n,Iεσn

∫ ∞

−∞
dk γnIke

−iωnIk tDnIk(r) + c.c.,

(2)

B(r,t) =
∑

n,Iεσn

∫ ∞

−∞
dk γnIke

−iωnIk tBnIk(r) + c.c.,

with complex mode amplitudes γnIk; we use σn to specify the
set of modes allowed in channel n. Here we are interested only
in modes confined to the structure, and in general only over a

certain frequency range, and so the integral range from −∞
to ∞ is schematic; in general there will be mode cutoffs, and
if the waveguide structure has periodicity in the z direction
the range of k will at most be the first Brillouin zone. To take
into account possible periodicity along the z direction of the
structure we write

DnIk(r) = dnIk(r)√
2π

eikz,

(3)

BnIk(r) = bnIk(r)√
2π

eikz,

where the functions dnIk(r) and bnIk(r) are periodic in the z

direction with the periodicity, �n, of the structure,

dnIk(r) = dnIk(r + �nẑ),

bnIk(r) = bnIk(r + �nẑ).

We assume no significant absorption or scattering losses in the
frequency range of interest, but material dispersion is taken
into account by determining BnIk(r) and DnIk(r), as previously
discussed [29]; the solutions at k and −k are not independent,
and the relation between them can be fixed by taking

DnI (−k)(r) = D∗
nIk(r),

(4)
BnI (−k)(r) = −B∗

nIk(r).

We return to Fig. 2 now and look for solutions of the
classical Maxwell equations for this structure that oscillate
at frequency ωnIk and have mode fields of the form

Dasy-in
nIk (r) = DnIk(rn) + Dout

nIk(r),
(5)

Basy-in
nIk (r) = BnIk(rn) + Bout

nIk(r),

for positive k, where the out superscript indicates that far
from the interaction region Dout

nIk(r) and Bout
nIk(r) consist of

“outgoing” waves in each channel. That is, we have

Dasy-in
nIk (r) ∼ DnIk(rn)

+
∑

n′,I ′∈σn′

∫ ∞

0
dk′ T out

nI ;n′I ′(k,k′)Dn′I ′(−k′)(rn′),

(6)

for positive k. We refer to (Dasy-in
nIk (r),Basy-in

nIk (r)) as an
asymptotic-in mode field. In expressions like this when coordi-
nates such as rn appear on the right-hand side of the equation,
the implication is that they should be evaluated at the physical
point corresponding to the coordinates r in the laboratory
frame appearing on the left-hand side of the equation [but recall
(1)]. Since this mode field corresponds to a field oscillating at
frequency ωnIk , the only k′ for which T out

nI ;n′I ′(k,k′) can be
nonvanishing are those for which ωn′I ′k′ = ωnIk for positive
k and k′. If we denote by snI ;n′I ′(k) the positive value of k′
for which indeed ωn′I ′k′ = ωnIk holds for each given k, then
T out

nI ;n′I ′(k,k′) must be of the form

T out
nI ;n′I ′(k,k′) = τ out

nI ;n′I ′(k)δ(k′ − snI ;n′I ′(k)), (7)

where the Dirac delta function provides the restriction.
The form of τ out

nI ;n′I ′(k) is of course determined by the
interaction region, but the physics of (6) is clear. Far from the
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interaction region, the exact solution Dasy-in
nIk (r) of Maxwell’s

equations corresponds to a wave incoming in mode I of
channel n, and outgoing waves in general in all modes of all
channels. Thus these asymptotic-in mode fields are analogous
to the asymptotic-in states that appear in the elementary
quantum theory of scattering [24]. They share with them an
important feature, which we now recall.

Suppose that we construct a superposition of asymptotic-in
mode fields of the form

D(r,t) =
∑

n,Iεσn

∫ ∞

0
dk αnIke

−iωnIk tDasy-in
nIk (r) + c.c.,

(8)

B(r,t) =
∑

n,Iεσn

∫ ∞

0
dk αnIke

−iωnIk tBasy-in
nIk (r) + c.c.

We choose the complex amplitudes αnIk such that, were we to
put γnIk = αnIk for k > 0 and vanishing otherwise in (2), we
would have field profiles propagating in the +z direction in
each channel and, at t = 0, the field profiles would be centered
at z = 0; at t0 	 0, they would correspond to field profiles
centered at z 	 0. Following arguments in [24], as t → −∞
the fields (D(r,t), B(r,t)) of (8) can be written in the simplified
form

D(r,t) →
∑

n,Iεσn

∫ ∞

0
dk αnIke

−iωnIk tDnIk(rn) + c.c.,

(9)

B(r,t) →
∑

n,Iεσn

∫ ∞

0
dk αnIke

−iωnIk tBnIk(rn) + c.c.

That is, we have field profiles incident on the interaction region
from the different channels; at such an early time the fields
Dout

nIk(r) and Bout
nIk(r) in (5) can be neglected, not because they

are small, but because they are added together with different
phases in (8) for different k such that their net contribution
vanishes. In practice one has to deal with systems that are
characterized by channels of finite length. The results of (9)
hold for channels that can be considered sufficiently long to
contain the incoming pulse. As t → ∞, on the other hand,
when with our choice of γnIk in (2) the field profiles would
be centered at z 
 0, only the Dout

nIk(r) and Bout
nIk(r) in the

asymptotic-in mode fields will make a contribution to (8).
Indeed, the only regions of rn for which the part of the field
arising from the superposition of the DnIk(rn) and BnIk(rn)
would make a contribution correspond to the region Dn > zn

in the notation of (1), and thus do not correspond to regions in
the physical structure. Thus for t → ∞ there are only outgoing
field profiles in each channel.

Such a superposition (8), with the amplitudes αnIk properly
chosen, corresponds to a scattering experiment with fields
incident in general from each channel, as described by (9). Two
important consequences follow from this. The first is that the
asymptotic-in mode fields can be calculated numerically, even
if they cannot be found or reasonably modeled analytically.
The second is that, since the asymptotic-in mode fields can
be used to model all scattering experiments, they can be used
to describe all electromagnetic fields of the system, as long
as there are no modes of the electromagnetic field completely
bound to the interaction region. We plan to include such bound
modes in treatments in later presentations, but here we assume

they do not exist. And so (8) can be taken as an expansion of
all electromagnetic fields of interest.

Similarly we can introduce asymptotic-out mode fields:
they are full solutions of the Maxwell equations labeled by
positive k and of the form

Dasy-out

nIk (r) = DnI (−k)(rn) + Din
nIk(r),

(10)
Basy-out

nIk (r) = DnI (−k)(rn) + Bin
nIk(r),

where the in superscript indicates that far from the interaction
region Din

nIk(r) and Bin
nIk(r) consist of incoming waves in each

channel. That is,

Dasy-out

nIk (r) ∼ DnI (−k)(rn)

+
∑

n′,I ′∈σn′

∫ ∞

0
dk′ T in

nI ;n′I ′(k,k′)Dn′I ′k′(rn′ ),

(11)

and, again using the fact that this field must be oscillating at
frequency ωnI (−k) = ωnIk , the coefficient T in

nI ;n′I ′(k,k′) must be
of the form

T in
nI ;n′I ′(k,k′) = τ in

nI ;n′I ′(k)δ(k′ − snI ;n′I ′(k)).

We can identify the physics of these mode fields in analogy
with the scenario considered above for the asymptotic-in mode
fields. Here we construct

D(r,t) =
∑

n,Iεσn

∫ ∞

0
dk βnIke

−iωnIk tDasy-out

nIk (r) + c.c.,

(12)

B(r,t) =
∑

n,Iεσn

∫ ∞

0
dk βnIke

−iωnIk tBasy-out

nIk (r) + c.c.

and now choose the complex amplitudes βnIk such that, were
we to put γnI (−k) = βnIk for k > 0 and vanishing otherwise
in (2), we would have field profiles propagating in the −z

direction in each channel and, at t = 0, the field profiles would
be centered at z = 0; at t1 
 0, they would correspond to field
profiles centered at z 	 0. Again following arguments in [24],
as t → ∞ the fields (D(r,t), B(r,t)) of (12) can be written in
the simplified form

D(r,t) →
∑

n,Iεσn

∫ ∞

0
dk βnIke

−iωnIk tDnI (−k)(rn) + c.c.,

(13)

B(r,t) →
∑

n,Iεσn

∫ ∞

−∞
dk βnIke

−iωnIk tBnI (−k)(rn) + c.c.

Here we have field profiles moving away from the interaction
region in all the channels; as t → −∞, on the other hand,
there are only incoming field profiles in each channel. Again,
in the case of finite channels, (13) holds when they can be
considered sufficiently long to contain the outgoing pulse.

Again neglecting any possible electromagnetic field modes
bound to the interaction region, we can take (12) to be an
expansion of all electromagnetic fields of interest. Indeed,
both of the expansions (8) and (12) correspond to field profiles
incident on the interaction region for t 	 0 and field profiles
moving away from the interaction region for t 
 0. The
difference is that in the asymptotic-in expansion it is easier to
identify the amplitudes of the fields incident on the structure
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[the αnIk; see (9)], and in the asymptotic-out expansion it
is easier to identify the amplitudes of the fields departing
from the structure [the βnIk; see (13)]. Clearly the two sets
of mode fields are not independent; comparing (6) and (11),
and recalling the choice (4), we have

Dasy-out

nIk (r) = [
Dasy-in

nIk (r)
]∗

,
(14)

Basy-out

nIk (r) = [ − Basy-in
nIk (r)

]∗
.

So a determination of the asymptotic-in mode fields suffices
to determine the asymptotic-out mode fields as well. From the
asymptotic forms (6) and (11) we find the relations

T in
nI ;n′I ′(k,k′) = [

T out
nI ;n′I ′(k,k′)

]∗
. (15)

These expressions allow us to rewrite a number of equations in
the following section that involve the T out

nI ;n′I ′(k,k′) in equivalent
forms that instead involve the T in

nI ;n′I ′(k,k′).

B. Quantum formulation

This is a convenient point to quantize the electromagnetic
field. For the isolated channels of Fig. 3 we can write our field
operators as

D(r) =
∑

n,Iεσn

∫ ∞

−∞
dk

√
h̄ωnIk

2
cnIkDnIk(r) + H.c.,

(16)

B(r) =
∑

n,Iεσn

∫ ∞

−∞
dk

√
h̄ωnIk

2
cnIkBnIk(r) + H.c.,

where we work in the Schrödinger picture. The factors√
h̄ωnIk/2 are added for convenience and, for the mode fields

DnIk(r) and BnIk(r) normalized properly [29], the operators
cnIk and their adjoints c

†
nIk satisfy the canonical commutation

relations

[cnIk,cn′I ′k′] = 0,
(17)

[cnIk,c
†
n′I ′k′] = δnn′δII ′δ(k − k′),

with the linear Hamiltonian for these isolated channels given
by

HIC =
∑

n,Iεσn

∫ ∞

−∞
h̄ωnIkc

†
nIkcnIk, (18)

neglecting the zero-point energy.
Turning now to the structure of Fig. 2, we will be interested

in states |ψ(t)〉 such that for t = t0 	 0 we have energy
moving toward the interaction region, and for t = t1 
 0 the
energy will depart from the interaction region. We can expand
the field operators in terms of the asymptotic-in fields,

D(r) =
∑

n,Iεσn

∫ ∞

0
dk

√
h̄ωnIk

2
anIkDasy-in

nIk (r) + H.c.,

(19)

B(r) =
∑

n,Iεσn

∫ ∞

0
dk

√
h̄ωnIk

2
anIkBasy-in

nIk (r) + H.c.,

or asymptotic-out fields

D(r) =
∑

n,Iεσn

∫ ∞

0
dk

√
h̄ωnIk

2
bnIkDasy-out

nIk (r) + H.c.,

(20)

B(r) =
∑

n,Iεσn

∫ ∞

0
dk

√
h̄ωnIk

2
bnIkBasy-out

nIk (r) + H.c.

Looking at the first [Eq. (19)] of these, we use the expression
(6) to write

D(r) ∼
∑

n,Iεσn

∫ ∞

0
dk

√
h̄ωnIk

2
anIkDnIk(rn) + H.c.

+
∑

n,Iεσn

∫ ∞

0
dk

√
h̄ωnIk

2
c̄nIkDnI (−k)(rn) + H.c.,

(21)

where we have used (7) and

c̄nIk =
∑

n′,I ′εσn′

∫ ∞

0
an′I ′k′T out

n′I ′;nI (k′,k)dk′. (22)

Now as t → −∞ only the first term in (21) will be relevant,
and since in this limit we could use either (21) or the
isolated channel limit (16) to describe the electromagnetic
field operators, following (17) we must have

[anIk,an′I ′k′] = 0,
(23)

[anIk,a
†
n′I ′k′] = δnn′δII ′δ(k − k′).

As t → ∞ only the second term in (21) will be relevant, and
again since we could use either (21) or the isolated channel
limit (16) we must have

[c̄nIk,c̄n′I ′k′] = 0,
(24)

[c̄nIk,c̄
†
n′I ′k′] = δnn′δII ′δ(k − k′).

The first of (24) automatically follows from (22), and the
second identifies the condition∑

n′,I ′εσn′

∫
dk′ T out

n′I ′;n1I1
(k′,k1)

[
T out

n′I ′;n2I2
(k′,k2)

]∗

= δn1n2δI1I2δ(k1 − k2). (25)

Corresponding arguments starting from (20) and the asymp-
totic form (11) of the asymptotic-out mode fields lead to

[bnIk,bn′I ′k′] = 0,
(26)

[bnIk,b
†
n′I ′k′] = δnn′δII ′δ(k − k′),

and again (25), written in terms of the T in
n′I ′;nI (k′,k) [recall

(15)].
We can now identify the relation between the Dasy-out

nIk (r)
and the Dasy-in

nIk (r); (14) gives one relation involving complex
conjugation, but since both asymptotic-in and -out fields are
complete it is possible to identify a relation of the form

Dasy-out

nIk (r) =
∑

n′,I ′εσn′

∫
dk′ C(nIk; n′I ′k′)Dasy-in

n′I ′k′ (r). (27)
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As both Dasy-out

nIk (r) and Dasy-in
nIk (r) correspond to solutions with

frequency ωnIk , we can expect the coefficients C(nIk; n′I ′k′)
to contain a factor δ(k′ − snI ;n′I ′(k)). It suffices to look at the
asymptotic form of the two sides of (14) and compare the
outgoing parts; these must be equal, and using (6) and (11) we
find this is satisfied with C(nIk; n′I ′k′) = [T out

n′I ′;nI (k′,k)]∗ =
T in

n′I ′;nI (k′,k), where we have used (15). So we have

Dasy-out

nIk (r) =
∑

n′,I ′εσn′

∫
dk′ T in

n′I ′;nI (k′,k)Dasy-in
n′I ′k′ (r). (28)

The factor T in
n′I ′;nI (k′,k) is restricted to k = sn′I ′;nI (k′), which

is the same as the restriction k′ = snI ;n′I ′(k) that was expected.
With this in hand, we can determine the relation between the
lowering operators anIk and bnIk appearing in the expansions
(19) and (20) in terms of asymptotic-in and asymptotic-out
fields, respectively. Using (28) in (20) and comparing with
(19), we find

anIk =
∑

n′,I ′εσn′

∫ ∞

0
dk′T in

nI ;n′I ′(k,k′)bn′I ′k′ . (29)

Using the commutation relations for the anIk and their adjoints
(23), and those of the bnIk and their adjoints (26), along with
(15), we find∑

n′,I ′εσn′

∫
dk′ T out

n1I1;n′I ′(k1,k
′)
[
T out

n2I2;n′I ′(k2,k
′)
]∗

= δn1n2δI1I2δ(k1 − k2), (30)

which complements (25). Expressions for Dasy-in
nIk (r) in terms

of the Dasy-out

nIk (r), and the bnIk in terms of the anIk , can be
similarly derived; we find

Dasy-in
nIk (r) =

∑
n′,I ′εσn′

∫
dk′ T out

n′I ′;nI (k′,k)Dasy-out

n′I ′k′ (r) (31)

and

bnIk =
∑

n′,I ′εσn′

∫ ∞

0
dk′ T out

nI ;n′I ′(k,k′)an′I ′k′ . (32)

C. Scattering in the linear regime

We now treat the quantum optics of scattering from our
structure in the linear regime. Because of the form of the
isolated channel Hamiltonian, arguments along the lines of
those following (19) and (20) lead to a Hamiltonian for the
structure of Fig. 2 of

HL =
∑

n,Iεσn

∫ ∞

0
dk h̄ωnIka

†
nIkanIk

=
∑

n,Iεσn

∫ ∞

0
dk h̄ωnIkb

†
nIkbnIk.

We construct an initial state |ψ(t0)〉 for t0 	 0 that corresponds
to energy incident on the interaction region from one or more
of the channels. We write this state in the form

|ψ(t0)〉 = e−iHLt0/h̄Kin({anIk},{a†
nIk})|vac〉

= Kin({anIke
iωnIk t0},{a†

nIke
−iωnIk t0})|vac〉, (33)

where |vac〉 is the vacuum state of the system,
Kin({anIk},{a†

nIk}) is a function of the sets of operators
indicated, and in the second line we have used the fact that
exp(−iHLt0/h̄)|vac〉 = |vac〉. Because of the nature of the
asymptotic-in mode fields, it will be easy to write down
expectation values of operators in |ψ(t0)〉, as we illustrate in
an example below. Note that at all later times we will have

|ψ(t)〉 = e−iHLt/h̄Kin({anIk},{a†
nIk})|vac〉. (34)

For times t 
 0, however, it will be convenient to write the
set {anIk} in terms of the set {bnIk}, and the set {a†

nIk} in terms
of the set {b†nIk}, using (29). The function Kin({anIk},{a†

nIk})
written in terms of the {bnIk} and {b†nIk} will then define a new
function according to

Kout ({bnIk},{b†nIk}) = Kin({anIk},{a†
nIk}),

where the use of (29) is implicit. At any time, from (33) we
can then write

|ψ(t)〉 = e−iHLt/h̄Kout ({bnIk},{b†nIk})|vac〉,
and so at a time t1 
 0 we then have

|ψ(t1)〉 = e−iHLt1/h̄Kout ({bnIk},{b†nIk})|vac〉
= Kout ({bnIke

iωnIk t1},{b†nIke
−iωnIk t1})|vac〉, (35)

and due to the properties of the asymptotic-out mode fields
it will be convenient to write down the expectation values of
operators at t1 using this form.

As an example, suppose we want to describe coherent states
incident on the structure at t0. Then we take

Kin({anIk},{a†
nIk}) = e�in({anIk},{a†

nIk};0),

where

�in({anIk},{a†
nIk}; t)

=
∑

n,Iεσn

∫ ∞

0
dk νnIke

−iωnIk t a
†
nIk − H.c.

and the νnIk are complex numbers; from (33) we have

|ψ(t0)〉 = e�in({anIk},{a†
nIk};t0)|vac〉.

In evaluating 〈ψ(t0)|D(r)|ψ(t0)〉 we will have

〈ψ(t0)|D(r)|ψ(t0)〉

→
∑

n,Iεσn

∫ ∞

0
dk

√
h̄ωnIk

2
νnIke

−iωnIk t0 DnIk(r) + c.c.,

t0 	 0,

which mimics our classical description [see the first of (9)],
assuming that the νnIk

√
h̄ωnIk/2 have the properties of αnIk;

only the incoming part makes a contribution to the asymptotic-
in field expansion of (21). Now using (29) and (15) we can
construct Kout ({bnIk},{b†nIk}); we find

Kout ({bnIk},{b†nIk}) = e�out ({bnIk},{b†nIk};0),

013833-6
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where

�out ({bnIk},{b†nIk}; t)

=
∑

n,Iεσn

∫ ∞

0
dk

⎡⎣ ∑
n′,I ′εσn′

∫ ∞

0
dk′T out

n′I ′;nI (k′,k)νn′I ′k′

⎤⎦
×e−iωnIk t b

†
nIk − H.c.

Then from (35) we have

|ψ(t1)〉 = e�out ({bnIk},{b†nIk};t1)|vac〉,
and for t1 large enough only the outgoing part of Dasy-out

nIk (r) [see
(11)] in the first of (20) will give a contribution to quantities
such as 〈ψ(t1)|D(r)|ψ(t1)〉, and we will have

〈ψ(t1)|D(r)|ψ(t1)〉

→
∑

n,Iεσn

∫ ∞

0
dk

√
h̄ωnIk

2

×
⎡⎣ ∑

n′,I ′εσn′

∫ ∞

0
dk′ T out

n′I ′;nI (k′,k)νn′I ′k′

⎤⎦
× e−iωnIk t1 DnI (−k)(rn) + c.c., t1 
 0. (36)

This example is particularly simple because it essentially
repeats the classical calculation given earlier. Indeed, fol-
lowing the calculation (9) to times t 
 0 and using the
results of the discussion below that equation, we find the
same expression as (36) if we replace νnIk

√
h̄ωnIk/2 by αnIk .

More important is the general strategy, which allows us to
move from a representation in terms of the asymptotic-in mode
fields to one in terms of the asymptotic-out mode fields and
can be applied to more general states of the electromagnetic
field. In the simple linear case here the scattering is described
by nothing more than that change of basis; the physics of
the scattering is contained within the asymptotic mode fields
themselves. If nonlinearities are included the situation is more
complicated, but the strategy devised here can be extended to
aid in the solution of such problems. We turn to that in the next
section.

IV. SCATTERING WITH NONLINEARITIES

We now include a nonlinear term in our Hamiltonian,

H = HL + HNL,

assuming that only field operators in the interaction region
contribute to HNL. We can then still start with a state |ψ(t0)〉 at
t0 	 0 consisting of energy incident on the interaction region
but far from it, because there is no nonlinearity in the region
of excitation,

|ψ(t0)〉 = e−iHLt0/h̄Kin({anIk},{a†
nIk})|vac〉.

We now define an asymptotic-in ket |ψin〉 as the ket to which
this would evolve at t = 0 were there no nonlinearity:

|ψin〉 = e−iHL(0−t0)/h̄|ψ(t0)〉
= Kin({anIk},{a†

nIk})|vac〉. (37)

In fact the ket evolves according to the entire Hamiltonian H ,
and at a later time t1 the ket will be

|ψ(t1)〉 = e−iH (t1−t0)/h̄|ψ(t0)〉.
The asymptotic-out ket is the ket that would evolve to this from
t = 0 were there no nonlinearity,

|ψ(t1)〉 = e−iHL(t1−0)/h̄|ψout 〉, (38)

or

|ψout 〉 = eiHLt1/h̄|ψ(t1)〉 = eiHLt1/h̄e−iH (t1−t0)/h̄|ψ(t0)〉
= eiHLt1/h̄e−iH (t1−t0)/h̄e−iHLt0/h̄|ψin〉 = U (t1,t0)|ψin〉,

where

U (t1,t0) ≡ eiHLt1/h̄e−iH (t1−t0)/h̄e−iHLt0/h̄. (39)

The entire effect of the nonlinearity is described in the
transition |ψin〉 → |ψout 〉; the rest of the dynamics in the
evolution from |ψ(t0)〉 → |ψ(t1)〉 is purely linear and more
easily described. In the absence of nonlinearity, of course,
H = HL and clearly |ψout 〉 = |ψin〉. More generally, although
the form (37) is the easiest in which to specify the in-
coming fields, for the ultimate calculation of the outgoing
fields it is usually more convenient to use the alternative
form

|ψin〉 = Kout ({bnIk},{b†nIk})|vac〉.
Then the transition to |ψout 〉,

|ψout 〉 = U (t1,t0)Kout ({bnIk},{b†nIk})|vac〉
can be calculated or approximated using the asymptotic-out
basis, as well as, if desired, the transformation (38) to
|ψ(t1)〉. However, we will see that this general strategy can
be simplified in examples we give below.

We now turn to the specific form of the nonlinear
Hamiltonian, which in our approach should be written
in terms of the asymptotic fields. With the neglect of
any nonlinear magneto-optical effects, and ignoring mate-
rial dispersion in the nonlinear response of the medium,
the nonlinear Hamiltonian HLN that should be added to
HL to construct the full Hamiltonian in the Schrödinger
picture is

HNL = − 1

3ε0

∫
dr �

ijk

2 (r)Di(r)Dj (r)Dk(r)

− 1

4ε0

∫
dr �

ijkl

3 (r)Di(r)Dj (r)Dk(r)Dl(r) + · · · ,
(40)

where the superscripts indicate Cartesian coordinates and are
to be summed over when repeated, and the �n(r) are nth-
rank tensors that are symmetric under the permutations of all
indices [30]. In the specific quantum examples we present,
we consider SPDC in which a pump photon, coming through
channel m, is converted into two photons in the interaction
region that exit through channel n. A natural choice is to write
the field operators associated with channel m in terms of the
asymptotic-in fields and those associated with channel n in
terms of asymptotic-out fields. Thus, assuming single-mode
channels for simplicity, so that we can neglect the index I
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in our notation, the relevant (energy-conserving) term in the
nonlinear Hamiltonian is

HNL = −
∫

dk1dk2dkSnn;m(k1,k2,k)b†nk1
b
†
nk2

amk + H.c.,

(41)

where

Snn;m(k1,k2,k)

= 1

ε0

√
(h̄ωnk1 )(h̄ωnk2 )(h̄ωmk)

8

∫
dr �

ijk

2 (r)

×[
D

i,asy-out

nk1
(r)

]∗[
D

j,asy-out

nk2

]∗
(r)Dk,asy-in

mk (r), (42)

and we have used (19) and (20). Of course, we could use (14)
or (31) along with (29) to rewrite the above expression entirely
in terms of asymptotic-out fields and operators, but the form
above is most illustrative of the physics.

Conventionally the second-order response is specified
not by �

ijk

2 (r), which relates the nonlinear polarization to
the displacement field, but by ε0χ

ijk

2 (r), which relates the
nonlinear polarization to the electric fields. As discussed
earlier [30], if the material dispersion is neglected in χ

ijk

2 (r)
then in (42) we should take

�
ijk

2 (r) → χ
ijk

2 (r)

ε0n2(r,ωnk1 )n2(r,ωnk2 )n2(r,ωmk)
, (43)

where n(r,ω) is the material refractive index at position r and
frequency ω.

V. EXAMPLE I: SPDC IN MICRORING RESONATORS

In this section the photonic system considered is a microring
resonator such as the one sketched in Fig. 4. Microring
resonators are attractive as photon pair sources because they
can be integrated with silicon technologies [31–33], can
achieve quasi-phase-matching at frequencies far from degener-
acy without the need for complicated dispersion engineering
[34], and are predicted to generate frequency-anticorrelated
or -uncorrelated photon pairs by simply varying the pump
pulse duration [17,18]; photon pair generation in a microring
resonator has already been observed [16].

The specific system that we study is a GaAs microring
resonator (see Fig. 4), grown with ŷ corresponding to a crystal
axis, and side-coupled to a channel waveguide at a single point,
z = 0. Although the formalism can be applied to more complex

FIG. 4. Sketch of the ring resonator.

systems and take into account coupling more realistic than that
taken to occur at a single point, we consider this simple model
studied earlier [15] to demonstrate the simplicity with which
previous results can be recovered. We assume pump photons
coming from the left [m = L in (41)] and generated photons
exiting on the right side of the ring [n = R in (41)].

We construct a full solution for one of the D
i,asy-in
Lk (r)

according to

D
i,asy-in
Lk (r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
di

k (r⊥)√
2π

eikz when z < 0,

T (k) di
k(r⊥)√

2π
eikz when z > 0,

+D
i,ring

Lk (r) in the ring,

(44)

where r⊥ indicates the coordinates in the plane normal to the
waveguide (whether in a channel or in the ring), and treat
the coupling between the channels and the ring in the usual
way, with self-, σ (k), and cross-, κ(k), coupling coefficients
satisfying σ (k)2 + κ(k)2 = 1, and where

|T (k)|2 = |σ (k) + [iκ(k)]2eik�

1 − σ (k)eik�
|2 = 1 (45)

if losses are neglected. Note that the mode profiles di
k(r⊥) are

not labeled by a channel index (L or R ), as they are identical
in both channels here, whereas the D

i,ring

Lk (r) are, as a field
incident from the left channel will propagate counterclockwise
around the ring compared to a field incident from the right
channel which will propagate clockwise, i.e.,

D
i,ring

Lk (r) = iκ(k)

1 − σ (k)eik�

di
k(r⊥,ζ/R)√

2π
eikζ , (46)

where ζ is the coordinate in the counterclockwise direction
along the ring circumference of length � = 2πR. A similar
construction follows for the [Di,asy-out

Rk (r)]∗.
Note that, in a GaAs microring, fields polarized in the plane

of the ring (x polarized in the channel) experience a change in
local coordinates with respect to the crystal coordinates, and
thus a change in nonlinearity, as they travel around the ring.
Rather than have the ring mode profiles depend explicitly on
ζ/R, we consider rotation matrices that connect components
along the circumference of the ring, di

k(r⊥,ζ/R), to their
corresponding channel components, di

k(r⊥), and allow us to
pull this dependence out of integrals over r⊥. Recalling that in
GaAs there is only one independent component of χ

ijk

2 , i.e.,
that all components for which i �= j �= k are equal, and calling
it χ2, for a pump polarized perpendicular to the plane of the
ring ( y polarized in the channel) these considerations lead to
both down-converted fields being x polarized in the channel,
and allow us to write the nonlinear coupling term (41) as

SRR;L(k1,k2,k) =
√

(h̄ωk1 )(h̄ωk2 )(h̄ωk)

(4π )3ε0

χ2

n3 I
iκ(k1)

1 − σ (k1)eik1�

× iκ(k2)

1−σ (k2)eik2�

iκ(k)

1 − σ (k)eik�

eiφ(k1,k2,k)

√
A(k1,k2,k)

,

(47)
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where

eiφ(k1,k2,k)

√
A(k1,k2,k)

= 2
∫

dr⊥
n3d

y

k1
(r⊥)dy

k2
(r⊥)dx

k (r⊥)

ε
3/2
0 n2(r⊥; ωk1 )n2(r⊥; ωk2 )n2(r⊥; ωk)

, (48)

with the integral taken over the channel cross section defining
the effective area A(k1,k2,k). We have dropped all redundant
channel labels, n is a reference refractive index introduced
solely for convenience, and

I =
∫ �

0
dζei�kζ cos(ζ/R) sin(ζ/R)

= eiπ(�kR+2)

4i

� sin[π (�kR + 2)]

π (�kR + 2)

−eiπ(�kR−2)

4i

� sin[π (�kR − 2)]

π (�kR − 2)
(49)

identifies the quasi-phase-matching condition �k(= k − k1 −
k2) = ±2/R. We have also assumed that the structure is
dispersion engineered such that pump and down-converted
fields are all near ring resonances, so the nonlinear interaction
in the ring dominates that in the channel and the latter can be
neglected. With these expressions in hand we can apply the
backward Heisenberg picture approach, as outlined in [35] to
calculate the state of generated photons in the undepleted pump
approximation, characterized by the biphoton wave function
(BWF)

φ̃RR;L(ω1,ω2)

= 2
√

2πα

β

i

h̄

1√
vg(ω1)vg(ω2)vg(ω1 + ω2)

φ̃P (ω1 + ω2)

×SRR;L(k(ω1),k(ω2),k(ω1 + ω2)), (50)

where the vg(ω) are group velocities, and φ̃P (ω) is the pump
pulse wave form containing, on average, |α|2 photons. Note
that the BWF and pump wave form are normalized with respect
to frequency rather than wave vector, the former by setting the
value of the normalization constant β; the relation between
these functions in frequency space and momentum space was
discussed earlier [35] and is mentioned in the Appendix. In the
limit of a small probability of pair production per pump pulse,
that probability is given by

|β|2 = h̄|α|2(χ2)2

8πε0v2
gF

vgS
An6

×
∫ ∞

0
dω1dω2|φ̃P (ω1 + ω2)|2ω1ω2(ω1 + ω2)

×
∣∣∣∣I iκF

1 − σF eik(ω1)�

iκF

1 − σF eik(ω2)�

iκS

1 − σSeik(ω1+ω2)�

∣∣∣∣2

.

(51)

Although the coupling coefficients and group velocities truly
have some frequency dependence, here we have taken them
as constant for wave vectors associated with second harmonic
frequencies (i.e., for terms involving ω1 + ω2 over the band-
width of the pump) and labeled by S, and also constant for
wave vectors associated with down-converted, fundamental,

frequencies (i.e., for terms involving just ω1 or ω2 over the
SPDC bandwidth) and labeled by F . We have also taken
A(k(ω1),k(ω2),k(ω)) = A to be essentially constant over the
frequency range of interest and thus pulled it out of the integral.
We stress how similar these expressions (50) and (51) are to
the detailed example in [35], and also that no additional ring or
coupling Hamiltonians, along with their associated subtleties,
were required. We now proceed to perform the integrals over
ω1 and ω2 and calculate |β|2 explicitly, to show that the new
formalism reproduces the previous result.

We work in the limit of a long pulse, narrowly centered at
resonance frequency ωS such that |φ̃P (ω1 + ω2)|2 ≈ δ(ω1 +
ω2 − ωS) and, as mentioned above, assume that the ring
has been dispersion engineered such that the pump field at
ωS as well as the down-converted fields at frequencies on
either side of half the pump, ωF± = ωS/2 ± �ω, are exactly
on the resonances centered in k space at kS0 and kF± =
(kS0/2 − 1/R) ± 1/R, respectively. Then, expanding the wave
vectors to first order around kS0 and kF± , we may make the
Lorentzian approximation for the field coupling terms, e.g.,
|iκF /{1 − σF exp[ikF (ω1(2))�]}|2 ≈ κ2

F /{ (1 − σF )2 + [(ω −
ωF+(−) )�/vgF

]2} and extend the range of integration over ω1

and ω2 from −∞ to ∞. Thus, we no longer consider the
total probability of generating a photon pair within any pair
of resonance linewidths, but rather, for a pump centered at
resonance frequency ωS , focus our attention on the pairs
of photons generated within the linewidths defined by kF± .
Calling this new quantity |βF±|2 and integrating over ω2, we
find

|βF±|2
|α|2 ≈ 2

h̄(χ2)2ωS

8πε0v2
gF

vgS
An6

κ2
S

(1 − σS)2

∫ ∞

−∞
dω1ω1(ωS − ω1)

× |I |2 κ4
F

((1−σF )2+{σF [ω1 − (ωS/2+�ω)]�/vgF
}2)2

.

These assumptions have the additional implication that the
quasi-phase-matched sinc function resulting from the integral
I is essentially unity, i.e., for the particular ring design
and resonances considered, only the second term in (49) is
appreciable, and approximately equal to i�/4. Making the
change of variables � = σF [ω1 − (ωS/2 + �ω)]�/vgF

and
keeping only the term proportional to ω2

S , by far the largest,
we find

|βF±|2
|α|2 ≈ h̄(χ2)2�ω3

S

256πε0v2
gF

vgS
An6σF

κ2
S

(1 − σS)2

×
∫ ∞

−∞
d�

κ4
F

[(1 − σF )2 + �2]2

= h̄(χ2)2�ω3
S

512ε0vgF
vgS

An6σF

κ2
F

(1 − σF )2

κ4
S

(1 − σS)3
.

If we then introduce

P = 8ε0n
6v2

gF
vgS

(χ2)2ω2
S

,

PF = h̄ωSvgF

2�
,
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and make the usual assumptions that σF ≈ 1, σS ≈ 1, we arrive
at our final expression

|βF±|2
|α|2 = PF

P
�2

A
1

16
α2

F α2
S, (52)

where

α2
m = 2

1 − σm

,

exactly as in [15].

VI. EXAMPLE II: SECOND HARMONIC GENERATION
AND SPDC IN LAYERED STRUCTURES

In this section we apply the strategy of asymptotic fields to
the description of SHG and SPDC in planar one-dimensional
photonic crystal structures such as the one shown in Fig. 5.
This choice is motivated by two reasons: (i) Historically, SHG
has been widely studied in periodic multilayers [36–46], as
they are very simple structures with respect to both fabrication
and theoretical description. A number of designs to enhance
the effect of the nonlinearity have been suggested, and many of
them are now potentially interesting for SPDC enhancement.
(ii) We want to stress that our approach is not limited to the
case of integrated photonic circuits, where light is coupled
in and out of the photonic system through waveguides, but
it is much more general and can be used to describe several
experimental configurations.

First we focus on SHG: Two pump photons coming from
the right channel are converted into a photon exiting the left
channel (see Fig. 5), a scenario opposite to that considered in
the previous section. Starting from (40), we extract the relevant
term in the nonlinear Hamiltonian

HNL = −
∫

dkdk1dk2SL;RR(k,k1,k2)b†LkaRk1aRk2 + H.c.,

(53)

FIG. 5. (Color online) Sketch of a one-dimensional photonic
crystal.

with nonlinear coupling parameter

SL;RR(k,k1,k2)

= 1

ε0

√
(h̄ωLk)(h̄ωRk1 )(h̄ωRk2 )

8

×
∫

dr �
ijk

2 (r)[Di,asy-out

Lk (r)]∗Dj,asy-in
Rk1

(r)Dk,asy-in
Rk2

(r),

(54)

in analogy with (41) and (42) above.
In the case of the multilayer of interest (see Fig. 5),

the channels are the semiinfinite layers on each side of the
structure, and the electromagnetic field is described in terms
of plane waves. If we consider a linearly polarized plane wave
of frequency ω propagating in the right channel in the −ẑ
direction, the displacement field can be written

DRk(r) = ê

√
ε0n

2
R(ωRk)

2πA

vgR
(ωRk)

vpR
(ωRk)

e−ikz, (55)

where ê is perpendicular to ẑ. The normalization of the mode
is done as in [35], but since the plane wave extends infinitely in
the (x,y) plane, we evaluate the integral over a normalization
area A. We thus construct a full solution for the asymptotic-in
field according to

Dasy-in
Rk (r) =

√
ε0n

2
R(ωRk)

2πA

vgR
(ωRk)

vpR
(ωRk)

n2(z,ωRk)

n2
R(ωRk)

fRk(−z), (56)

where fRk(−z) is a dimensionless function of just the z

coordinate, which can be easily evaluated for an arbitrary
multilayer using the well-known transfer matrix method [47]
and describes the electric field along the multilayer. Note that
quantities such as the refractive indices n as well as the group
vg and phase vp velocities carry the channel labels R and L,
as the left and right channels are not, in general, identical
as they were for the microring considered above. A similar
construction follows for [Dasy-out

Lk ]∗. The nonlinear coupling
parameter is now

SL;RR(k,k1,k2) = χ2

(2πcA)3/2

√
vgL

(ωLk)vgR
(ωRk1 )vgR

(ωRk2 )

ε0nL(ωLk)nR(ωRk1 )nR(ωRk2 )

×
√

(h̄ωLk)(h̄ωRk1 )(h̄ωRk2 )

8
JL;RR(k,k1,k2)

×
∫

A

dx dy, (57)

where χ2 is a reference susceptibility value introduced solely
for convenience, and

JL;RR(k,k1,k2) =
∫

dz
χ

ijk

2 (z)

χ2
f i

Lk(z)f j

Rk1
(−z)f k

Rk2
(−z)

(58)

is a function that describes the field overlap integral and
contains all of the information regarding the structure.

Following [35] we can now obtain the expression for the
wave function of the generated state (see the Appendix). In
particular, if the pump is a coherent state with a very general
wave form φ̃P (ω), we have
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φ̃L;RR(ω) = i

h̄

2πα2

β

∫
dω1dω2

φ̃P (ω1)φ̃P (ω2)SL;RR(kL(ω),kR(ω1),kR(ω2))δ(ω − ω1 − ω2)√
vgL

(ω)vgR
(ω1)vgR

(ω2)
, (59)

where |α|2 and |β|2 are the expectation values of the numbers of pump and generated photons, respectively. By integrating over
ω2 and using (57) we get

φ̃L;RR(ω) = 2πα2

β

1√
A

χ̄2

(4πc)3/2

i√
ε0nL(ω)

√
h̄ω

∫
dω1

√
ω1(ω − ω1)

nR(ω1)nR(ω − ω1)
φ̃P (ω1)φ̃P (ω − ω1)

× JL;RR(kL(ω),kR(ω1),kR(ω − ω1)). (60)

As usual, |β|2 is determined by requiring that |φ̃L;RR(ω)|2 is
normalized.

It is interesting to study the case of a continuous wave (cw)
pump at ωp. To this end, we consider a pump pulse centered
at ωp having a rectangular shape in time of width �T :

φ̃P (ω) =
√

�T

2π
sinc

(
(ω − ωp)�T

2

)
. (61)

By inserting (62) in (60) and integrating |φ̃P (ω)|2 (see the
Appendix), we get the number of generated photons. Then,
since the pump and SHG intensities are

I (ωp) = |α|2h̄ωp

A�T
, I (2ωp) = |β|22h̄ωp

A�T
, (62)

we have that as �T → ∞ the multilayer nonlinear transmit-
tance is

T NL(ωp) = I (2ωp)

I 2(ωp)
= ω2

pχ̄2
2

2ε0c3nL(2ωp)n2
R(ωp)

× |JL;RR(kL(2ωp),kR(ωp),kR(ωp))|2. (63)

One can immediately verify that, in the case of a homogeneous
and isotropic medium of length L and susceptibility χ̄2,
(64) gives the usual classical result [48]. More importantly,
the calculation of the cw SH nonlinear transmittance of an
arbitrary multilayer is now straightforward, as it is reduced to
the evaluation of the field overlap integral (58).

We consider a specific one-dimensional photonic crystal
studied earlier [45], in which both the pump and the second-
harmonic fields are resonant with a photonic band edge. This
structure is particularly interesting, as it can demonstrate
SHG efficiency that scales with the eighth power of the
crystal length. Surprisingly, this occurs without realizing the
well-known phase-matching condition.

The structure consists of Al0.25Ga0.75As/Alox stacks with
layer thicknesses L1 = L2 = 373 nm. We assume that the
multilayer is oriented along the [111] direction, ensuring that
the χ (2) susceptibility tensor has a nonzero response for a
pump at normal incidence, and for simplicity take both the
left and right channel materials to be air. The structure is
designed to have a doubly resonant condition between the
band-edge resonances of the II and IV photonic gaps [45],
with the fundamental resonance at 0.62 eV (� 2 μm). For a
pump narrowly centered at this energy, we expect a scaling of
the SHG intensity proportional to N8, N being the number
of periods. This scaling is due in part to the total field
enhancement at the band edge, which accounts for N6 (N4

for the fundamental field and N2 at the second harmonic), and
in part due to the fact that the structure is shorter than the SHG
coherence length, which is proportional to N . This gives an
additional contribution of N2 [45]. The calculated nonlinear
transmittance as a function of N is shown in Fig. 6.

Next we want to consider the case of SPDC in a generic mul-
tilayer when the pump pulse is at normal incidence on the left
side of the multilayer and the generated photon pairs emerge
from the right side of the structure and propagate collinearly
with the pump (see Fig. 5). Under these assumptions, the
process is opposite to the SHG process discussed above, and
exactly the same as the SPDC process discussed in Sec. V.

Indeed, starting from (41) and (42), and using (56) we
can derive the biphoton wave function following the same
procedure used in the previous section for the ring, and find

φ̃RR;L(ω1,ω2) = 2π
√

2α

β

i

h̄

1

c3/2
φ̃P (ω1 + ω2)

× SRR;L(kR(ω1),kR(ω2),kL(ω1 + ω2)),

(64)

where |α|2 and |β|2 are the expectation values of the number
of pump photons and generated pairs, respectively, φ̃P (ω) is
the normalized pump pulse wave form and SRR:L(ω1,ω2,ω) is
a function that depends on the field overlap integral defined by
analogy with (57). One can immediately verify that

SRR;L(kR(ω1),kR(ω2),kL(ω))

= SL;RR(kL(ω),kR(ω1),kR(ω2)). (65)

FIG. 6. (Color online) Calculated nonlinear transmittance and
overlap integral in (64) as a function of the number, N , of periods of
the structure.
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FIG. 7. (Color online) Biphoton probability densities for a
structure with N = 20 periods. The pump pulses are tuned at the
second-harmonic band edge with durations of (a) �T = 1 ps and (b)
�T = 1 ns.

This is clear by constructing the fields in terms of the
asymptotic-in and -out fields and remembering that we are
considering the opposite process of SHG in a configuration
where the photons’ propagation directions are inverted.

As an example, in Fig. 7 we show two normalized biphoton
probability densities describing photon pairs generated in the
multilayer described. We consider N = 20 periods and a pump
pulse centered at 1.24 eV with a spectral shape described by
(62). We calculate the biphoton probability density for a short
(�T = 1 ps) and a long (�T = 1 ns) pulse. In analogy with
what was reported in [17] for ring resonators, the shape of the
biphoton probability density, and thus the photons’ correlation,
strongly depends on the pulse duration, which controls the
spectral width of the pulse. The longer the pulse, the greater
the correlation between two photons of a generated pair, due
to a tighter restriction on energy conservation. A detailed
discussion of this example is beyond the scope of this paper,
but we intend to come back to this interesting problem in a
future communication.

VII. CONCLUSIONS

In problems in linear and nonlinear optics where a full
quantum treatment is desired, often the first step is the
identification of an appropriate Hamiltonian. Even that can be
challenging. In artificially structured materials with cavities,
one strategy is to build a Gardiner-Collect-type Hamiltonian,

with coupling between external modes and effective cavity
modes. But for many structures the identification of the effec-
tive cavity modes and a rigorous description of the coupling
with the external modes is difficult or impossible. We have
presented a way to bypass this problem which is applicable to
a large variety of photonic systems, from integrated circuits to
layered structures. It exploits asymptotic-in and asymptotic-out
fields, in close analogy with scattering theory in quantum
mechanics. These fields are the stationary solutions of the
classical linear Maxwell equations, and can be evaluated
analytically or numerically. We demonstrated in Sec. II that
such solutions can be used to describe the electromagnetic
field in either a classical or a quantum framework, and so from
the results of classical calculations it is possible to construct
an appropriate Hamiltonian associated with the problem of
interest. In particular, in Sec. III we showed that the linear
scattering problem can be viewed as a basis transformation
from that of asymptotic-in fields to that of asymptotic-out
fields. In Sec. IV we applied this strategy to the descrip-
tion of scattering in the presence of nonlinearities, and in
Secs. V and VI we presented two examples of the inclusion of a
second-order nonlinear optical response within our formalism.
In the first example of a side-coupled ring resonator, we
calculated the SPDC conversion efficiency and obtained an
expression identical to that reported earlier on the basis of
a Gardiner-Collett Hamiltonian. In the second example of an
arbitrary multilayer structure, we derived an expression for the
cw SHG nonlinear transmittance in a manner much simpler
than that of previous calculations and studied SPDC in such
a structure, calculating the biphoton wave function associated
with the state of the generated photons.

These examples illustrate the versatility of our approach.
They show how our strategy leverages solutions of the
classical linear Maxwell equations, found either analytically
or numerically, to simplify the solution of nonlinear classical
or quantum problems. They also show how it highlights the
physics of the nonlinear interaction and its enhancement in
cavity structures. Thus it should be particularly useful not only
for obtaining quantitative predictions, but as well for achieving
a better understanding of the physics behind the phenomena.
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APPENDIX

Here we derive the expression of the nonlinear trans-
mittance in the case of an arbitrary multilayer under the
assumptions discussed in Sec. VI. This can be done by
following the backward Heisenberg picture approach [35] and
considering the nonlinear Hamiltonian given by (53) and (57).
Although the approach is quite similar to that for determining
the SPDC efficiency [35], there are some subtleties worth
noting.
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We take our asymptotic-in ket (37) to be a coherent state

|ψin〉 = eαA
†
P −H.c.|vac〉,

where

A
†
P =

∫
dk φP (k)a†

Rk,

a
†
Rk is the creation operator associated with a photon coming

from the right channel having momentum k, and the pump
pulse wave form φP (k) is normalized according to∫

dk|φP (k)|2 = 1.

Alternatively, we may write

φ̃P (ω) =
√

dk(ω)

dω
φP (k(ω)) =

√
1

vgR
(ω)

φP (k(ω)), (A1)

where vgR
(ω) is the group velocity in the right channel; a

corresponding prefactor is introduced for the left channel so all
pump and generated photon wave functions are appropriately
normalized.

Using (39), the asymptotic-out ket (38) can be written

|ψout 〉 = eαA
†
P (t0)−H.c.|vac〉,

where

A
†
P (t0) =

∫
dk1φP (k1)a†

Rk1
(t0)

is a backward Heisenberg operator [35], and a
†
Rk1

(t) satisfies

ih̄
da

†
Rk1

(t)

dt
= 2

∫
dk2dkSL;RR(k,k1,k2; t)b

†
Lk(t)aRk2 (t),

(A2)

with

SL;RR(k,k1,k2; t) = SL;RR(k,k1,k2)ei(ω−ω1−ω2)t . (A3)

Equation (A2) has the zeroth-order solution

[a†
Rk1

(t)]0 = a
†
Rk1

(t1) = a
†
Rk1

,

and thus, in the limit of an undepleted pump, we have

a
†
Rk1

(t) = a
†
Rk1

+ 2

ih̄

∫
dk2dk

[∫ t0

t1

dtSL;RR(k,k1,k2; t)

]
b
†
LkaRk2

= a
†
Rk1

+ 4πi

h̄

∫
dk2dkSL;RR(k,k1,k2)b†LkaRk2δ(ωLk − ωRk1 − ωRk2 ),

where we have extended the range of integration from t0 →
−∞ to t1 → ∞.

In writing the final form of the asymptotic-out ket, there is
an additional subtlety that arises for SHG compared to SPDC
[35]—namely, that not all of the operators in the exponential
commute with each other. Thus, following

eA+B = eAe− 1
2 [A,B]+higher-order termseB, (A4)

where any one of the “higher-order terms” is proportional to

[S1,[S2, · · · [Sn−1,Sn] · · · ]], Si=1,2,...,n = A or B,

we take

A = α

∫
dk1φP (k1)a†

Rk1
− H.c.,

B = 4πiα

h̄

∫
dkdk1dk2φP (k1)SL;RR(k,k1,k2)b†LkaRk2 − H.c.,

(A5)

and work out

−1

2
[A,B] = 2πiα2

h̄

∫
dk dk1dk2φP (k1)φP (k2)

× SL;RR(k,k1,k2)b†Lk − H.c.

Note that from (A5) we have

eB |vac〉 = |vac〉.

Then, neglecting the higher-order terms mentioned above, as
they either contain higher powers of the (assumed small)
nonlinearity or involve back-action on the pump (and thus
violate the undepleted pump approximation), we can write the
asymptotic-out ket as

|ψout 〉 = e(αA
†
P +βC†)−H.c.|vac〉,

where

C† =
∫

dk φL;RR(k)b†Lk

is the creation operator describing the generated photons
exiting to the left side of the multilayer, and

φL;RR(k) = 2πα2

β

i

h̄

∫
dk1dk2φP (k1)φP (k2)

× SL;RR(k,k2,k1)δ(ωLk − ωRk1 − ωRk2 )

is the generated photon wave function, with β chosen such
that it is normalized. This allows us to identify |β|2 with the
expectation value of the number of generated photons. Using
(A1), we can now write the photon wave function in terms of
frequency and, integrating over ω2, obtain (60). The number
of generated photons is given by
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|β|2 = |α|2
A

χ̄2
2

16πc3ε0

∫ ∞

0

h̄ω

nL(ω)

∣∣∣∣∣
∫ ∞

0
dω1

√
ω1(ω − ω1)

nR(ω1)nR(ω − ω1)
φ̃P (ω1)φ̃P (ω − ω1)JL;RR(kL(ω),kR(ω1),kR(ω − ω1))

∣∣∣∣∣
2

.

(A6)

To calculate the multilayer cw nonlinear transmittance we consider a pump pulse (61).
Due to the spectral shape of the pulse, for a sufficiently large �T , the integrand in the modulus is significantly different from

zero when

ω1 − ωp � 0, (A7)

ω − ω1 − ωp � 0. (A8)

Thus, neglecting material dispersion over the pump bandwidth, and taking all the slowly varying functions in ω1 and ω − ω1 as
constant, we have

|β|2 = |α|4
A

χ̄2
2

16πc3ε0

∫ ∞

0
dω

ω2
p

n2
R(ωp)

h̄ω

nL(ω)
|JL;RR(kL(ω),kR(ωp),kR(ω − ωp))|2 �T 2

4π2

×
∣∣∣∣∫ ∞

0
dω1sinc

(
(ω1 − ωp)�T

2

)
sinc

(
(ω1 − ωp − ω + 2ωp)�T

2

)∣∣∣∣2

. (A9)

For the same reasons, when �T is sufficiently large, we can extend the integral within the modulus in the range (−∞,∞), the
integrand being negligible in the (−∞,0) interval. Then, using the result∫ +∞

−∞
dx sinc(xa)sinc[(x − x̃)a] = π

a
sinc(x̃a), (A10)

we have

|β|2 = |α|4
A

χ̄2
2

16πc3ε0

∫ ∞

0
dω

ω2
p

n2
R(ωp)

h̄ω

nL(ω)
|JL;RR(kL(ω),kR(ωp),kR(ωp))|2 �T 2

4π2

∣∣∣∣ 2π

�T
sinc

(
(ω − 2ωp)�T

2

)∣∣∣∣2

= |α|4
A

χ̄2
2

16πc3ε0

∫ ∞

0
dω

ω2
p

n2
R(ωp)

h̄ω

nL(ω)
|JL;RR(kL(ω),kR(ωp),kR(ωp))|2

∣∣∣∣sinc

(
(ω − 2ωp)�T

2

)∣∣∣∣2

. (A11)

Again, this last integrand is significantly different from zero when ω � 2ωp. This leads to

|β|2 = |α|4
A

χ̄2
2

16πc3ε0

2h̄ω3
p

n2
R(ωp)nL(2ωp)

|JL;RR(kL(2ωp),kR(ωp),kR(ωp))|2
∫ ∞

0
dω

∣∣∣∣sinc

(
(ω − 2ωp)�T

2

)∣∣∣∣2

,

= |α|4
A�T

χ̄2
2

16c3ε0

4h̄ω3
p

n2
R(ωp)nL(2ωp)

|JL;RR(kL(2ωp),kR(ωp),kR(ωp))|2. (A12)

Finally, using (A12) and (62), we obtain (63).
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