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Fourier analysis has been successfully applied to study optical properties of photonic crystal structures,
usually composed of optically isotropic media. In a commonly used formulation �D. M. Whittaker and I. S.
Culshaw, Phys. Rev. B 60, 2610 �1999��, inversion symmetry of the unit cell is required. Here, we extend the
treatment of Whittaker and Culshaw to structures with asymmetric unit cells that can be composed of bire-
fringent media. As applications we consider a high-refractive-index membrane with a triangular lattice of
triangular holes, where the presence of a TE-like gap at � and of a TM-like gap at 2� is established, and a slot
waveguide made of �birefringent� porous silicon, where coupling of guided modes to radiative modes is
achieved through a one-dimensional periodic grating.
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I. INTRODUCTION

Periodically patterned multilayer photonic structures, such
as photonic crystal slabs or membranes, are very promising
systems for the realization of integrated optical devices, es-
pecially low loss waveguides and high Q cavities.1,2 The
theoretical analysis of such structures is complicated when
the effects of external coupling or emission by internal
sources have to be considered. The in-plane periodicity sug-
gests a field description by means of a Fourier method,
where the problem is treated in reciprocal space instead of
direct space. Such treatments, initially developed for the
theory of gratings in diffractive optics,3,4 have been extended
and applied to the study of photonic crystal structures.5–9

Once the expression of the field is obtained in terms of its
Fourier components, boundary conditions at the interface be-
tween different spatial regions are usually imposed by means
of a scattering-matrix approach originally developed for the
study of electron transmission in semiconductor
heterostructures.10 The calculations are accurate and fast, and
nowadays can easily be performed on a standard personal
computer. A scattering-matrix treatment along these lines has
been developed in detail by Whittaker and Culshaw.11 It can
be used to solve Maxwell’s equations for a realistic patterned
multilayer, to evaluate reflectance and transmittance spectra,
and to calculate the emission from an internal dipole source.
Even though this method is a very powerful and efficient
tool, its original formulation11 requires inversion symmetry
of the unit cell of the periodic pattern, and birefringent ma-
terials are not treated.

Recently, a photonic crystal slab with a triangular lattice
of triangular air holes has been identified as a structure for
which a photonic band gap for both polarizations can be
achieved.12 Indeed, in this system, it is possible to obtain
several photonic gaps for odd modes �quasi-TM polarization�
besides the usual gap for the fundamental even �quasi-TE
polarization� mode.13 These properties make the system ap-
pealing for applications in nonlinear optics, for example, in
achieving doubly resonant second-harmonic generation, as

studied in one- and two-dimensional systems.14–18 Unfortu-
nately, the lack of inversion symmetry of a triangular hole
prevents a description of such a structure by means of the
scattering-matrix method.11

In another recent development, porous silicon �PSi� has
attracted growing interest due to the possibility of obtaining
visible light emission at room temperature.19 This material
offers easy fabrication of high quality one-dimensional pho-
tonic crystal structures and planar waveguides, thanks to the
strong dependence of the refractive index on porosity.20,21

Because of the possibility of growing structures with a large
number of layers, many interesting phenomena have already
been explored in PSi multilayers, such as second-harmonic
generation in coupled microcavities and light localization in
disordered systems.22,23 The possibility of infiltrating PSi
structures with other materials suggests the use of those de-
vices for biosensing, and several examples of PSi based sen-
sors have already been proposed.24–26

In many porous silicon structures, the pore size is smaller
than the wavelength of light, and the material can be treated
by effective medium theory, in which an effective dielectric
tensor is associated with a mesoscopic volume of the struc-
ture containing many pores. Although bulk silicon itself is
optically isotropic, the effective medium is naturally birefrin-
gent due to preferential etching of the pores in the vertical
direction.27 A simple planar waveguide composed of isotro-
pic media can also be characterized by a sort of birefringence
due to the different degree of field confinement for the two
polarizations: this happens, in particular, in the so-called slot
waveguides.28,29 This effect can be called “form birefrin-
gence,” since it depends on the geometrical properties of the
systems; it has been proposed as an efficient method for
achieving phase matching in multilayer waveguides of cubic
materials, where natural birefringence cannot be
exploited.30,31 In the case of a photonic crystal or a wave-
guide made of PSi, the optical response is determined by the
combination of natural birefringence of the constituent media
and form birefringence of the whole structure. Although a
birefringent one-dimensional system can be efficiently de-

PHYSICAL REVIEW B 77, 035324 �2008�

1098-0121/2008/77�3�/035324�11� ©2008 The American Physical Society035324-1

http://dx.doi.org/10.1103/PhysRevB.77.035324


scribed by means of a transfer matrix formalism,32 when an
in-plane periodic pattern is introduced �as in the case of a
photonic crystal slab or grating coupled waveguide�, this
method could become numerically unstable. A description by
means of a scattering matrix is possible, but the natural
medium birefringence must be taken into account in the
formalism.

In this work, we propose two extensions of the scattering-
matrix method11 to describe systems in which there is no
center of inversion symmetry of the unit cell, or which are
composed of birefringent materials. The paper is organized
as follows: In Sec. II, we present the generalization of the
method to treat asymmetric unit cells; we discuss in detail
the symmetry properties of the matrices that are involved in
the construction of the total scattering matrix. The issue of
birefringent materials is studied in Sec. III, where a further
generalization of the method is presented. Applications are
presented in the following two sections: In Sec. IV, the for-
malism is utilized to characterize a high-refractive-index
membrane with a triangular lattice of triangular holes, and in
Sec. V, we present numerical results for a PSi slot wave-
guide. We point out that, when the cell has inversion sym-
metry and no birefringent materials are considered, the
present formulation coincides with the one in Ref. 11. Thus,
throughout the paper we maintain, wherever possible, the
same notation and terminology as in Ref. 11 as summarized
in the Appendix.

II. SCATTERING-MATRIX METHOD FOR UNIT CELLS
WITHOUT INVERSION SYMMETRY

The procedure for building the scattering matrix of a pla-
nar periodically patterned system �see Fig. 1� can be summa-
rized as follows: �i� The electromagnetic waves are expanded
in a plane-wave set and Maxwell’s equations are written in
the in-plane momentum representation; �ii� the band struc-
ture of each patterned layer, taken to be homogeneous in the
z direction, is evaluated, yielding a set of states ��i� describ-
ing propagation in the z direction as simple plane waves,
exp�iqiz�; �iii� the electromagnetic field is expanded in terms
of these forward and backward Bloch states; �iv� the scatter-
ing matrix is found by means of an iterative procedure in

which the continuity of the tangential components of the
electric and magnetic fields at the interfaces between the dif-
ferent layers is required.

The crucial point of the entire method is finding, for each
layer, an appropriate set of basis functions ��i� and the cor-
responding wave vector components qi along the z direction.
A natural starting point is to expand the magnetic field in
basis states with zero divergence, so that the condition
� ·H=0 is automatically satisfied. Then the Fourier expan-
sion coefficients for each function �i, and the corresponding
qi, follow from Maxwell’s equations in the momentum rep-
resentation. They are determined from the solution of the
eigenvalue problem

��i = qi
2�i, �1�

where

� = �E��2 − K� − K� .

Here, E, K, and K are 2N�2N matrices, where N indicates
the number of reciprocal lattice vectors considered. The
properties of these matrices depend on the Fourier transform
of the dielectric function ��r�, which is a periodic function in
the plane and, for a given layer, it is assumed to be uniform
along z. The expressions of all the operators can be found in
Ref. 11 or, alternatively, in Eq. �A10� of the Appendix. The
matrix �̂, which is contained in E and K, is defined as

�̂ij =
1

S
�

cell
��r�ei�Gi−Gj�·rdr , �2�

where Gi and G j are reciprocal lattice vectors and S is the
unit cell area. In this section, we assume, following Ref. 11,
that the material is optically isotropic. We generalize this
assumption in the next section.

While the solution of Eq. �1� does not require any particu-
lar assumption on the nature of the unit cell, the eigenvectors
satisfy interesting properties that follow directly from the
unit cell symmetry and the dielectric function nature. We will
briefly discuss these properties and how they are related to
some orthogonality relations that can be demonstrated for the
eigenvectors ��i�. It is straightforward to show that for a unit
cell with inversion symmetry the matrix E is symmetric and
the eigenvalue problem �1� can be reduced to the form of a
generalized symmetric problem �see Eq. �A11��. In this case,
it is possible to find a set of eigenvectors for which the ele-
ments �i satisfy the particular orthogonality relations

�i
T��2 − K�� j = �ij . �3�

When the unit cell lacks inversion symmetry and the dielec-
tric function is real, the matrix �̂ �and therefore E� is Hermit-
ian and Eq. �1� can be rewritten in the form of a generalized
Hermitian problem. For an asymmetric unit cell, the eigen-
vectors satisfy a more generalized orthogonality relation,

�i
†��2 − K�� j = �ij , �4�

where �i
† indicates the adjoint of the vector. Finally, when

the unit cell is not symmetric and the dielectric function is
complex, nothing can be inferred about the eigenvector or-
thogonality. All the cases are summarized in Table I.

FIG. 1. �Color online� Scheme of a periodically patterned
multilayer: laboratory reference system and principal dielectric axes
are indicated with continuous and dashed lines, respectively. We
treat the case in which the growth direction is along the axis Z. The
laboratory reference system 	xyz is obtained from 	XYZ through a
clockwise rotation of an angle 
 around Z.
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We envision constructing the scattering matrix in the most
general case, when neither the unit cell nor the dielectric
function are assumed to have particular properties. We show
below that the standard method has to be modified where it
employs the orthogonality relation �3�, which requires inver-
sion symmetry for the unit cell, to construct the interface
matrix that relates the field amplitudes of two adjacent
layers.

Once the eigenvalue problem for a layer is solved, the
Fourier components of the electromagnetic field can be ex-
panded using the basis ��i�. The relation between the expan-
sion coefficients and the field components can be expressed
by introducing the matrix M, defined as

�e	�z�
h	�z�


 = ���2 − K��q̂−1 − ��2 − K��q̂−1

� �



�� f̂�z�a

f̂�d − z�b

 � M� f̂�z�a

f̂�d − z�b

 , �5�

where e	�z� and h	�z� contain the �x ,y� components of the
fields, a and b are 2N-dimensional vectors that contain the
expansion coefficients, q̂ is the diagonal matrix with q̂ii=qi,

� is the matrix whose columns are the vectors �i, and f̂�z�
and f̂�d−z� are diagonal matrices, which take into account
the field phase shift due to the propagation in the layer
�see the Appendix�.

In order to obtain an expression for the generic interface
matrix between the layers l and l+1, we impose continuity of
the tangential field components at the interface, and thus, the
amplitudes �al ,bl� and �al+1 ,bl+1� satisfy the relation

� f̂ lal

bl


 = I�l,l + 1�� al+1

f̂ l+1bl+1

 . �6�

The interface matrix is related to the layer matrices Ml and
Ml+1 by the simple equation

I�l,l + 1� = Ml
−1Ml+1. �7�

The numerical inversion of the matrices Ml requires consid-
erable effort, since each one of them is a 4N�4N matrix,
and N typically varies from 31 to 109 or more in accurate
simulations. In the original formulation of the scattering ma-
trix method,11 the interface matrix I�l , l+1� is evaluated by
constructing an explicit expression for Ml

−1 �see Eq. �A14��,
based on the orthogonality relation �3� that the set of eigen-
vectors ��i� satisfy. This strategy is not available if the unit
cell lacks inversion symmetry, but it can easily be general-

ized when the dielectric function is real. Based on the or-
thogonality relation �4�, we find that each M−1 can be written
as

M−1 =
1

2
� q̂�† �†��2 − K�

− q̂�† �†��2 − K� 
 , �8�

where �†= ��*�T indicates the adjoint of �. Then the inter-
face matrix is easily constructed:

I�l,l + 1� =
1

2
q̂l�l

†��2 − Kl+1��l+1q̂l+1
−1 � 1 − 1

− 1 1



+
1

2
�l

†��2 − Kl��l+1�1 1

1 1

 . �9�

For a unit cell lacking inversion symmetry and a complex
dielectric function where no orthogonality relations are avail-
able, a more general approach is required. Still, rather than
numerically inverting M, we can notice that it is possible to
write

M = �A − A

B B

 , �10�

where A= ��2−K��q̂−1 and B=�. Then M−1 can be con-
structed according to

M−1 =
1

2
� A−1 B−1

− A−1 B−1 
 , �11�

where A−1=q�−1��2−K�−1 and B−1=�−1. The direct prob-
lem of inverting a 4N�4N matrix is then replaced by invert-
ing two 2N�2N matrices, which still gives considerable
saving in time.

These generalizations of the original scattering-matrix
method11 are useful in that the method is now suitable for
any periodic pattern and, if the dielectric function is real, a
structure with a unit cell without inversion symmetry is only
marginally more complicated than the one with inversion
symmetry. We illustrate this in Sec. IV below, but first we
consider the further generalization to a structure consisting
of birefringent media.

III. SCATTERING-MATRIX METHOD FOR
BIREFRINGENT MEDIA

While in an isotropic medium the induced polarization is
parallel to the electric field, this is not true for anisotropic
media, except for particular propagation directions and po-
larizations. If we want to use the scattering-matrix method to
describe a patterned multilayer containing one or more bire-
fringent layers �even if the unpatterned ones�, we must gen-
eralize the eigenvalue problem �1� to take into account the
material anisotropy.

For each medium the relation between the electric field
and the displacement vector can be written as

TABLE I. Properties of the Fourier transform of the dielectric
function: the matrix �̂ is symmetric for a unit cell having inversion
symmetry and, more generally, it is Hermitian when the dielectric
function is real.

��r� Real Complex

Symmetric �̂ij = �̂ ji �̂ij = �̂ ji

Asymmetric �̂ij = �̂ ji
* —
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�Dx

Dy

Dz

 = ��xx �xy �xz

�yx �yy �yz

�zx �zy �zz

�Ex

Ey

Ez

 , �12�

where �ij are complex numbers, and x, y, and z are the co-
ordinates in the laboratory reference system 	xyz. We are
assuming that Eq. �12� holds at any point in space, i.e., spa-
tial dispersion effects are neglected. While a general exten-
sion of the scattering-matrix method for all possible symme-
tries of the dielectric tensor is complicated, we specify the
treatment to two different situations that are described below.

In the first case, we assume that the dielectric tensor is
diagonal with respect to fixed principal axes. This situation
corresponds to most crystal symmetries, with the exception
of monoclinic and triclinic crystallographic point groups.
Moreover, we assume that one of the principal axes coin-
cides with the growth axis z of the multilayer. The dielectric
tensor can then be written as

��r� = ��X�r� 0 0

0 �Y�r� 0

0 0 �Z�r�

 �13�

and each of the diagonal components can be either real or
complex. In particular, for uniaxial materials where the z axis
coincides with the optic axis, �X=�Y. This situation corre-
sponds to the case of nanoporous silicon layers, where the
birefringence is determined by the fabrication process. The
nanopores can be treated as cylindrical holes oriented in the
z direction, and the dielectric constants parallel and perpen-
dicular to the surface can be evaluated by means of Maxwell-
Garnett-type effective medium theory.27

The eigenvalue equation that arises can be found by ex-
tending the procedure of Whittaker and Culshaw:11 Using
their notations and field rescaling �see the Appendix�, we
rewrite the equation ��H=−i�E in the momentum
representation:

ik̂yhz�z� − hy��z� = − i�̂Xex�z� ,

hx��z� − ik̂xhz�z� = − i�̂Yey�z� ,

ik̂xhy�z� − ik̂yhx�z� = − i�̂Zez�z� , �14�

where we have introduced the matrices �̂�, with �=X, Y, and
Z, which are found using Eq. �2� for each component of the
dielectric tensor. Choosing the usual expansion for the mag-
netic field

h�z� = eiqz��xx̂ + �yŷ −
1

q
�k̂x�x + k̂y�y�ẑ� , �15�

we obtain the expression for the electric field Fourier com-
ponents

e�z� =
1

q
eiqz�
̂X�k̂yk̂x�x + �q2 + k̂yk̂y��y�x̂

− 
̂Y�k̂xk̂y�y + �q2 + k̂xk̂x��x�ŷ

+ q
̂Z�k̂y�x − k̂x�y�ẑ� , �16�

where we have indicated with 
̂� the inverse of the matrix
�̂�. Equation �16� takes the place of Eq. �A8� in the original
formulation.11 Finally, using the new expressions for the
electric field in the equation ��E= i�2H, we obtain a new
eigenvalue problem for �:

��
̂X 0

0 
̂Y

�q2 + �k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y


�
+ � k̂y
̂Zk̂y − k̂y
̂Zk̂x

− k̂x
̂Zk̂y k̂x
̂Zk̂x


���x

�y

 = �2��x

�y

 , �17�

which can be written in a more compact form as

�H	�q2 + K� + KZ�� = �2� , �18�

where we have introduced two new matrices

H	 = �
̂X 0

0 
̂Y

, KZ = � k̂y
̂Zk̂y − k̂y
̂Zk̂x

− k̂x
̂Zk̂y k̂x
̂Zk̂x


 . �19�

The eigenvalue equation for q,

�E	��2 − KZ� − K�� = q2� , �20�

is obtained by multiplying Eq. �18� by the matrix

E	 = ��̂X 0

0 �̂Y

 , �21�

which is the inverse of H	.
In the second situation we are considering, the dielectric

tensor is not diagonal, but it has at least one fixed principal
axis that coincides with the growth direction z. Thus, the
tensor assumes the block diagonal form

��r� = ��xx�r� �xy�r� 0

�yx�r� �yy�r� 0

0 0 �z�r�

 . �22�

We indicate by Exy the matrix that contains the Fourier coef-
ficients of the dielectric tensor components in the x-y plane:

Exy = ��̂XX �̂XY

�̂YX �̂YY

 , �23�

where �̂XX, �̂XY, �̂YX, and �̂YY can be obtained in the usual
way from Eq. �2� for the corresponding dielectric tensor el-
ements. It is trivial to prove that the eigenvalue Eq. �20� can
be directly written in the form

�Exy��2 − KZ� − K�� = q2� . �24�

It is worth noticing that the only assumption here is that
��r� has the block form �22�. Thus, in principle, the formu-
lation given in Eq. �24� is also valid in the presence of ab-
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sorption or optical activity, when the dielectric tensor is com-
plex and, in general, not symmetric. This also includes the
case in which the layer is composed of one or more birefrin-
gent media, for which the orientation of the principal axis in
the x-y plane depends on the position in the unit cell. An
example is a structure infiltrated with liquid crystals, where
the molecule orientation depends on the void shape or can be
controlled by an external electric field.33 In all these situa-
tions, the calculation of the scattering matrix involves only
two more Fourier transforms �for the off-diagonal elements
�xy�r� and �yx�r�� than in the previous case. In principle, this
is not a problem. Nevertheless, if we want to evaluate the
field distribution in the structure, and not only reflectance or
transmittance, the inverse of Exy is necessary. Since this op-
eration can require much computational time, as we observed
in Sec. II, when possible, a more efficient formulation of the
matrix inversion problem is preferable.

An elegant solution is found when all the birefringent
media in a given layer share the same principal axes and

Exy�r� = ��xx�r� �xy�r�
�xy�r� �yy�r�


 �25�

is real and symmetric. A particularly simple example would
be a structure composed of air and a biaxial medium where
the principal axes in the x-y plane are rotated around the z
axis by an angle 
 measured from the x axis of the laboratory
reference 	xyz �see Fig. 1�. Of course, one could work di-
rectly in the frame 	XYZ, but that would not be convenient
because the Fourier transform of the dielectric tensor com-
ponents would be unnecessarily complicated. Instead, we can
write

Exy�r� = O−1��X�r� 0

0 �Y�r�

O , �26�

where �X and �Y are the eigenvalues of Exy, and the diago-
nalizing matrix

O = �cos 
 − sin 


sin 
 cos 


 �27�

is orthogonal �that is, O−1=OT� and describes the anticlock-
wise rotation around ẑ with respect to 	xyz.

34 Using the lin-
earity properties of the Fourier transform, it is easy to dem-
onstrate that

Exy = O−1E	O = OTE	O , �28�

Hxy = O−1H	O = OTH	O , �29�

where E	 indicates the diagonal form of Exy, and

Hxy = Exy
−1 and H	 = ���X�−1 0

0 ��Y�−1 
 , �30�

with �X and �Y being the Fourier transform of �X and �Y,
respectively.

It is worth noticing that the new eigenvalue problems �20�
and �24� can be reduced to a generalized symmetric one for a
centrosymmetric unit cell and, more generally, to a general-
ized Hermitian one for a real dielectric function. It follows

that the particular orthogonality relations presented in Sec. II
are still valid, and they are simply generalized to

�i
T��2 − KZ�� j = �ij �31�

and

�i
†��2 − KZ�� j = �ij �32�

for symmetric and Hermitian problems, respectively. As we
have shown in the previous section, these relations are ex-
tremely convenient in reducing the computational time for
the construction of the interface matrix.

Once the unbounded problem is solved for each layer, the
interface matrices are found following the procedure de-
scribed in Sec. II provided the simple substitution of K with
KZ. Finally, the iterative procedure for the construction of the
scattering matrix is identical to the one presented earlier,11

which is reported in the Appendix for completeness.
The problem of a layer grown along a direction that is not

along a principal axis of the dielectric tensor will not be
treated. Even though this represents certainly a possible and
interesting situation, the solution of the problem is more
complicated due to the mixing between the in-plane and the
vertical components of the electric field in Eq. �A4�. A de-
scription by means of a scattering-matrix theory would re-
quire an almost total reformulation of the eigenvalue prob-
lem that is beyond the scope of this paper.

IV. ASYMMETRIC UNIT CELL PHOTONIC
CRYSTAL SLAB

In this section, we present a brief study of a periodically
patterned system with a unit cell that lacks inversion sym-
metry. In particular, we show how the scattering-matrix
method can be used to evaluate the band dispersion of a
photonic crystal slab above and below the light line. The
structure is composed of a high-refractive-index membrane
of thickness d that is patterned with a triangular lattice of
triangular holes, as schematically shown in Fig. 2. The tri-
angles are taken to be equilateral with basis side of length L,
and the triangular lattice has period a. The lattice and the
unit cell are invariant under rotation by 120°, even though
the system is not centrosymmetric as it would be for circular
holes. The symmetry directions of the lattice are the usual
ones for the triangular lattice.35 Although the refractive index
dispersion can be easily included in the calculation, here we
assume a fixed dielectric constant �=12.11, which corre-
sponds to the value for silicon at the usual telecommunica-
tion wavelength �=1.55 �m.

In Figs. 3 and 4, we present the calculated reflectance for
TE �Figs. 3�a� and 4�a�� and TM �Figs. 3�b� and 4�b�� as a
function of �a /�� and for different angles of incidence along
�-K and �-M, respectively; the curves are slightly shifted for
clarity. The resonances, which are clearly visible in the spec-
tra, denote a coupling between the incoming beam and the
photonic radiative modes of the slabs. It has been shown that
angle-resolved reflectance or transmittance experiments al-
low for a direct measurement of the photonic band disper-
sion, through a study of the evolution of these resonant fea-
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tures as a function of the angle of incidence.36–38

Along �-K, the modes can be classified as even �TE-like�
and odd �TM-like� with respect to the operator �̂xy, which
describes the reflection through a mirror plane bisecting the
membrane. However, they are not purely TE or purely TM
with respect to the plane of incidence for light incoming
from the surface: this is evident by comparing the spectra in
Fig. 3, where many of the features associated with odd and
even modes are clearly present for incident fields of both
polarizations. Yet in Fig. 4 we observe that if a mode appears
in the TE reflectance spectra, it is not excited by TM-
polarized incident light, and vice versa. This is a conse-
quence of the higher symmetry along the �−M direction,
which makes possible also a classification according to the
mode polarization or, equivalently, to the parity under mirror
symmetry �̂kz with respect to the plane of incidence contain-
ing both k and ẑ; the parity can be either even ��̂kz= +1, TM�
or odd ��̂kz=−1, TE�.

In Figs. 3�c� and 4�c�, we report the photonic band dis-
persion calculated by means of a guided-mode expansion
�GME� method.13 The calculations show the presence of
photonic band gaps at � and 2� for quasi-TE and quasi-TM
modes, respectively. This interesting feature makes the trian-
gular lattice of triangular holes appealing for achieving en-
hancement of doubly resonant second-harmonic generation
in photonic crystal slabs. In the design of such a structure,
the GME method is a very powerful tool, since the calcula-
tions are much faster than those using the scattering matrix.
Nevertheless, the method employs some approximations, the
accuracy of which has to be verified by a comparison with a
method that is exact within numerical error.8,13,39 In this
sense, the extension of the scattering-matrix method provides
an important test of the application of the GME method to
triangular lattices of triangular holes. We find that the
guided-mode expansion results are in good agreement with

scattering-matrix calculations in all the regimes that have
been considered, including the high energy region of the
quasi-TM band gaps, in which the GME approximations
could possibly be less accurate.

Another interesting application of the scattering-matrix
method is to evaluate the guided modes of the slab. Since
these modes lie below the light line, they cannot be studied
by simple angle-resolved reflectance or transmittance
experiments.40 An efficient method for exciting the guided
modes is to work in attenuated total reflection �ATR� con-
figuration. This technique is very well known for the study of
surface plasmon polaritons, which can be excited by cou-
pling the incoming beam through a prism.41,42 The idea of
using angle-resolved attenuated total reflectance for studying
guided-mode dispersion in photonic crystal structures has
been suggested and experimentally demonstrated by Galli et
al.43,44 A guided mode is found in correspondence with a dip
in the reflectance spectrum, the strength and width of which
are related to the mode losses and to the coupling efficiency
with the incoming beam, which depends on the distance be-
tween the prism and the guide. For a sufficiently large dis-
tance of the prism from the slab, the position of the reso-
nances tends to the ones of the guided mode. Following the
same strategy,43 we have simulated an experiment in ATR
configuration for the patterned membrane using a silicon
prism, which is located at a distance 0.7a from the slab. If we
work above the critical angle �c=arcsin�1 /nSi�=16.7°, the
reflectance is almost 1 everywhere and only a small fraction
of the incident beam is diffracted into the prism for most
frequencies. Nevertheless, an enhancement of the diffraction,
and, consequently, a decrease in the reflection, is expected
when a guided mode is excited. Using this method, we are
able to map the guided-mode dispersion relation by looking
at the dips in the ATR spectrum as a function of the angle of
incidence � and by defining the in-plane wave vector as k
=nprism�� /c�sin �+G, where nprism is the refractive index of
the prism material and G is a reciprocal lattice vector.

In Fig. 5�a�, we report the photonic band dispersion of the
slab along the direction �-K evaluated by means of the GME
method. A scattering-matrix calculation as a function of the
frequency at certain angle of incidence � corresponds to
scanning for guided modes along a virtual light line, the
dispersion of which is given by k= �2� /��sin �. Reflectance
spectra for �=20° along �-K for TE- and TM-polarized in-
cident fields are shown in Fig. 5�b�. This angle value is
slightly above the critical angle �c=16.7° for silicon/air in-
terface. The reflectance is almost 1 everywhere, except when
the incident light is coupled to a guided mode. As in the case
of the calculation above the light line, it is not possible to
classify the modes according to the field polarization. As a
consequence, many of the features are clearly visible for both
polarizations. The width of each resonance is proportional to
the mode losses due to the coupling; thus, the modes that
appear narrower are the ones characterized by larger field
confinement and, hence, weaker coupling to leaky modes
through the prism.

V. POROUS SILICON SLOT WAVEGUIDE

Porous silicon is a very promising material for obtaining
efficient silicon based light sources that are compatible with

FIG. 2. �Color online� Scheme of a periodically patterned mem-
brane of thickness d; the triangular lattice has period a, while the
triangular hole’s side measures L. The Brillouin zone for the trian-
gular lattice is also shown together with the main symmetry
directions.
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complementary metal-oxide-semiconductor technology.
Emission at telecommunication wavelengths has already
been observed in erbium doped PSi planar microcavities.45,46

In this section, we use the birefringent media theory pre-
sented in Sec. III to describe the optical properties of a PSi
structure that could be suitable for efficient light emitters.
The design does not require the evaluation of emission effi-
ciency, and can be done by simply considering the passive
properties of the device, such as its reflectance spectra and
the electromagnetic field distribution within it.

The most common strategy for achieving large emission
efficiency is to increase the electromagnetic field confine-
ment in the region where the emitters are located. This is
usually done by means of planar or two-dimensional photo-
nic crystal microcavities.47,48 An alternative route is to em-
bed the emitter in a waveguide and to exploit the coupling
with a guided mode. It has been recently demonstrated that
large field confinements, below the diffraction limit, can be
obtained for TM modes in the so-called slot waveguide,
where a tiny �typically 10–20 nm thick� low index layer is
realized in the core of the guide.28 Due to the strong discon-

tinuity of the normal field component at the interfaces with
the slot, the fundamental TM mode is mainly localized in the
low index region, leading to an enhancement of the emission
into this mode.29 In this case, the light is mainly emitted into
the waveguide but in many applications vertical emission is
preferable. A redistribution of the emitted light in the direc-
tion ẑ normal to the surface is achievable in periodically
patterned waveguides when the guided mode is folded in the
first Brillouin zone above the light line at the � point.49,50

Porous silicon is a good material for the realization of a slot
waveguide, but the etching of the system can increase the
losses due to the porous nature of the material. Thus, we
prefer using a dielectric grating on the top of the waveguide
in order to out-couple the guided modes �see Fig. 6�a��. It is
worth noting that nearly at normal incidence the field lies
almost totally in the plane; on the contrary, for the TM
guided mode, it is mainly oriented along z and, in particular,
only this component is affected by refractive index disconti-
nuity in the slot. For TM-polarized incident beam, the field
components x and z experience two different dielectric con-
stants �	 and ��, respectively, and they are coupled by the

FIG. 3. �Color online� Reflectance calculations along �-K for �a� TE and �b� TM polarizations for a photonic crystal slab with a triangular
pattern of triangular holes with L /a=0.8, d /a=0.5, and �=12.11. The curves are slightly shifted ��R=1� for clarity. �c� Photonic band
dispersion along �-K for even �open circle� and odd �full circle� modes with respect to the symmetry �̂xy; photonic gaps are also indicated.
The photon dispersion relation in air and in the effective core layer are given by solid and dashed lines, respectively.

FIG. 4. �Color online� Reflectance calculations along �-M for �a� TE and �b� TM polarizations for a photonic crystal slab with a
triangular pattern of triangular holes with L /a=0.8, d /a=0.5, and �=12.11. The curves are slightly shifted ��R=1� for clarity. �c� Photonic
band dispersion along �-M for even �open circle� and odd �full circle� modes with respect to the symmetry �̂xy; photonic gaps are also
indicated. The photon dispersion relations in air and in the effective core layer are given by solid and dashed lines, respectively.
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grating. Thus, the description of the system requires a theory
that takes into account the dielectric tensor anisotropy.

The medium is uniaxial, with a Maxwell-Garnett effective
medium theory �X=�Y =�	 and �Z=�� in Eq. �13� given by27

�	 − �Si

�	 + �Si
= p

1 − �Si

1 + �Si
, �33�

�� − �Si = p�1 − �Si� , �34�

where �Si and p are the silicon dielectric constant and the
porosity, respectively. The porous silicon waveguide that is
considered has the following composition: the lower clad-
ding is high porosity silicon �p�0.76�, the core consists of a
low index slot �20 nm and p�0.76� embedded between two
high index �p�0.56� layers of 190 and 285 nm width for the
bottom and the top one, respectively. The coupler on the top
of the waveguide is taken to be a polymethyl methacrylate
�PMMA� �n=1.5� one-dimensional grating of 360 nm height
with a period of 730 nm period and a filling factor L /a
=0.5 �see Fig. 6�a��.

The reflectance spectra at near normal incidence ��
=0.1°� for TM polarization as a function of the energy are
shown in Fig. 6�b�. The well-defined resonance at 0.8 eV
�1.55 �m� corresponds to the excitation of the waveguide
fundamental TM mode, which is made quasiguided by the
grating. Since the patterned region does not extend in the
core of the waveguide, the grating is essentially a perturba-
tion of the mode. This is clear by looking at the inset of Fig.
6�b�, where �Ez�2 for an incident beam at �=1.55 �m. The
field distribution reminds one of the fundamental TM mode
and, as it is expected, Ez is strongly confined in the slot due
to the different layer porosities that determines the large dis-
continuity of the refractive index along z. This simple analy-
sis suggests that if an emitter is placed in the slot region,
enhancement of spontaneous emission in the vertical direc-

tion can be expected. A detailed analysis of the problem re-
quires a calculation of the emission spectra. This can be done
using the scattering-matrix theory proposed in Ref. 11, but
the birefringence effects have to be included by following
the strategy that has been proposed in Sec. III.

VI. CONCLUSION

A scattering-matrix method11 for a periodically patterned
multilayer has been extended to treat systems with asymmet-
ric unit cells, and constituted of birefringent materials. In
both cases, a detailed formulation of the method and original
examples have been given in the paper. These results in-
crease the flexibility of the formalism, which can be applied
to multilayers with an arbitrary periodic pattern.

By exploiting properties of the eigenvectors, it is possible
to keep the numerical efforts at a reasonable level, even
when the unit cell lacks inversion symmetry. An application
to a photonic crystal slab with a triangular lattice of triangu-
lar holes has been discussed. This structure is particularly
interesting for the presence of photonic band gaps at � and
2�, which makes the system appealing for nonlinear optics.
We considered angle-resolved reflectance and attenuated to-
tal reflectance for a description of the system above and be-
low the light line.

Furthermore, the formalism is now suitable for the de-
scription of systems composed of one or more birefringent
media when the growth direction is along one of the dielec-
tric tensor principal axes. As an application, we studied a PSi
slot waveguide with a one-dimensional periodic grating
where large field confinement, below the diffraction limit,
can be obtained for the TM mode. The description of the
coupling through a dielectric grating requires a formalism

FIG. 5. �a� Photonic band dispersion for even �open circle� and
odd �full circle� modes along �-K of a photonic crystal slab with a
triangular pattern of triangular holes with L /a=0.8, d /a=0.5, and
�=12.11. The photon dispersion relation in air is indicated by the
solid line. The dashed line represents the effective light line for an
angle of incidence �=20° using a silicon prism; its distance from
the slab is 0.7a. �b� Attenuated total reflectance spectra along �-K
for TE �line� and TM �dashed� polarizations at �=20°.

FIG. 6. �Color online� �a� Structure scheme and parameters. �b�
Main panel: reflectance calculation for TM mode at angle of inci-
dence �=0.1° as a function of energy. Inset: contour plot of �Ez�2 at
wavelength �=1.55 �m and �=0.1° for TM polarized incident
field.
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that takes into account the dielectric tensor anisotropy.
These results are relevant in view of investigation by

means of a scattering-matrix method of several interesting
systems that were not accessible through the original formu-
lation of the method.

ACKNOWLEDGMENTS

The authors are grateful to Marisa Grieco and Sharon
Weiss for their support and stimulating discussions.

APPENDIX: SCATTERING-MATRIX METHOD

In this appendix, we summarize the procedure for build-
ing the scattering matrix method of a periodically patterned
multilayer. Here, we adopt the same notation as that of Whit-
taker and Culshaw,11 assume a harmonic time dependence of
the fields e−i�t, and rescale ��0E→E and � /c→�. It fol-
lows that the two curl Maxwell’s equations become

� � H = − i��r�E , �A1�

� � E = i�2H , �A2�

where r= �x ,y� and ��r� is periodic. Fourier series are intro-
duced:

H�r,z� = �
G

H̃k�G,z�ei�k+G�·r, �A3�

where G is the reciprocal lattice vector and k is a given wave
vector; it is useful to introduce the vectors h�z�
= �H̃k�G1 ,z� ,H̃k�G2 ,z� , . . . �T for the magnetic field and

e�z�= �Ẽk�G1 ,z� , Ẽk�G2 ,z� , . . . �T for the electric field Fourier
components.

The matrix �̂ �see Eq. �2�� contains the Fourier compo-
nents of the dielectric function and is taken to be N�N,
where N is the number of reciprocal lattice vectors consid-
ered in the calculation. A detailed discussion regarding the
appropriate cutoff in the set of reciprocal lattice vectors has
been given in Ref. 11.

Equations �A1� and �A2� yield

ik̂yhz�z� − hy��z� = − i�̂ex�z� ,

hx��z� − ik̂xhz�z� = − i�̂ey�z� ,

ik̂xhy�z� − ik̂yhx�z� = − i�̂ez�z� , �A4�

ik̂yez�z� − ey��z� = i�2hx�z� ,

ex��z� − ik̂xez�z� = i�2hy�z� ,

ik̂xey�z� − ik̂yex�z� = i�2hz�z� , �A5�

where k̂x and k̂y are diagonal matrices, �k̂x�ii= �kx+Gi,x� and

�k̂y�ii= �ky +Gi,y�, and the prime indicates the derivative with
respect to z.

By solving the band structure for each unbounded layer, it
is possible to construct a basis of propagating waves. The
magnetic field can be expanded as

H�r,z� = �
G
��x�G��x̂ −

1

q
�kx + Gx�ẑ�

+ �y�G��ŷ −
1

q
�ky + Gy�ẑ�
e�k+G�·reiqz, �A6�

where x̂, ŷ, and ẑ give the direction of the coordinate axes,
and �x�G� and �y�G� are the expansion coefficients. This is
equivalent to

h�z� = eiqz��xx̂ + �yŷ −
1

q
�k̂x�x + k̂y�y�ẑ� . �A7�

From Eq. �A5� follows

e�z� =
1

q

̂eiqz��k̂yk̂x�x + �q2 + k̂yk̂y��y�x̂

− �k̂xk̂y�y + �q2 + k̂xk̂x��x�ŷ + q�k̂y�x − k̂x�y�ẑ� ,

�A8�

where 
̂ contains the Fourier components of 
�r�=�−1�r�.
Combining Eqs. �A5�, �A7�, and �A8� in Eqs. �A4�, after a
little algebra, we arrive at the eigenvalue equation

�E��2 − K� − K�� = q2� , �A9�

where �= ��x ,�y�T and the 2N�2N matrices E, K, and K are

E = ��̂ 0

0 �̂

, K = � k̂y
̂k̂y − k̂y
̂k̂x

− k̂x
̂k̂y k̂x
̂k̂x


 ,

K = �k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y


 , �A10�

where KK=0 for an arbitrary 
. The latter property can be
exploited in order to write Eq. �A9� as a generalized eigen-
vector problem

���2 − K�E��2 − K� − �2K�� = q2��2 − K�� . �A11�

Using the basis set ��i�, the magnetic field tangential
components are expressed in the momentum representation
as

�hx�z�
hy�z�


 = �
n
��xn

�yn


�aneiqnz + bneiqn�d−z�� , �A12�

where d is the layer thickness, and an and bn are respectively
the coefficients of the forward and backward going waves.
Similarly, using Eq. �A8�, analogous expressions for the
electric field are obtained:
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�− ey�z�
ex�z�


 = �
n

H�qn
2 + K���xn

�yn


 1

qn
�aneiqnz − bneiqn�d−z�� .

�A13�

Setting H=E-1, h	�z�= �hx�z� ,hy�z��T, e	�z�= �−ey�z� ,ex�z��T,
a= �a1 ,a2 , . . . �T, and b= �b1 ,b2 , . . . �T, introducing matrices

f̂ nn�z�=eiqnz, with , and a matrix �, the columns of which are
the vectors �n, the compact form �5� results, where eigen-
value �A9� is used in order to replace H�qn

2+K��n with
��2−K��n. The matrix M translates the expansion coeffi-
cients �an� and �bn� in the Fourier components of the tangen-
tial field.

When the unit cell has inversion symmetry, it can be
shown that the eigenvectors �n satisfy the orthogonal rela-
tion �3� and it is easy to verify that

M−1 =
1

2
� q̂�T �T��2 − K�

− q̂�T �T��2 − K� 
 . �A14�

The field amplitudes at the interface between the lth and
�l+1�th layers are related by the so-called interface matrix
I�l , l+1�, which is obtained by imposing the continuity of the
field tangential components and it is defined as

� f̂ lal

bl


 = I�l,l + 1�� al+1

f̂ l+1bl+1

 �A15�

=Ml
−1Ml+1� al+1

f̂ l+1bl+1

 , �A16�

where the matrix f̂ l is defined such that f̂ l= f̂ l�dl�.
The scattering matrix between two layers relates their for-

ward and backward propagating amplitudes �al ,bl� and
�al� ,bl�� as

� al

bl�

 = S�l,l���al�

bl

 = �S11

S21

S12

S22

�al�

bl

 . �A17�

The total scattering matrix is built up by means of an itera-
tive procedure which allows one to evaluate the matrix
S�l� , l+1� once S�l� , l� is known:

S11�l�,l + 1� = „I11 − f̂ lS12�l�,l�I21…
−1 f̂ lS11�l�,l� ,

S12�l�,l + 1� = „I11 − f̂ lS12�l�,l�I21…
−1
„ f̂ lS12�l�,l�I22 − I12… f̂ l+1,

S21�l�,l + 1� = S22�l�,l�I21S11�l�,l + 1� + S21�l�,l� ,

S22�l�,l + 1� = S22�l�,l�I21S12�l�,l + 1� + S22�l�,l�I22 f̂ l+1.

The starting point is to consider that S�l , l�=1. When the
total scattering matrix S�0,N� has been built, reflectance and
transmittance spectra are easily found.
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