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Introduction
Nonlinear optics has become increasingly important during the last decades
because it has found application in the telecommunication field, especially
for what concerns the propagation of optical signals in dielectric fibers and,
above all, because of the possibility of exploiting harmonic generation in
order to obtain coherent light in different spectral regions [1, 2].
Harmonic beam generation was observed for the first time in 1961 by Franken
et al. and, just one year later, Bass et al. demonstrated the possibility to
obtain monochromatic waves characterized by frequencies equal to a linear
combination of those of incident waves on the sample [3, 4]. This process
can be briefly summarized as it follows: while two monochromatic waves
of frequencies ω1 and ω2 propagate in a nonlinear medium, they generate
a nonlinear polarization that can be seen as an ensemble of dipoles that
oscillate at multiple frequencies, or in general equal to a linear combination
of ω1 and ω2. For example, when ω is converted to 2ω we have the so-called
second harmonic generation (SHG) process and when we get 3ω we have
third harmonic generation (THG). As a matter of fact the nonlinear polar-
ization is the source of electromagnetic waves at frequencies different from
the initial one. If we look at the experiments of Franken et al., we observe
that nonlinear effects in a dielectric medium are usually quite small and they
require very powerful sources. Thus most of the efforts during these years
have been devoted to achieve high enhancement of the harmonic generation
process, in more and more compact devices, and to reduce the input power.
Associated to harmonic generation is the occurrence of a phase matching
condition, i.e. when harmonic beam propagates in phase with the nonlinear
polarization. In such case the conversion efficiency is highly enhanced.

Since the first studies on second-harmonic generation (SHG), periodic
structures have been indicated as suitable systems for achieving the phase
matching condition even in cubic materials like GaAs, where there is no bire-
fringence to compensate the refractive index dispersion [5, 6]. Other forms
of phase matching have also been proposed, like using form birefringence
induced by refractive index modulation in the long-wavelength limit [7, 8]
or incorporating a separated quantum well region in the nonlinear media
[9]. Another possible route for increasing SHG is to embed the nonlinear
source in a Fabry-Pérot cavity, in order to enhance the pump field intensity

vii



viii INTRODUCTION

or to optimize the extraction efficiency of the harmonic field. Several studies
have been conducted on external cavities [10, 11], where it is relatively easy
to achieve double-resonance for both the pump and harmonic frequencies.
Concerning monolithic cavities with dielectric mirrors, most studies focused
on SHG in the presence of a single resonance [12, 13]. A doubly-resonant
microcavity (DRM) is desirable since the performance of the structure can
be optimized at both pump and harmonic frequencies [14–16].

In the last few years the concept of a photonic crystal has been in-
creasingly applied to nonlinear optics [17, 18], especially for what concerns
frequency conversion. The possibility of tailoring the dispersion relation
through a periodic modulation of the refractive index gives additional de-
grees of freedom to achieve phase matching, moreover using the high density
of states at the band edges allows increasing the amount of pump power
available in the nonlinear layers [19–24].
More recently, one- and two-dimensional photonic crystal structures em-
bedded in self-standing membrane [25] or in a planar waveguide [26] have
been proposed as suitable platforms for integrated photonic circuits. In
this structure light confinement along the vertical direction is determined
by the waveguide, while the photonic pattern modifies propagation of light
in the plane. These systems have attracted much attention since they can
exhibit many properties of 3D photonic crystals but they are much easier to
fabricate at sub-micron lengths. Theoretical and experimental studies have
already demonstrated the possibility of achieving several order of magni-
tude enhancement of harmonic generation in carefully designed structures
[27, 28].
Among many solutions, the choice of a Silicon-On-Insulator (SOI) waveg-
uide offers great advantages in view of future integration of photonic devices.
Indeed the SOI planar waveguide is characterized by a large refractive in-
dex contrast which allows good light confinement in a thin waveguide and,
above all, the great development of silicon integrated circuits offers a high
degree of control of processing technology.

The aim of this work is to give an original contribution to the knowledge
of harmonic generation of light in photonic systems of present interest, such
as planar microcavities and photonic crystals slabs. Our research study
is mainly devoted to the understanding of the conditions that determine
a considerable enhancement in the conversion efficiency, thereby providing
some guidelines to the design of new devices.
For what concerns SHG, we concentrate our attention on doubly resonant
microcavities: their design is challenging because of the refractive index dis-
persion. In this thesis we have developed an efficient method in order to
solve this problem and to enhance SHG as much as possible. The nonlinear
response of the DRM has been investigated in the case of bulk nonlinear-
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ities and when it arises from symmetry breaking at the interfaces between
two different media. In the first case we have considered cavities made of
GaAs or AlGaAs embedded between Alox/AlGaAs dielectric mirrors, and
we present theoretical results obtained in the un-depleted pump approxi-
mation. In the second case we present theoretical and experimental results
regarding the nonlinear response of a doubly resonant microcavity of amor-
phous silicon nitride, whose design has been carried out with the method
developed in this thesis.
A theoretical analysis of THG in the case SOI PhC slabs has been performed
and compared with the experimental results. For the analysis of THG in
photonic crystal slabs we have developed a numerical method, based on the
well known linear scattering matrix theory [29]. This new method allows
to treat nonlinear interactions in layered two-dimensional systems and we
hope it is suitable for the investigation of nonlinear phenomena in several
kind of photonic structures.

The work is organized as it follows. In chapter 1 we discuss some as-
pects of the nonlinear interaction which takes place in a bulk medium or at
the interface between two media. The purpose of this chapter is to provide
the necessary instruments for understanding the subsequent chapters, where
second- and third- harmonic generation are analyzed in more complicated
systems.
Second-harmonic generation in the case of a doubly resonant microcavity is
discussed in detail in Chapter 2, where we present first a study of the linear
properties of the microcavity and its design method, followed by nonlinear
results for bulk and surface nonlinearities. In Chapter 3 we present the nu-
merical method used for the calculation of THG in the case of PhC slabs,
then we discuss the linear and nonlinear properties and finally we compare
the results with the experimental data. Since the nonlinear response of the
photonic crystal slab arises from a superposition of the effects of the SOI
waveguide and the photonic crystal pattern, we present first the study of
the un-patterned waveguide followed by those of the PhC slab.

This work is closely related to projects carried out by the Solid State
Theory group of the University of Pavia at Department of Physics ”A.
Volta”, headed by Prof. L. C. Andreani. Part of the work has been fi-
nanced by ”Istituto Nazionale per la Fisica della Materia” (INFM) through
the project PRA-Photonic, and supported by MIUR through FIRB project
”Miniaturized electronics and photonic system” as well as Cofin programs.
The experimental results presented in this work has been obtained by the
Department of Electronic (LAILAM - Laboratorio di Interazione Radiazione
Materia) for SOI photonic crystal slabs and by University of Napoli and Po-
litecnico di Torino in the case of amorphous silicon nitride microcavities.





Chapter 1

Elements of Nonlinear
Optics

The purpose of this chapter is to introduce some basic concepts of nonlinear
optics, especially for what concerns harmonic generation. First of all, in Sec.
1.1 we will try to understand which are the origins of the nonlinear response
and how it can be described in a simple system, such as a single atom,
using the anharmonic oscillator model. In Secs. 1.2 and 1.3 the problem of
second harmonic generation will be analyzed in the case of bulk and surface
nonlinearities. Finally, in the last part we shall introduce some important
physical quantities which describe the nonlinear response of a system.
A detailed discussion of these topics is beyond the aim of this chapter and the
reader can find a more complete treatment in several specialized textbooks
[30–33].

1.1 Nonlinear Dielectric Response

The interaction of the electromagnetic radiation with matter will be treated
within a macroscopic framework, i.e. we shall always deal with electric fields
whose wavelength is several times larger than the size of the atoms and the
interatomic bonds, characterizing the systems of interest. In this context,
the electromagnetic properties can be described through the Maxwell equa-
tions, which can be written in the absence of sources as

∇ ·D = 0 ∇ ·B = 0 (1.1)

∇× E = −1

c

∂B

∂t
∇× H =

1

c

∂D

∂t
. (1.2)

From now we assume nonmagnetic media (i.e. B = H) and absence of
external currents or charges (i.e. ρ = J = 0). The vectors E and H are the

1



2 1. Elements of Nonlinear Optics

electric and magnetic fields, respectively, while the electric displacement D
is given by

D = E + 4πP, (1.3)

where P is the electric dipole moment for unit of volume. The polarization P
is a complicated function of the electric field and it depends on the physical
and chemical nature of the materials considered.
We can notice that an electron bound to an atom or molecule, or moving
through a solid, experiences electric fields of the order of 109 V/cm. We shall
assume to work with electric fields several times smaller than this value, so
that P(r, t) can be treated as locally and instantaneously dependent on the
electric field. This assumption is strongly restrictive and there are many
implications of a more realistic relation between E and P. Nevertheless, it
allows introducing some of the most important concepts while keeping the
discussion to a reasonable degree of complexity.
Under this approximation, each component of the polarization vector canNonlinear

susceptibility be expanded in a Taylor series of powers of the electric field

Pi(r, t) =
∑

j

χ
(1)
ij Ej(r, t) +

∑

jk

χ
(2)
ijkEj(r, t)Ek(r, t)

+
∑

jkh

χ
(3)
ijklEj(r, t)Ek(r, t)El(r, t) + · · · , (1.4)

where the χ
(1)
ij are the elements of a linear susceptibility tensor and χ

(2)
ijk

and χ
(3)
ijkl are referred to as the second and third nonlinear susceptibilities,

respectively.1 As indicated by the notation used in Eq. (1.4), the linear and
nonlinear responses of a medium are described through tensorial objects
whose rank depends on the interaction order. The susceptibility tensors
have explicit form reflecting the structural symmetry of the medium. In the
following, we shall briefly discuss some important properties of these ten-
sors which derive from simple symmetry considerations. During this work
we shall deal with isotropic media, or cubic materials, for which the linear
response has the same direction of the applied electric field. Nevertheless,
we cannot forget that, in nonlinear optics there are several effects related
to the tensorial nature of the linear response.2

In any real medium, the polarization vector, P(r, t), does not depend
only on the value of the electric field at the point r at the instant t. In

1Here we have not consider the first term of the Taylor series that corresponds to a
spontaneous electric dipole moment which characterizes a particular class of materials,
known as ferroelectrics.

2A very important class of materials is the birefringent one. These media are charac-
terized by diagonal linear tensor with two different eigenvalues lead to the ordinary and
extraordinary refractive indices.
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(a) (b)

x x

V(x) V(x)

Figure 1.1: Electron in harmonic potential V (x) = 1
2
mω0x

2(a) and in the case of
cubic potential V (x) = 1

2
mω0x

2 + 1
3
mξx3 (b). The presence of a cubic term in the

potential V(x) breaks the symmetry respect to the vertical axes and gives origin
to a nonlinear motion of the electron.

fact there is a time lag in the response of the medium. Such consideration
results in a relation more complicated than Eq. (1.4).
If we consider the electric field E as a sum of monochromatic plane waves,
this relation can be written, in a simpler way, in a Fourier space as

P(k, ω) = P(1)(k, ω) + P(2)(k, ω) + · · · (1.5)

where 3

P(1)(k, ω) = χ(1)(k, ω) : E(k, ω), (1.6)

P(2)(k, ω) = χ(2)(k = k1 + k2, ω = ω1 + ω2) : E(k1, ω1)E(k2, ω2).(1.7)

We assume to work only in the dipole approximation, therefore in the fol-
lowing discussions dependence of χ(n) on k will be neglected.
Before starting our study on the harmonic generation phenomena in ma-

terials, let us consider a short example in order to better understand the
origin of the nonlinear terms appearing in Eqs. (1.4) and (1.5).
We consider an electron that is bound to an infinitely massive center owing
to a given potential V (x). In the one-dimensional case the equation for the
electron motion can be written as

mẍ + mΓẋ +
∂V (x)

∂x
= −eE(t) (1.8)

3Here the symbol : indicates the tensorial product



4 1. Elements of Nonlinear Optics

where m is the free electron mass, Γ is a damping rate and E(t) is theLorentz model

external applied scalar electric field. For the harmonic potential V (x) =
1
2mω0x

2, this problem reduces to the well known Lorentz model. If we
consider an electric field

E(t) = E(ω)e−ıωt + c.c.

it is easy to find that the motion of the electron is described by the equation

x(t) = x(ω)eıωt + c.c.

=− e

m
E(ω)

eıωt

ω2
0 − 2ıγω − ω2

+ c.c. (1.9)

The applied electric field E(t) induces an electric dipole moment in the
atom p(x) = ex(t). If we consider an ensemble of atoms, with an electron
density N , it is possible to provide an analytic expression for the nonlinear
susceptibility

χ(ω) =
Ne2

m

1

ω2
0 − 2ıγω − ω2

. (1.10)

Let us suppose, now, to drive the electron with two superimposed elec-
tric fields, with frequencies ω1 and ω2 respectively. We observe that the
resulting displacement is the simple superposition of those at frequencies
ω1 and ω2, which have the same expression of Eq. (1.9). Therefore, with a
harmonic potential no second harmonic generation, or a interaction between
the two input waves occur.

The latter example shows that if we wish to describe any frequency
mixing we have to go beyond the harmonic approximation by considering
a more complex potential, V (x). Thus, we extend the previous model by
introducing an anharmonic term [33].

V (x) =
1

2
mω0x

2 +
1

3
mξx3 (1.11)

Equation (1.8) then becomes:

ẍ + Γẋ + ω2
0x + ξx2 = −eE(t)

m
. (1.12)

Because of the quadratic term, Eq. (1.12) cannot be solved in the sameAnharmonic

oscillator way as the linear Lorentz model. However, since in general the anharmonic
term is very small compared to the harmonic one, it is possible to assume
a solution in the form of a power series

x(t) = x1(t) + x2(t) + x3(t) + · · · . (1.13)



1.1. Nonlinear Dielectric Response 5

where each term, xi(t), is proportional to the i-th power of the applied
field, E(t). If we consider again an external field given by the superposition
of two plane waves, the nonlinear term appearing in (1.12) gives rise to a
frequency mixing. Therefore, the propagating electromagnetic field gener-
ates a nonlinear polarization that oscillates at frequencies which are linear
combinations of ω1 and ω2.

Even in this case we can derive an analytic expression for the linear
polarization, which is identical to Eq. (1.10), but we can also provide an
expression for the second-order nonlinear susceptibility. In particular, for
the case of frequency sum ω1 + ω2, we get

χ(2)(ω3 = ω1 + ω2) = − mξ

N2e3
[χ(1)(ω1)][χ

(1)(ω2)][χ
(1)(ω3)] (1.14)

The analysis of this simple model can help to better understand some
characteristics of the nonlinear interaction. First of all, we notice that the
nonlinear interaction has its origin in the potential that the electrons, or
more generally the charges, experience. Such potential, which cannot be
simply an harmonic one, and the nonlinear response must reflects its sym-
metry properties. In particular, it is worth noting that if we consider an
even potential (i.e V (x) = V (−x)), we would not observe any second-order
nonlinear effect 4. Such model can be extended to the case of higher order
susceptibility tensors by considering a more complex potential, V (x), in Eq.
(1.8).
Another important information can be obtained by observing the three di- Miller’s rule

mensional generalization of the Eq. (1.14)

χ
(2)
ijk(ω3 = ω1 + ω2) = ∆ijk [χ

(1)
ii (ω1)][χ

(1)
jj (ω2)][χ

(1)
kk (ω3)] (1.15)

This result is known as ”Miller’s rule” [34]. The coefficient ∆ijk can be
empirically determined and Miller has shown that it is almost constant for
a wide range of materials. This rule has turned out to be a very important
one in the search for new nonlinear media, since it tells basically that high
refractive index corresponds to high nonlinear coefficient.

In the example we have just described, we assume a solution in the form
of a Taylor series by making the hypothesis that the nonlinear interaction
is small compared to the linear one. It is worth spending few words about
the order of magnitude of the nonlinear susceptibilities in dielectric media,
which will be considered in the next examples and chapters.
The dominant contribution to the nonlinear susceptibility at optical fre-
quencies is due to the outermost electrons of the atoms constituting the
material, which experience an average electric field Ea. In practice, the

4This is, in general, the case of amorphous media, or Si and Ge, in which the second-
order nonlinear susceptibility , χ(2), is very small and it is due only to quadrupole terms.
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Semiconductor χ
(2)
ξξξ (10−6 esu) χ

(3)
ξξξξ (10−10 esu)

Ge − 6.0 ± 50%
Si − 0.32 ± 50%
GaAs 2.0 0.5 (a)

InAs 2.4 0.6 (a)

(a) Theoretical values

Table 1.1: Second- and third- order nonlinear susceptibilities for some typical
semiconductor materials. In the coordinate system defined by crystallographic
axes, the only non-vanishing components of χ

(2)
ijk for these materials correspond to

i 6= j 6= k. In the table for III-V compound χ
(2)
ξξξ = 2√

3
χ

(2)
ijk, while for the Si and

Ge χ
(3)
ξξξξ = 1

3
(χ

(3)
iiii + 6χ

(3)
iijj).

nonlinear effect starts to be significant only when the incident field inten-
sity is of the same order of magnitude as this field. We can therefore es-
timate that the average second- and third-order nonlinear susceptibilities
scale as 〈χ(2)〉 ∼ 〈χ(1)〉/Ea and 〈χ(3)〉 ∼ 〈χ(1)〉/E2

a, respectively, where
〈χ(1)〉 indicates the average value of the linear susceptibility. In Table 1.1,
the nonlinear susceptibilities of some typical semiconductor are reported as
a guide for the reader [33, 35–37].

1.2 Second Harmonic Generation

In the example of the anharmonic oscillator we have seen that when two
monochromatic waves at different frequencies ω1 and ω2 propagate within
a medium characterized by χ(2) 6= 0, they induced a nonlinear polarization
that oscillates at frequencies which are a linear combination of ω1 and ω2.
The polarization can be viewed as an ensemble of oscillating dipoles, or
antennas, which are source of electromagnetic waves. As a result, we assist
to a partial or total frequency conversion of the initial field. In this Section
we shall briefly describe the simplest case of frequency conversion i.e. the
second harmonic generation (SHG).

The electromagnetic field propagation in a medium is described by theNonlinear wave

equation equation
[

∇× (∇×) +
1

c2

∂2

∂t2
ε·
]

E(r, t) = −4π

c2

∂2

∂t2
PNL(r, t) (1.16)

where PNL indicates the nonlinear polarization. We now restrict ourselves
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to the one-dimensional problem, and we assume the field propagation along
the direction ẑ. As we are interested in the description of the second har-
monic generation, we limit our discussion to two interacting waves: the so
called pump field, at frequency ω, and the second harmonic one at frequency
2ω, which can be written as

Eω(z, t) = Eω(z)e−ı(ωt−kωz)

E2ω(z, t) = E2ω(z)e−ı(2ωt−k2ωz). (1.17)

Here k(ω) = ωn(ω)/c is the wave vector of the pump field. Since we are
working with complex fields, even the complex conjugate counterpart of the
Eq. 1.17 has to be considered.

From the Eqs. (1.7) and (1.17), we can write the nonlinear polarization Second-

Harmonic

Generation

at the pump and the harmonic frequencies as

PNL
ω (z, t) = χ(2) : E∗

ω(z, t)E2ω(z, t)e−ı[ωt−(k2ω−kω)z] (1.18)

PNL
2ω (z, t) = χ(2) : Eω(z, t)Eω(z, t)e−ı(2ωt−2kωz) (1.19)

In the linear case of isotropic medium, or in a cubic material when the
propagation of the electromagnetic wave is along one of the principal axes,
the polarization and field lie in the xy plane. However, when the nonlinear
interaction is considered, even in such a simple case, the nonlinear polariza-
tion (and therefore the pump and harmonic fields ) is not transverse respect
to the propagation direction. In this case, it is worth decomposing PNL

and E in the sum of transverse (⊥) and the longitudinal (‖) components
(see Fig. 1.2). Now, Eq. (1.16) can be written for the pump and harmonic
field as5

∂2

∂z2
Eωi,⊥ + ω2

i

ε⊥(ωi)

c2
Eωi,⊥ +

4πω2
i

c2
PNL

ωi,⊥ (1.20)

+ẑ

[

ω2
i

ε‖(ωi)

c2
Eωi,‖ +

4πω2
i

c2
PNL

ωi,‖

]

= 0

while the first of Eqs. (1.1) gives

∂

∂z

[

ε‖(ωi)Eωi,‖ + 4πPNL
‖

]

= 0. (1.21)

Here we have introduced ε‖ and ε⊥, which describe the linear dielectric
response along the directions parallel and perpendicular to the pump prop-
agation axis, respectively.

As a matter of fact, we obtain a system of nonlinear differential equa- Non-depletion

approximationtions in which the presence of the nonlinear polarization terms couples Eqs.

5It is straightforward to show that ∇×∇× E = ∂2
E⊥/∂z2.
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x

y

z

Eω

kω

(s)
Eω

(p)
Eω

x

y

z

P
2kω

NL

P
NL

P
NL

x

y

z

k 2ω

E2ω,

E2ω,

E2ω,

(a) (b) (c)

Figure 1.2: (a) If we neglect any nonlinear effect on the pump field we get that it is
transverse respect to the propagation direction. (b) The direction of the nonlinear
polarization generated depends on the tensor shape and in general it is different
from the incident one. The nonlinear interaction propagates with a wave vector
equal to 2kω. (c) Finally, the second harmonic field generated by the nonlinear
polarization propagates with a wave vector k2ω and the electromagnetic field has
a transverse component and one along the propagation direction.

(1.20) for the pump and harmonic fields. As the two waves propagate
through the nonlinear medium, the electromagnetic energy is transferred
from the fundamental to the second harmonic, and viceversa. A general so-
lution of this problem is complicated even in this simple case, nevertheless
we can introduce a further simplification: in the following discussion, we
shall assume that the pump field propagates linearly, neglecting the pump
intensity depletion due to the harmonic generation. This assumption is
known as pump non-depletion approximation. As a matter of fact, this is
not a physically unrealistic situation. Indeed, as we have seen in the pre-
vious Section, the nonlinear coefficients are very small and thus, in many
cases, the amount of radiation generated is small as well.

In this approximation the solution of Eq.(1.21) is immediately given by

Eωi,‖(z) = − 4π

ε‖(ωi)
PNL
‖ (z). (1.22)

Then, by inserting the expression of E‖ in (1.20) we obtain a new equation



1.2. Second Harmonic Generation 9

for the transverse generated field, which is written as

(

∂2

∂z2
+ k2

2ω

)

E⊥(z) = −16πω2

c2
PNL

⊥ (z). (1.23)

The transversal component of the harmonic field can be found easily in the
limit of slowly varying envelope approximation, when Eq. (1.23) becomes6

dE2ω(z)

dz
=−ı

8πω2

k2ωc2
χ̄(2)E2

ω(z)eı∆k (1.24)

where ∆k = 2kω − k2ω. Notice that Eq. (1.24) is a scalar equation, since
we can write E2ω = êE2ω, with ê directed as PNL

⊥ , while χ̄(2)E2
ω is the

amplitude of the effective transverse nonlinear polarization.

Now, let us suppose that at the surface of the nonlinear material (z = 0)
the harmonic field vanishes, while it builds up as the pump field propagates
within the medium and is expressed as

E2ω(z) = −16πıω2

k2ωc2
χ̄(2)E2

ω

sin (∆kz/2)

∆k
eı ∆kz

2 . (1.25)

The energy per unit area and unit time is determined by evaluating the
corresponding Poynting vector

S2ω(z) =
64πω3|χ̄(2)|2

c3k2ω
|Eω |4

sin2(∆kz/2)

(∆k2)
(1.26)

This simple result allows us making some important and general considera-
tions on the second harmonic generation process, which are at the bases of
several applications.

The first obvious consequence of Eq. (1.26) is that the strength of the
nonlinear response depends on |χ(2)|2, therefore the choice of the material is
extremely important in the applications. In the previous Section, we have
seen that Miller’s rule can help in the search for best material. In this work
we shall only deal with semiconductor materials, which are quite interesting
not only because their considerable nonlinear properties, but also because of
the high degree of control in the growth process, which gives the opportunity
of creating artificial structures characterized by high χ(2) values. In these
systems, thanks to an optimization of the width and the composition of
the different layers, it is possible to engineer the electronic and the optical
properties [38, 39].

6Here we assume that the variation of the complex field amplitude with z is small
enough to neglect the term d2E⊥/dz2 << −2kdE⊥/dz.
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zL0

Pump Field

NL Polarization

1/2kω

1/k2ω

φ1=2k  Lω

φ2=k    L2ω

∆φ = π
Harmonic field

Coh

Coh

Coh

1/kω

Figure 1.3: Because of the refractive index dispersion, the pump field and the
harmonic generated one travel at the different velocities thus, in general, two
contributions generated in two different points of the nonlinear medium are not in
phase. The distance at which the two contribution are exactly in phase opposition
is called coherent length (LCoh ).

Eq. (1.26) shows that the second harmonic intensity scales quadratically
with |Eω|2. This fact, even though not surprising, underlines that the possi-
bility of achieving high pump field intensity in the nonlinear medium is a key
point of nonlinear applications. In the present case, the pump power is just
determined by the incident power (that is by the available laser source), but
in other systems, high pump field intensity can be achieved, i.e., by exploit-
ing resonance effects in a microcavity or slow group velocity at the photonic
band edge [12, 13, 19–21]. Finally, another crucial parameter appearing in
the expression (1.26) is ∆k, which is a function of the phase velocities of
the pump and harmonic waves. When the pump field propagates throughCoherence

length the nonlinear medium, it generates a nonlinear polarization whose spatial
periodicity is given by 1/2kω, while any second-harmonic generated wave
propagates with a wave vector k2ω. If we consider two different contribu-
tions generated at z=0 and z=L, respectively, we observe a phase mismatch
∆φ = 2kω − k2ω = (∆k)L. As a consequence, only the contributions gener-
ated within a length

LCoh =
π

∆k
(1.27)
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will interfere constructively. Alternatively, the highest output we can expect
to be generated from a nonlinear crystal is the signal from one coherence
length, no matter how long the crystal is. If, on the other hand, ∆k = 0
(phase matching condition), and in the pump non-depletion limit, the signal
is proportional to the square of the crystal length.
Because of the natural material refractive index dispersion, in general the Phase-

matching

techniques

phase matching condition is not automatically fulfilled. Nevertheless several
techniques have been proposed in order to exploit the total length of the
nonlinear crystal even when it is larger than the coherence length. A first
way to do this was suggested by Bloembergen et al. [5, 40] and it consist
in a periodical modulation of the χ(2) sign: if the period is taken equal to
the coherence length, all the different contribution interfere constructively.
This strategy is called quasi-phase matching. We notice that in this case
the phase matching condition is not satisfied, since the dispersion of the
refractive index is not compensated at all, and ∆k 6= 0.
A method to obtain true phase matching (i.e. ∆k = 0) is to employ the
birefringence of a uniaxial crystal. In this method, proposed by Therhune
et al. [41], and independently by Giordmaine [42], the refractive index dis-
persion is compensated by working with the pump and harmonic field which
are differently polarized. In particular, if both the pump field components
have the same polarization, we speak of ”type-I” phase matching, otherwise
the phase matching is called of ”type-II”.
Other forms of phase matching have also been proposed, like using form
birefringence induced by refractive index modulation in the long-wavelength
limit [7, 8] or incorporating a separated quantum well region in the nonlinear
media [9]. The possibility of tailoring the dispersion relation through a pe-
riodic modulation of the refractive index, as it happens in photonic crystals,
gives additional degrees of freedom to achieve phase matching [19, 21, 43].

1.3 Bulk and surface nonlinearities

In Sec. 1.1 and 1.2 we have treated the case of nonlinear response taking
place in bulk matter. Nevertheless, on the surface of a material, or at the
interface between two media, one can experience the presence of nonlinear
interactions that differ distinctly and qualitatively from those we have seen
in bulk materials. The origin of such nonlinearities lies in the low symme-
try of the atomic and molecular sites at a surface. In particular, even a
material with an inversion center, as gases, liquids or silicon and germa-
nium, for which the bulk second-order nonlinear contribution vanishes, can
exhibit second harmonic generation at the surface, or interface with another
medium [44–47].
The experimental results collected in almost 40 years, clearly suggest that
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ε1 ε2ε'

Figure 1.4: The surface nonlinear contribution is modeled introducing a layer of
thin δ with a bulk nonlinearity χ(2) whose non-null elements are the same of the
surface tensor.

there are two distinct contributions to the surface nonlinearity. In the sur-
face layer, or at an interface, the inversion symmetry is necessarily broken,Surface

nonlinearity and hence the second-order nonlinearity is nonvanishing in the dipole ap-
proximation. Nevertheless, the structural discontinuity can determine a field
discontinuity at the surface leading to a quadrupole-type surface contribu-
tion. Notice, that the field discontinuity and the structural discontinuity
contribute separately to the surface nonlinearity [48]7. Since the nonlinear
response depends on the surface geometry, where the inversion symmetry
is broken, it follows that the second harmonic signal is a powerful probe of
surface and interface shape.[49–51].
In this work we have conducted a study of systems in which the surface

contribution plays a central rule in the nonlinear response. In order to model
the surface nonlinearity, we have introduced an interface layer, character-
ized by an effective bulk nonlinearity (see Fig. 2.21). For our purposes, this
layer can be defined as the region where the structure and the field change
significantly. In general, the thickness δ of an interface layer is always much
smaller than an optical wavelength and even in real cases the nonlinear con-
tribution is originated in a small region, and not by an infinitesimal surface
[32]. As we shall see, this approximation allows providing a description a
multilayered system, in the case of interface nonlinearities by using the well
known nonlinear transfer matrix method [52].

We discuss now the simple example of the second harmonic radiation
from a plane of nonlinear dipoles for which an analytic approach is still pos-
sible. An incoming pump field at frequency ω from the medium 1 gives rise
to a nonlinear polarization PNL in the interface layer (see figure 2.21. This
nonlinear source determines a reflected and transmitted field at frequency

7Let us consider, for example, a liquid-solid interface with a refractive index matching,
only the structural contribution is present since the field is continuous along the interface.
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2ω, here we shall consider only the reflected one.
We treat the nonlinear contribution as originated from a sheet of polariza-
tion embedded in an interface layer with a dielectric constant ε ′8, thus the
PNL has the form

PNL(z) = PNLδ(z) exp[i(2kω · r − 2ωt)] (1.28)

By solving the nonlinear wave equation (1.16) with the appropriate bound-
ary conditions we obtain the reflected second-harmonic field amplitude for
the p and s polarization respectively [53].

E2ω
p =

4πık1

ε2k1z + ε1k2z

(

k2zP
NL
x x̂ +

ε2

ε′
kxPNL

z ẑ
)

(1.29)

E2ω
s =

4πık1

k1z + k2z

k1z

ε1
PNL

y ŷ (1.30)

where k1 and k2 are the wave vectors of the harmonic field in the media 1
and 2 respectively; while x, y and z denote the components in the laboratory
coordinate system, with k1z = k1 cos θi, k2z = k2 cos θr and k2x = k2 sin θr.
The angle θi is the incidence angle, while θr can be evaluated through the
Snell’s law. Finally PNL

x , PNL
y and PNL

z are the Cartesian components of
the second-order nonlinear polarization.
The knowledge of the reflected second-harmonic amplitude is determined Nonlinear

tensor shapeonly by the complete knowledge of the nonlinear polarization which is de-
termined by the shape of the tensor χ(2). For a planar interface, as the one
considered in this example, the inversion symmetry is broken along the z
axis, nevertheless the rotational symmetry around the z axis is preserved.
As a result many of the 27 components of χ(2) disappear. There are only
seven non-vanishing components of the second order nonlinear tensor and,
since there is also an equivalence of the x and y direction at an isotropic
surface, only three tensor elements are independent:

χ(2)
zzz (1.31)

χ(2)
zxx = χ(2)

zyy (1.32)

χ(2)
xxz = χ(2)

xzx = χ(2)
yyz = χ(2)

yzy (1.33)

Let us compare this result with the one obtained in the previous section
for the harmonic generation in a nonlinear medium in the case of bulk χ(2).
The first important difference which characterizes the surface and the bulk
response is that the first one is independent on the layer widths. Indeed, in
the case just described we observe that the layer length, even the one of the

8Here we shall assume that the dielectric constant ε ′ is the average of the one of the
medium 1 and 2, nevertheless the choice is not unique.
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interface layer, does not enter in the final results, therefore the amplitude
of the harmonic field depends uniquely on the nature of the interface and,
in this case, the coherence length that we have defined in the previous sec-
tion is totally meaningless. In both cases the nonlinear response depends
on the tensor shape. Nevertheless, while for the surface nonlinearity χ(2) is
determined by the interface geometry, in the case of the bulk the tensor it
depends on the material considered.

1.4 Nonlinear coefficients

In the previous example we have seen how to evaluate the amplitude ofConversion

efficiency the second harmonic field inside a nonlinear medium. In practice, one can
not measure this quantity but rather the intensity of the harmonic field
generated outside the system. In the case of the harmonic generation it is
useful to define the conversion efficiency which measures the amount of the
pump field which is converted into the harmonic one. We can simply write

ηr =
Ir
harm

Ipump
(1.34)

ηt =
It
harm

Ipump
(1.35)

where Iharm and Ipump are the intensities of the reflected or transmitted
harmonic and pump fields, respectively. This definition is completely general
and it holds also in the case of third harmonic generation. It is worth to
underline that, since the intensity of the n-th harmonic field is a function
of the n-th power of the pump field, η does not simply depend on the
characteristics of the system, but even on the pump field intensity. For
this reason it is useful to introduce two other quantities, called nonlinearNonlinear

coefficients reflectance and nonlinear transmittance, which are defined as

RNL =
Ir
harm

(Ipump)n
(1.36)

T NL =
It
harm

(Ipump)n
. (1.37)

We emphasize that these coefficients are not dimensionless and they have
the dimension of the inverse of the (n-1)th power of the field intensity. It
is straightforward to relate the conversion efficiency to the nonlinear trans-
mittance

ηt = T NL(Ipump)
n−1 (1.38)

In presenting our results we prefer using nonlinear reflectance and transmit-
tance, since they are only a function of the system properties, and they are
independent of the pump field intensity.



Chapter 2

Second Harmonic
Generation in a Doubly
Resonant Microcavity

The possibility of exploited nonlinear effects, such as harmonic generation,
in integrated optical devices, requires the capability of achieving high con-
version efficiency in micrometer scale devices. Semiconductors are among
the best candidates because of their high nonlinearity and the high degree
of control of the growth process technology. Unfortunately frequency con-
version in cubic materials like GaAs or AlGaAs is limited by the difficulty
of achieving phase-matching which is instead easily obtained in birefringent
nonlinear materials. Even amorphous silicon nitride (a-Si1−xNx:H) is a suit-
able system for generating second harmonic generation, and in particular
in the visible range due to is large band gap. In this system surface second
order nonlinearity arise at the interface between layers with a different sili-
con concentration due to breaking of symmetry.
In this chapter we discuss the possibility to design a microcavity in order to
achieve a great enhancement of second harmonic generation (SHG) in the
case of bulk and surface nonlinearities. We demonstrate that the conversion
efficiency is maximum when the structure is resonant for both the pump and
harmonic frequencies, and phase matching is achieved. The design of a dou-
bly resonant microcavity is difficult because of refractive index dispersion.
In order to achieve double resonance, it is necessary to provide a design of
DBR characterized by high reflectivity at the pump and harmonic frequen-
cies, and furthermore to determine the appropriate cavity layer length.
In Secs. 2.1 and 2.2 the problem of design a doubly resonant microcavity
in presence of non-birefringent dispersive media is theoretically discussed.
We present the concepts of photonic gap and defect mode maps, which rep-

15
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resent the fundamental tools in the search for doubly resonant microcavity
parameters. Even though the aim of the discussion is to provide an efficient
design method for doubly resonant microcavity, most of results are general
and can find application in the design of several one dimensional photonic
structures.
A Theoretical study of SHG problem in doubly resonant microcavities with
dielectric mirrors is presented in Sec. 2.3. Here the problem is analytically
treated: starting from the fundamental work of Berger on SHG in monolithic
cavities [14], we complete the discussion by providing simple expressions of
the cavity enhancement factor in phase-matching and anti phase-matching
cases in the limit of highly reflectance mirrors. These results show an expo-
nential growth of SHG efficiency as a function of the number of periods in
the mirrors. The exponential growth is maximum when double resonance
as well as phase matching are simultaneously achieved.
Numerical results obtained with a nonlinear transfer matrix method are in
substantial agreement with the analytical model. In Sec. 2.4 a preliminary
study of GaAs DRM with Alox/AlGaAs periodic mirrors is done for a pump
wavelength of 2µm. In Sec. 2.5 the problem of SHG is widely discussed in
the case of a AlGaAs cavity, when the pump can be tuned at the more con-
venient wavelength of 1.550µm and higher enhancement can be achieved.
Here localized phase-matching and anti-phase matching concepts and their
roles in harmonic generation process are presented in detailed.
A collaboration with the research groups of F. Giorgis in Torino and S.
Lettieri in Napoli has offered the opportunity of studying second harmonic
generation in doubly resonant microcavities based on amorphous silicon ni-
tride. We design a DRM that has been growth in Torino and whose linear
properties have been characterized in Pavia, finally SHG measurements were
performed in Napoli. This work led to the non obvious conclusion that even
in the case of surface nonlinearity, enhancement of SHG can be obtained
using doubly resonant systems. All these results are presented in Sec. 2.6.
In Sec. 2.7 some considerations on Kerr effect in doubly resonant cavities
are presented. Here we want to justify the approximation adopted in all
SHG calculation in which higher order nonlinear effects have been neglected.

2.1 Dual wavelength dielectric mirrors

The possibility of designing a doubly-resonant structure, in order to en-
hance SHG process, depends on the capability of growing dual-wavelength
dielectric mirrors (DWDM) characterized by two stop-bands, at the pump
and harmonic frequencies. In this case, one has to depart from the usual
λ/4 condition for which no stop-band is present for the harmonic field, and
to look for a more general design. Different approaches are possible: op-
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Figure 2.1: Scheme of a distributed Bragg reflector. (DBR)

timizing the performances of the mirrors by building them layer-by-layer
in a non periodic structure [15], or working with non-λ/4 periodic mirrors
[14, 16, 54]. Here we assume to work only with periodic distributed Bragg
reflector (DBR) formed by the repetition of a bilayer period as sketched in
Fig. 2.1. The equivalent infinite system is an ideal onedimensional 1DPC,
characterized by a periodic dielectric function along the z direction. The so- Gap map

lution of the Helmholtz equation for the electromagnetic field can be reduced
to an eigenvalue problem, where the field is described by Bloch functions
and the eigenvalues represent the energies allowed to the propagating modes.
In perfect analogy with the electronic problem in a crystal, the eigenvalues
can be organized in a photonic band structure [55]. The dispersion rela-
tions ω = ω(k) for the propagating modes are found by the transfer-matrix
method and Bloch-Floquet theorem in the form of an implicit equation that
is the optical analogue of the Kronig-Penny model[56]:

cos(qΛ) = cos(k1,zL1) cos(k2,zL2) (2.1)

− 1

2

(

α1

α2
+

α2

α1

)

sin(k1,zL1) sin(k2,zL2),

where Λ = L1 + L2 is the DBR period, q is the Bloch vector, L1 and
L2 are the layer widths (see Fig. 2.2a), ki,z = (ω/c)ni cos θi, i = 1, 2 are
the z-components of the wave vectors in the layers, ni = ni(ω) are the
refractive indices including material dispersion, while θi depends on the in-
cident angle θ and the external refractive index next through Snell’s law
θi = arcsin{(next/ni) sin θ}. Since we work at a finite incidence angle
we have to distinguish between transverse electric (TE or s-polarized) and
transverse magnetic (TM or p-polarized) modes, with the following expres-



18 2. Second Harmonic Generation in a Doubly Resonant Microcavity

0.8

1.2

1.6

2.0

2.4

1.0 0.5 0.0

E
ne

rg
y 

(e
V

)

Transmittance

 

 

0.8

1.2

1.6

2.0

2.4
 

0.2 0.4 0.6 0.8

 

 

Filling Factor

 

 

(b)(a)

Figure 2.2: (a) Linear transmittance for a DBR consisting of Alox (material 1)
and Al0.4Ga0.6 (material 2) with period Λ ≡ L1 + L2=292 nm and filling factor
f = L1/(L1 + L2) = 0.4 All the calculations are performed assuming incidence
angle θ = 30◦ and p-polarized electric field.(b) Gap map as a function of the filling
factor.

sions for the factors αi of Eq.(2.1):

α1 = n2 cos θ1

α2 = n1 cos θ2

}

TM modes,

α1 = n1 cos θ1

α2 = n2 cos θ2

}

TE modes.

A notable feature of the formalism is that the material dispersion of the re-
fractive indices can be easily taken into account. In the following examples
we shall use the material dispersion of GaAs, AlAs and of the AlxGa1−xAs
alloy as reported in the literature [57]. As in the case of the Kronig-Penney
model we find forbidden frequency intervals or photonic gaps, for which the
Bloch vector is completely imaginary, corresponding to non-propagating
electromagnetic modes. Solving numerically Eq.(2.1) we can easily provide
a map of the position of the gaps by varying the DBR parameters or the in-
cidence angle. We show an example in Fig. 2.2b, where the gap position of a
DBR made of oxidized AlAs (or Alox, layer 1) and Al0.4Ga0.6As (layer 2) is
plotted as a function of the filling factor f = L1/Λ with Λ = 292 nm, for an
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Figure 2.3: Imaginary part of the Bloch wave-vector as a function of the filling
factor. for a 1DPC consisting of Alox (material 1) and Al0.4Ga0.6 (material 2)
with period Λ ≡ L1 + L2=292 nm All the calculations are performed assuming
incidence angle θ = 30◦ and p-polarized electric field

incidence angle θ = 30◦ and p-polarization. In the figure 2.2a we report the
linear transmittance of the DBR corresponding to the filling factor f = 0.4,
note that the stop-bands of the finite structure correspond to the gaps of the
equivalent 1DPC.When the λ/4 condition is fulfilled, the first-order gap has
a maximum width while the second-order gap vanishes: the corresponding
filling factor will be called f ≡ fλ/4. Under this condition, the reflectance
at the center of the first-order stop band is also maximum. The gap maps
available in the literature are usually reported in dimensionless units, since
they are calculated for fixed values of the dielectric constant and they are
scalable with the period of the photonic lattice [55]. Here the gap positions
are reported in energy units because our goal is to study the relative posi-
tions of the photonic gaps at ω and 2ω, hence the material dispersion cannot
be neglected and the gap maps are not scalable. Within the gap, Eq. (2.1)
can be solved only for an imaginary Bloch vector which indicates an expo-
nential decay of the electric field in the DBR. This decay is strictly related to
the mirror reflectivity of a finite structure, which scales exponentially with
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Figure 2.4: Reflectance phase delay as a function of the filling factor. for a 1DPC
consisting of Alox (material 1) and Al0.4Ga0.6 (material 2) with period Λ ≡ L1 +
L2=292 nm All the calculations are performed assuming incidence angle θ = 30◦

and p-polarized electric field

the number of periods. Thus, the dielectric mirrors offer the advantage of
great flexibility and the possibility of tuning the reflectance by varying the
number N of periods in the multilayer. It is possible to provide a map of the
imaginary part of the wave vector as a function of filling factor. In Fig. 2.3
this map has been evaluated for the example just described above. Even if
this study can give many informations about the reflectivity of the mirrors
and therefore about the quality factor (Q-factor) of the final microcavity,
the reader must remember that the Q-factor does not depend only on the
imaginary part of the wave vector, but also on the refractive index contrast
between the cavity layer and the adjacent mirrors layers. Therefore, this
map can not be considered any sort of ”Q-map”nevertheless, it describes its
exponential growth as a function of the number N of periods in the mirrors,
as it will be clarified later.

A remarkable difference between dielectric and metallic mirrors is thePhase delay

phase change of the field associated to reflection. Indeed, while in a metallic
mirror the phase of the field changes only of multiples of π, dielectric mirrors
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are characterized by a complex reflection coefficient

r =
√

Reıφ, (2.2)

where R = |r2| is the mirror reflectance, while φ is the reflection phase
which is, in general, a complicated function of the mirror structure, of the
incident external medium refractive index next, and of the field polarization
and frequency. In the case of periodic mirrors in the limit R ≃ 1 (i.e., for
sufficiently large N), it has been demonstrated by Apfel [58, 59] that the
reflection phase delay within the stop-bands depends only on the period
composition and external medium refractive index, but it is independent
on N. Moreover the phase delays seen by two different external media of
refractive index n0 and nc, respectively, are related by the simple equation

n0 tan
φ0

2
= nc tan

φc

2
(2.3)

In Fig. 2.4 we report the first example, to our knowledge, of a map of
reflection phase delay as a function of filling factor. The phase is shown in
a color scale within the photonic gaps where, for the case of finite N , the
reflectance is close to unity. The results for the phase delay in reflection will
play a crucial role for SHG problem, which will be discussed in Sec. 2.3

Let us look for a DWDM whose first-order gap (for the pump beam) is Material choice

centered around the convenient wavelength λ = 1.55 µm. In Figs. 2.5a and
2.5b we plot the gap maps for two systems with weak and strong refractive
index contrast, respectively. The energies of the second-order gap (for the
harmonic beam) are divided by two in order to visualize better the filling
factors for which two gaps occur simultaneously at ω and 2ω: the darkest
regions in the plots correspond to their superposition. In both cases we
consider p-polarized pump, s-polarized second harmonic beams and an angle
of incidence θ = 30◦.

Figure 2.5a refers to the case of AlAs/GaAs mirrors with Λ = 250 nm.
This material combination presents a low refractive index contrast, therefore
the photonic gaps are quite small. Moreover, the relatively high dispersion
in the energy range under consideration makes the harmonic gap to lie below
the pump one. The combination of these features allows designing a periodic
DWDM only for a narrow range of filling factors 0.63 < f < 0.83, with a
very small superposition region in energy.

In Fig. 2.5b we present the case of a Alox/Al0.4Ga0.6As DBR with
Λ = 292 nm. The harmonic gap is almost entirely contained in the pump
one, hence a DWDM can be realized for any filling-factor values, except
the one corresponding to the λ/4 condition for which no harmonic gap oc-
curs. With a filling factor f = 0.4, which is the case indicated by arrows in
Fig. 2.2a, the pump gap is centered around 0.8 eV (λ = 1.55 µm). The situ-
ation presented in Fig. 2.5b is the most advantageous one, indeed the small
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Figure 2.5: Gap maps as a function of filling factor in a low index con-
trast AlAs/GaAs DBR with Λ = 250 nm (a) and a high index contrast
Alox/Al0.4Ga0.6As DBR with Λ = 292 nm (b). The energies of the harmonic
gaps are divided by two. In both cases we assume p-polarized pump, s-polarized
harmonic and an incidence angle θ = 30◦.
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material dispersion guarantees that the pump and harmonic gap centers are
close to each other for any filling factor values, while the high refractive in-
dex contrast allows to achieve large gaps with a wide superposition region,
and also to get high reflectance in the stop bands with a small number of
DBR periods. The solution presented in Fig. 2.5b for a Alox/Al0.4Ga0.6As
DWDM centered at 0.8 eV is not unique, since the period Λ or the incidence
angle can be tuned in order to center the pump and harmonic gaps at the
desired energy. The structures with a pump gap centered at 0.8 eV will be
thinner when f is small, therefore we speak of a thin configuration when
f < fλ/4 and a thick configuration in the opposite case f > fλ/4. It will be
clear in Sec. 2.3 that, in the case of a DRM, the choice of working in thin
or thick configuration is not arbitrary. Indeed, as shown in Fig. 2.4b, these
two configurations are characterized by a different reflection phase: this
fact has important consequences in the phase matching of second harmonic
generation process.

Using the gap map technique it is possible to design a dual-wavelength
dielectric mirror taking into account the refractive index dispersion. It
has been shown that periodic DBR structures cannot be usefully employed
in the case of low index contrast, highly dispersive material combinations
like AlAs/GaAs. For these materials, non-periodic structures like those of
Ref. [15] may remain the best solution for the realization of DWDMs. In the
more favorable case of high index contrast DBRs like Alox/Al0.4Ga0.6As,
the superposition region between pump and harmonic gaps is sufficiently
large to have a robust DWDM structure which can be tuned by changing
either the DBR period (in the design) or the incidence angle (in the experi-
ment). In the following Section we discuss how such a DWDM can be used
to achieve double resonance in a microcavity structure.

2.2 Doubly-Resonant Microcavity

The possibility to obtain doubly-resonant microcavities has been already
investigated for pseudo-metallic mirrors at normal incidence [14] or for non-
periodic mirrors [15]. With metallic or pseudo-metallic mirrors the phase
delay in reflection is φ = 0 or π and therefore the position of the resonances
depends exclusively on the cavity length, Lc. The index dispersion of the
cavity material may be compensated by taking Lc to be equal to the coher-
ence length [14]. Moreover, the temperature-dependence of the refractive
index is taken as an experimental tuning parameter. On the other hand,
for non-periodic dielectric mirrors, the cavity length is of the order of the
wavelength of light and the angle of incidence is used as a tuning parameter
[15]. The disadvantage of non-periodic mirrors is that the structure is very
sensitive to small deviations in the layer thicknesses, and also it is not easy
to derive clear trends for the Q-factors and the conversion efficiency as a
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Figure 2.6: Scheme of a doubly-resonant microcavity (a) and the corresponding
ideal periodic system (b).

function of structure length.
In this Section we investigate the possibility of realizing a microcavity

with two resonances centered at ω and 2ω, even in the presence of dispersive
materials. The idea is to employ periodic DWDM with high refractive index
contrast and to use the angle of incidence as a fine-tuning parameter. We
consider a microcavity composed by a layer of width Lc embedded between
two identical mirrors characterized by a complex reflection coefficient r(ω) =
√

R(ω) exp [ıφ(ω)]. The linear transmittance is

T (ω) =
(1 − R(ω))2

1 + R(ω)2 − 2R(ω) cos δ(ω)
(2.4)

with
δ(ω) = 2kc,z(ω)Lc + 2φ(ω), (2.5)

where kc,z = (ω/c)nc cos θc is the z component of the wave vector, nc is the
refractive index in the cavity layer and θc is found again by Snell’s law. The
system is resonant at specific frequencies ωm when δ(ωm) is a multiple of 2π
[14]. The phase change φ(ω) of a DBR is strongly dependent on frequency
[58–63], thus the resonance position of the cavity mode inside the stop band
is a complicated function of the structure parameters and of the incidence
angle. Analytic expressions for the resonance position are available only
when the cavity mode is close to the center of the stop band [62], where
φ(ω) can be approximated by a linear function of frequency.
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Figure 2.7: Position of p-polarized pump (solid lines) and s-polarized harmonic
(dashed lines) defect modes inside their respective gaps as a function of fcav =
Lc/Λ. The mirror is composed by P = 20 periods of alternating L1 = 116.8 nm
(Alox) and L2 = 175.2 nm (Al0.4Ga0.6As) layers, with Λ = 292 nm; the incidence
angle θ = 30◦. Harmonic energies are divided by two. The white region indicates
an harmonic gap superimposed to the pump one (light grey), while the darkest
zone indicate the absence of a gap.

Once a DWDM at the working frequency regions is designed (i.e., Λ,
f and θ are known), the DRM is obtained by introducing a defect with
length Lc in the periodic structure, as shown in Fig. 2.6a. We consider an
equivalent infinite periodic system constituted by the repetition of a super-
cell composed by P + 1/2 periods of the DWDM and by the defect, as
shown in Fig. 2.6b. The presence of periodically repeated defects in the
1DPC structure introduces localized states in the photonic band gaps 1.
The problem of finding the desired cavity width for double resonance can
be solved as follows. If we consider the transfer matrix M of a single mirror
period and the transfer matrix D of the bilayer Lc/L2 (see Fig. 2.6b), then
the transfer matrix T of the super-cell is given by

T = DMP . (2.6)

By indicating with E0 and EΛs
the electric field vector at the beginning and

1The number P of periods in the equivalent infinite systems should be large enough
to avoid coupling between the different defect layers.
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Figure 2.8: Position of p-polarized pump (solid lines) and s-polarized harmonic
(dashed lines) defect modes inside their respective gaps as a function of incidence
angle θ. The mirror is composed by P = 20 periods of alternating L1 = 116.8
nm (Alox) and L2 = 175.2 nm (Al0.4Ga0.6As) layers, with Λ = 292 nm; Lc =
449.7nm.. Harmonic energies are divided by two. The white region indicates an
harmonic gap (light grey) superimposed to the pump one (grey), while the darkest
zone indicate the absence of a gap.

at the end of a single super-cell, discrete translational symmetry implies that

EΛs
= eıqsΛsE0, (2.7)

where Λs = PΛ+L2 +Lc is the super-cell length and qs is the Bloch vector.
Thus it follows that exp(±ıqsΛs) are the eigenvalues of T and therefore

Tr(T) = 2 cos(qsΛs). (2.8)

This equation is the generalization of Eq.(2.1) and it contains implicitlyDefect map

the dispersion relation of the photonic system described above. In perfect
analogy with the strategy we used in Sec. 2.1, it is possible to provide a
defect map, i.e., the positions of defect modes inside the gap can be evaluated
as a function of the cavity length Lc or the incidence angle θ.

In Fig. 2.7 we show an example of a defect map, where the defect po-
sitions are plotted as a function of fcav = Lc/Λ [64]. As the thickness of
the cavity layer increases, the defect modes move across the gap but with
different slopes because of the material dispersion. For a wide range of fcav
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Figure 2.9: Tuning of the resonance positions by changing the incidence angle
in a DRM: linear transmittance for p (solid) and s (dashed lines) polarizations
for the pump and harmonic fields at θ = 25◦, 33◦ and 40◦. Structure parame-
ters: L1 = 116.8 nm (Alox), L2 = 175.2 nm (Al0.4Ga0.6As) and Lc = 449.7 nm
(Al0.25Ga0.75As), with N = 6 periods in the DBRs. Double resonance occurs at
θ = 33◦.

values we find that the p-polarized defect mode is close to the s-polarized
harmonic one. The small difference could be compensated by changing the
angle of incidence. Here we choose the parameters in such a way that the
double-resonance condition occurs close to the center of the stop bands,
where the Q-factor of the cavity modes is largest.

Analogously, in Fig. 2.8 we report a defect map as a function of the
incidence angle θ. This parameter affects strongly linear and nonlinear
properties of the structure, in particular the gap and defect mode positions.
Another crucial quantity which characterize the microcavity is its quality
factor, which depends on the mirror reflectance that depends on the field
polarization and the incidence angle. In the design of microcavity struc- Resonance

angle tuningtures we chose to fulfill the double-resonance condition at a finite θ and
for different polarizations of the pump and harmonic waves. In Fig. 2.9 we
show the linear transmittance of a DRM for the pump and harmonic fields
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in both s and p polarizations. The harmonic energies were divided by two
in order to visualize better the occurrence of a double resonance. Because
of the polarization splitting of cavity modes, four resonances (two at ω and
two at 2ω) are present. When the angle grows from θ = 25◦ to θ = 40◦,
the resonances shift towards higher energies, and at θ = 33◦ the p-polarized
pump resonance overlaps the s-polarized harmonic one.

The power of the incidence angle as a tuning parameter depends on
the strength of the polarization splitting [62, 65]. A careful study of this
problem, conducted through the defect-map method, has shown that the
polarization splitting is extremely sensitive to the DBR parameters. In par-
ticular, the splitting is larger for a high refractive index contrast and when
f is far from fλ/4. In actual experiments, besides the incidence angle, the
thickness variation of the epitaxial structure due to growth inhomogeneity
could also be used to adjust the energy position of the double resonance.

As a general remark in closing this Section, the gap- and defect-map
methods represent an efficient tool for the design of microcavity structures.
Moreover this method can be applied even working at normal incidence
when other resonance tuning parameters (e.g. temperature) can be used.
Since the results are not scalable when material dispersion is considered,
the design should be studied for each specific case. In the following we give
examples of microcavities that are optimized for efficient SHG at double
resonance.

2.3 Theory of Second Harmonic Generation
in Doubly Resonant Microcavities

In this Section we analyze the results for second-harmonic generation (SHG)
in a doubly resonant microcavity and in the case of bulk nonlinearity and
when pump delpletion can be neglected. This assumption allows to divide
the SHG process in three independent steps: (i) linear propagation of the
pump field, (ii) generation of a nonlinear polarization and of a source field at
the harmonic frequency, (iii) propagation of the second-harmonic field along
the structure. We show that in DRM all these aspects can be optimized
simultaneously and a great enhancement of the nonlinear conversion may
be achieved.

The second harmonic generated by the DRM can be compared to theCavity

enhancement

factor

one by the isolated cavity layer (or single-pass conversion). The ratio be-
tween the nonlinear transmittance of the cavity T NL

cav and the one of the
correspondent single layer T NL

layer represents the enhancement due to the res-
onant cavity. Berger [14] has given an analytic expression for the cavity
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enhancement factor η of a symmetric structure:

η =

∣

∣

∣

∣

Tω

√
T2ω{1 + Rω

√
R2ω exp(ıδm)}

{1 − Rω exp(ıδω)}2{1 − R2ω exp(ıδ2ω)}

∣

∣

∣

∣

2

, (2.9)

where δω = δ(ω) and δ2ω = δ(2ω) have been already specified in Eq. (2.5),
while

δm = φj,ω + φk,ω + 2kz,ωL + φi,2ω + kz,2ωL, (2.10)

where i, j, k are the cartesian components coupled by the nonlinear sus-

ceptibility χ
(2)
ijk. The factor δm describes the phase mismatch between the

nonlinear polarization PNL and the free harmonic field.
From Eq. (2.9) we observe that the cavity enhancement of SHG de-

pends on the terms in curly brackets, which describe the effects of pump
and harmonic field distributions (in the denominators) and of their phase
mismatch (in the numerator). When a resonance at ω and 2ω occurs, the
denominators of the expression (2.9) tend to vanish: this is the signature
of a double-resonance condition. However, the SHG efficiency is enhanced
only when the quantity δm 6= π [2π], otherwise the numerator also tends to
vanish and the efficiency is reduced. The cavity enhancement is maximum
when all the factors δω, δ2ω and δm are multiple of 2π. Starting by the
relation (2.5) and (2.10), it is easy to demonstrate that, in a symmetric
cavity with double resonance, δm must be an integer multiple of π: the two
situations that can occur are analyzed below.

When δm = 2nπ, which we call a phase matching condition, the nonlinear
polarization is in phase with the harmonic field. For high reflectance mirrors
we get

PM caseηpm ≃ 4

(1 − Rω)2(1 − R2ω)
∝ Q2

ωQ2ω. (2.11)

In this situation all aspects of the harmonic generation process are opti-
mized, and the cavity enhancement of SHG grows with the Q-factors at ω
and 2ω.

When δm = (2n+1)π, which is called anti-phase matching condition, the
nonlinear polarization PNL in the cavity layer is exactly out of phase with
respect to the free harmonic field. This means that the coupling between
the nonlinear polarization and the free harmonic field is weak, yielding a
low extraction efficiency. Again we look at the Rω,2ω → 1 limit and obtain:

APM caseηapm ≃ (1 − Rω + 1
2 (1 − R2ω))2

(1 − Rω)2(1 − R2ω)
. (2.12)

Here we observe that there are two types of behavior according to the ra-
pidity with which Rω and R2ω tend to unit. In particular we obtain:

ηapm ≃ 1 − R2ω

4(1 − Rω)2
∝ Q2

ω

Q2ω
(2.13)
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when 1−Rω

1−R2ω
→ 0, and

ηapm ≃ 1

(1 − R2ω)
∝ Q2ω (2.14)

when 1−Rω

1−R2ω
→ ∞. This result shows that, in the case of anti-phase match-

ing, the enhancement of SHG is much smaller than in the phase-matched
situation.

The expressions (2.11), (2.13)-(2.14) can be compared with the enhance-
ment factor of a single-resonant microcavity. We treat only the case of a
resonance at the pump frequency ω. The cavity enhancement can be ex-
pressed as

SRM case ηSRM =
1

(1 − Rω)2
T2ωMω ∝ Q2

ω, (2.15)

where M(ω) is a function describing the mismatch between the nonlinear
polarization and the harmonic field. In general, since T2ω and M do not
present any resonance, pump field confinement is the only relevant effect.

The cavity enhancement factor is a function of mirror reflectance at ω
and 2ω and therefore of the number N of periods in the DBRs. It is useful
to express the Q-factors as Q ∝ exp(2NκΛ), where κ is the imaginary part
of the Bloch vector in the photonic gap. From expressions (2.11), (2.13)-
(2.15) we can derive the trend of the cavity enhancement as a function of
N :

ηDRM,pm ∝ exp[2N(2κω + κ2ω)Λ] (2.16)

ηDRM,apm ∝











exp[2N(2κω − κ2ω)Λ], κω ≥ κ2ω

exp[2N(κ2ω)Λ], κω < κ2ω,

(2.17)

ηSRM ∝ exp[4Nκω], (2.18)

The conversion efficiency η is largest in the phase matched DRM when

Q2
ω,DRMQ2ω,DRM > Q2

ω,SRM (2.19)

and the exponential growth with the number of period is faster when

2κDRM
ω + κDRM

2ω > 2κSRM
ω . (2.20)

This condition can be fulfilled by proper structure design, as illustrated
below. The Q-factors of the resonances depend also on the refractive index
of the cavity medium and on which way the DBR is truncated near the
cavity. The expression above refers to the case of equivalent microcavities
in the sense that both have the same number of periods, the mirrors have
the same composition, and they are truncated in the same way.
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In expression (2.9) we have implicitly considered the case in which the
generated second harmonic has a specific polarization and, in particular,

that only one element χ
(2)
ijk of the nonlinear susceptibility is involved in the

process. In general, for specific in/out polarization configurations, more
than one tensor component is involved and the phase-matched one (if any)
will be dominating. Also, Eq. (2.9) is derived by assuming that only the
cavity layer be nonlinear. Thus Eq. (2.9) should be viewed as a useful
guide for the design of microcavities with high SHG efficiency, but it cannot
replace the numerical calculations which are presented below.

Although it is not possible to provide a general rule which tells a priori
which DRMs are characterized by phase matching for a specific χ(2) con-
figuration, the DRMs can be divided in two classes, namely thick and thin,
which depend on the DWDM used. We observe that, in general, these two
classes are characterized by complementary behavior of δm. This fact is a
consequence of the different phase delay which we have in thick and thin
configuration at 2ω, in particular by looking at Fig. 2.4 we can notice that
the phase delay changes by π when fλ/4 is crossed. In the following we
discuss examples of doubly-resonant microcavities for p-s and s-p nonlinear
conversion where thick and thin mirror configuration are assumed.

In the following section we present a systematic study of DRM with
GaAs or AlGaAs cavity layers and Alox/AlGaAs dielectric mirrors. All the
results are presented with a chronological order, from the first designed and
studied DRM, composed by a layer of GaAs embedded between two periodic
mirrors in thick configuration, to the last structure, designed in order to
work at pump wavelelngth equal 1.550µm in s-p configuration, for which the
cavity enhancement is maximum. Numerical calculations presented in Secs.
2.4 and 2.5 are performed using nonlinear transfer matrix method [52] (see
appendix A) with the measured nonlinear susceptibilities of the AlxGa1−xAs
alloy [66] and are valid in the limit of negligible pump depletion.

2.4 GaAs cavity with AlGaAs/Alox dielectric
mirrors

The goal is to demonstrate the possibility of designing a DRM with non- GaAs cavity

birefringent dispersive media. The choice of GaAs as a cavity layer is mo-
tivated by its high nonlinearity, nevertheless it forces to work with a pump
wavelength larger than 1.8µ in order to avoid SH signal absorption, which
starts at 0.9µm.
The following results refer to single and double resonant microcavities with a
GaAs cavity layer and with DBRs constituted of alternate layers of Al0.4Ga0.6As
(layer 1) and Alox (oxidized AlAs, layer 2). The field components coupled
by the χ(2) tensor depend on the growth direction of the sample as dis-
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Figure 2.10: Energies of p-polarized pump (solid) and s-polarized SH defect modes
in the stop bands (dotted) as a function of the angle of incidence. The dark and
light grey areas denote the regions outside the stop band for the pump and SH
wave, respectively. Parameters are given in the text.

cussed in Chapter 1. We have considered two different orientations of the
nonlinear GaAs layer: [111] (with plane of incidence [11̄0]) and [001] (with
plane of incidence [010]), the non-vanishing χ(2) are reported in Fig. 2.13.
In all calculations we take into account the refractive index dispersion of
the materials.[57].

The design of a DRM structure is made for a pump wavelength λ =
2µm using the method presented in Secs. 2.1 and 2.2. We optimize the
thicknesses L1, L2 of the DBR layers in order to obtain first- and second-
order stop bands (or photonic gaps) of comparable size, working in thick
configuration.[14] Moreover, we choose the cavity layer thickness in such
a way that the defect modes are resonant with the pump and harmonic
waves at a finite angle of incidence. The following parameters are obtained:
L1 = 104.8 nm, L2 = 408.9 nm, Lc = 675 nm. Figure 2.10 shows the an-
gular dispersion of the defect modes at ω and 2ω, the latter being divided
by two in order to visualize the double-resonance condition. The two defect
modes are seen to cross at an angle of incidence around θ = 30◦.

We now calculate numerically the SH conversion efficiency by the nonlin-
ear transfer matrix method.[52] The nonlinear transmittance T NL normal-
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Figure 2.11: Linear and nonlinear transmittance versus pump wavelength for a
single-resonant (left) and doubly-resonant microcavity (right) with N = 6 periods,
at θ = 30◦. The SH calculation assumes a [111] orientation and p-s conversion.

ized to that of an isolated cavity layer directly yields the cavity enhancement
η. In Fig.2.11 we compare the linear and nonlinear transmittance of SRM
and DRM with [111] orientation. While in the first case the structure is
designed to obtain only a pump resonance (λ/4 DBRs and no gap at 2ω), in
the DRM all aspects of harmonic generation are optimized. In fact, in the
DRM we have at the same time pump field confinement, good extraction
efficiency of the SH, and phase matching between the two waves. Notice
that the cavity modes at 2ω are shifted towards lower energies with respect
to the pump by the material dispersion and that double resonance for p-s
SH conversion is achieved by taking advantage of the polarization splitting
since we are working at finite incidence angles. As we shall see in Sec. 2.5
linear transmittance does not provide any information on the phase of the
nonlinear polarization relative to the harmonic field. Here we can certainly
affirm that we are in phase matching condition, by looking at the great en-
hancement in SHG associated to double resonance. This is confirmed by the
results shown in Fig. 2.12, where cavity enhancement peak value is plotted
versus the number N of period in the DBR. As we have seen in previous sec-
tion, in all cases T NL depends exponentially on N through the Q-factors:
T NL ∝ Q2

ωQ2ω for a DRM with phase matching, T NL ∝ Q2
ω/Q2ω for a
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Figure 2.12: Nonlinear transmittance as a function of N for double-resonant mi-
crocavities with both phase matching and anti-phase matching, and for single-
resonant microcavities. The symbols denote the results of the transfer matrix
calculation, while the lines represent the trends given by the Q-factors.

DRM with anti-phase matching, T NL ∝ Q2
ω for a SRM.

The results that have been shown demonstrate a great enhancement of
SHG in a phase-matched doubly resonant microcavity. Nevertheless this
structure present several practical limitations: a shorter DRM is desirable
, in which the pump wavelength is tuned around 1.550µm, and finally the
growth orientation [001] is preferable. This new goal requires a more in-
depth study of the SHG process in doubly resonant systems, which is pre-
sented in the following section.

2.5 AlGaAs cavity with AlGaAs/Alox dielec-

tric mirrors

In this section we are going to consider AlGaAs cavity with periodic di-AlGaAs cavity

electric mirrors made of Alox/AlGaAs in thin configuration [67]. All the
structures presented here are designed in order to operate at a pump wave-
length around 1.5µm, the choice of a thin configuration allows to achieve
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2ω

φ

Figure 2.13: Scheme of nonlinear microcavity, with two different growth directions
[001] (a) and [111] (b). In the former case the nonlinear polarization is proportional
to ExEz, while in the latter case P NL is proportional to E2

ξ .

high conversion efficiency in very compact structures and offers the experi-
mental advantage of growing the phase matched structure in [001] direction.
Two different in/out field polarizations are considered, p − s, with growth
orientation [001] and [111], and s − p when the z axis is taken in the [001]
direction.

2.5.1 P-S configuration

The DRM is composed by a Al0.25Ga0.75As cavity layer of width Lc =
449.7 nm, embedded in two DWDM that are composed by alternated lay-
ers of Alox and Al0.4Ga0.6As, whose gap map is presented in figure 2.5b.
When f = 0.4 we get a wide superposition of the pump and harmonic
gaps around 0.8 eV, which corresponds to the following mirrors parameters:
L1 = 116.8 nm (Alox) and L2 = 175.2 nm (Al0.4Ga0.6As). The pump reso-
nance is tuned at the convenient wavelength of 1.55 µm (E = 0.8 eV). This
corresponds to the thin configuration marked with arrows in Fig. 2.5.
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Figure 2.14: Nonlinear polarization (solid line) and free harmonic field (dashed
line) in the DRM structure at the resonance frequency E = 0.8 eV in the case
of phase matching (a) and anti-phase matching (b). The growth orientation is
taken to be [001] and [111], respectively. The number of periods N = 7 and the
incidence angle θ = 33◦. The white area represents the cavity region.

The microcavity has been designed in order to achieve double resonance
in p-s configuration and phase matching when the growth orientation is
[001] so that the only relevant element of the nonlinear susceptibility tensor

is χ
(2)
yzx. In the case of a [001] growth direction (see Fig. 2.13a), the s-

polarized nonlinear polarization is proportional to the product ExEz and,
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as it turns out, we get phase matching. In the opposite case of a [111] growth
direction (Fig. 2.13b), instead, the nonlinear polarization is proportional to
E2

ξ . In this case the anti-phase matching situation is realized.
If we look the s-polarized nonlinear polarization and harmonic fields

at the resonance frequencies, shown in Fig. 2.14, we notice that the two
quantities oscillate in phase in the phase matching case (a) but are out of
phase in the the anti-phase matching case (b). This figure allows to visualize
in physical terms the reason for the strongly increased SHG efficiency in the
case of phase-matching. However, these conditions are satisfied only inside
the cavity layer. Since the χ(2) of the Al0.25Ga0.75As and Al0.4Ga0.6As are
comparable [66], the contributions of the nonlinear layers of the DWDM
have to be considered. Nevertheless we observe that, in both cases, the
behavior of the system is well described by Eq. (2.9): indeed at 0.8 eV
the pump field is strongly confined in the cavity layer which represents the
dominant contribution to SHG.
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Figure 2.15: Linear transmittance versus pump wavelength for a single-resonant microcavity with [001] growth direction (a) and
doubly-resonant microcavities in phase matching ([001] growth direction) (b) and anti-phase matching ([111] growth direction)(c).
The respective cavity enhancement factors are reported in panels (d),(e) and (f). The SRM and DRM are constituted by a cavity
layer of Al0.25Ga0.75As embedded in two mirrors composed by N = 7 periods of alternating Alox/Al0.4Ga0.6As. In the case of SRM
Lc = 242.8 nm, L1 = 231.6 nm and L2 = 123.8 nm, while for the DRM Lc = 449.7 nm, L1 = 116.8 nm and L2 = 175.2 nm. The
pump and harmonic fields are p and s polarized, respectively. The incidence angle θ = 29◦ for SRM and θ = 33◦ for DRMs.
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Let us demonstrate more generally that the same structure parameters PM and growth

directioncan be used in order to achieve double resonance with phase- or anti-phase
matching when the growth direction is changed from [001] to [111]. From
Eq. (2.10) we evaluate δm for the two different cases:

δ[001]
m = φx,ω + φz,ω + 2kz,ωL + φy,2ω + kz,2ωL, (2.21)

δ[111]
m = φξ,ω + φξ,ω + 2kz,ωL + φη,2ω + kz,2ωL. (2.22)

Since φz,ω = φx,ω + π, if we subtract (2.21) from (2.22) we obtain that

δ[001]
m − δ[111]

m = π. (2.23)

Thus, for the present p-s configuration it possible to switch from the phase-
matching to the anti-phase matching condition by changing the substrate
orientation.

We compare the DRM with a single-resonant microcavity formed by a
λ/2 layer of Al0.25Ga0.75As with Lc = 242.8 nm embedded between two
identical λ/4 DBRs constituted by N = 7 periods of Alox/Al0.4Ga0.6As
with L1 = 231.6 nm and L2 = 123.8 nm. The linear transmittance at ω
and 2ω and the cavity enhancement factor of the SRM and DRM in the
phase matching and anti-phase matching cases are plotted in Fig. 2.15 as
a function of pump wavelength. In the case of the SRM the pump lin-
ear transmittance exhibits two resonances tuned around 1.55 µm, while the
transmittance at 2ω is structureless. Both DRMs are characterized by the
same linear transmittance spectra, in particular we observe resonances for
the p and s modes at ω and 2ω, double resonance being achieved in p-s
configuration. From the linear spectra of Fig. 2.15 it is possible to have
indication about the values of the Q-factor for the pump and the harmonic
resonances, in particular we notice that in the single-resonant microcavity
Qω is greater than in the DRM. Nevertheless, the cavity enhancement fac-
tor is about 10 times larger in the DRM with phase matching because it
is proportional to the product Q2

ωQ2ω. Also, the DRM in phase-matching
configuration has 104 higher SHG efficiency than in the anti-phase matched
case.

In Fig. 2.16a we compare the trends of the cavity enhancement factors Exponential

growth with Ncalculated through the nonlinear transfer matrix method to the ones pre-
dicted by the analytical formulation as a function of the number N of mirror
periods for the DRM. In all cases we observe an exponential growth. The
phase-matched DRM exhibits the highest cavity enhancement for all values
of N . For N=6 periods the enhancement factor is higher than 106. The
analytical results are generally close to the numerical ones, except in the
SRM, for which the mirror layers give a significant contribution and the an-
alytic formula (2.9) underestimates the conversion efficiency. In Fig. 2.16b
we report the quality factors of the resonances involved in the nonlinear
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Figure 2.16: (a) Cavity enhancement factor in p-s configuration as a function of the
number N of mirror periods for a doubly-resonant microcavity in phase matching
and anti-phase matching, and for a single-resonant microcavity. The symbols
denote the results of the transfer matrix calculation, while the lines represent the
exponential trend predicted by the analytical formulation. (b) Quality factors of
the resonances at the pump and harmonic frequencies. Structure parameters are
as in Fig. 2.15. The incidence angles are θ = 29◦ and θ = 33◦ for the SRM and
DRM, respectively.

process. Note that, while the Q-factors of the pump resonances are compa-
rable, the Q-factor of the harmonic one is considerably higher, therefore the
cavity enhancement in the anti-phase matching condition follows the trend
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Figure 2.17: Cavity enhancement factor (color scale) as a function of pump energy
and incidence angle, for N=7 and in phase matching configuration.

predicted by Eq. (2.14). The higher Q-factor at 2ω follows from choosing
a p-s configuration (the DBR reflectance at finite angle of incidence is ob-
viously higher for s than for p polarization). In real samples, the Q-factors
of Fabry-Pérot in high-quality microcavities can be of the order of a few
thousands: thus the enhancement factor for the present DRM is limited
by the Q-factor at 2ω. In the following subsection a different configuration
with more balanced Q-factor values is proposed.

In Fig. 2.17 we give a summary of the above discussion: the enhancement
factor due to the presence of the resonance at the pump and harmonic
frequencies is clearly visible. As we have seen their relative position is a
function of the incidence angle, which is as a powerful tuning parameter so
that at θ = 33◦ we achieve the maximum cavity enhancement because of the
doubly resonance condition. Notice in particular that the higher Q-factor of
the harmonic resonance is well visible since the corresponding enhancement
line is thinner than the pump one.
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Figure 2.18: Nonlinear reflectance of a semi-infinite Al0.25Ga0.75As layer oriented
along [001], as a function of azimuthal angle with respect to [100] direction. The
incidence angle is θ = 45◦ and the pump wavelength λ = 1.5 µm.

2.5.2 S-P configuration

The DRM structure presented in the previous section exhibits a very high
enhancement of the generated second-harmonic as compared to the SRM
one, especially if we consider the conversion efficiency vs the total device
length. Nevertheless, the strong SHG enhancement is mostly related to the
very high Q-factor of the harmonic resonance, which followed from choos-
ing a p-s polarization configuration (the DBR reflectance at finite angle of
incidence is obviously higher for s-polarization).

In this subsection we present a DRM with phase matching in which the
Q-factors at ω and 2ω are of the same order. We choose to work in s-p
configuration in order to reduce the Q-factor at the harmonic frequency,
while maintaining the polarization splitting of the cavity resonances in or-
der to use the incidence angle as a tuning parameter. We consider only a
[001] growth direction: in order to have a finite nonlinear polarization with
s-polarized pump, the plane of incidence must be oriented along a [110]
crystallographic axis. In other words, as compared to the structure shown
in Fig. 2.13a, the sample must be rotated by an azimuthal angle φ = 45◦. In
Fig. 2.18 the nonlinear reflectance is plotted as a function of the azimuthal
angle φ between the plane of incidence and the direction [100]. The crystal
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Figure 2.19: Linear transmittance versus pump wavelength for a phase-matched
DRM (a) and a SRM (b) and their respective cavity enhancement factors in s-p
configuration (c),(d). The growth direction is assumed [001] and the incidence an-
gle θ = 41◦. The DRM and SRM are formed by a defect of Al0.25Ga0.75As embed-
ded in two mirrors composed by N=5 periods of alternating Al0.4Ga0.6As/Alox.
In the case of DRM Lc = 744 nm, L1 = 170 nm and L2 = 140 nm, while for the
SRM Lc = 245 nm, L1 = 113 nm and L2 = 230 nm.

orientation is still assumed [001] and the incident angle is θ = 45◦. All
the possible in/out polarization configurations are displayed. We observe
that for any value of φ the conversion s-s is forbidden, while for φ = 45◦

the SHG in s-p and p-p have a maxima. If we look at the nonlinear tensor
χ(2) in s-p configuration, for φ = 45◦, we observe that only the component

χ
(2)
zyy takes part in the SHG process. In this section we shall assume this

configuration and consider only phase-matching microcavities. Following
the gap-map method developed in Secs. 2.1 and 2.2, we design a DRM in
which double resonance is achieved for an incidence angle close to θ = 40◦

at the pump wavelength λ = 1.5 µm. We found the following parameters:
the DRM is formed by a Al0.25Ga0.75As layer of width Lc = 744 nm embed-
ded in Al0.4Ga0.6As/Alox DWDM with L1 = 170 nm (Al0.4Ga0.6As) and
L2 = 140 nm (Alox). The SRM is made of a λ/2 Al0.25Ga0.75As layer of
width Lc = 245 nm embedded between two Al0.4Ga0.6As/Alox λ/4 mirrors
with L1 = 113 nm (Al0.4Ga0.6As) and L2 = 230 nm (Alox). Note that the
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Figure 2.20: (a) Cavity enhancement factor in s-p configuration for a phase-
matched double-resonant microcavity and for a single-resonant microcavity. The
symbols denote the results of the transfer matrix calculation, while the lines rep-
resent the exponential trend predicted by the analytical formulation. (b) Quality
factors of the resonances. Parameters are as in Fig. 2.19.

DBR layer nearest to the cavity is Alox.

In Fig. 2.19 the linear transmittance at ω and 2ω is plotted as a function
of pump wavelength for the DRM (a) and the SRM (b) in s-p configura-
tion. Again for the DRM we get a superposition of the pump and har-
monic resonances, while in the SRM we have only one resonance centered
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around 1.5 µm for the s-polarized mode. It is interesting to observe that
the Q-factors of the DRM resonances are both lower than the SRM one.
Nevertheless, the enhancement factor of the DRM is superior to that of the
SRM by more than two orders of magnitude. Therefore in the present s-p
configuration a DRM can have higher nonlinear conversion as compared to
a SRM while requiring lower Q-factors. Thus, the DRM is on all respects
more convenient than a SRM.

In Fig. 2.20 we plot the cavity enhancement and the Lower Q-factors
quality factors as a function of the number N of mirror periods. Again
the cavity enhancement η grows exponentially with N , moreover there is
good agreement between numerical and analytical calculations. This result
follows from the different DBR configuration, in which the Alox layer is
adjacent to the cavity one. In this way the index contrast close to the
cavity increases and furthermore the two Alox layers do not present a χ(2)

nonlinearity, so that their contribution is vanishing.

The present DRM structure in s-p configuration allows achieving a cav-
ity enhancement of the order of 107 and a nonlinear transmittance of ∼
10−12m2/W with a device length smaller than 4µm and Q-factors of the or-
der of a few thousands. The notable feature of this configuration is that the
Q factors at ω and 2ω are comparable. In conclusion the present structure
may be a convenient one in view of obtaining high nonlinear conversion in
a double-resonant cavity system.

2.6 Amorphous silicon nitride doubly reso-
nant microcavities

In the previous section the problem of SHG in doubly resonant system has Surface

nonlinearitybeen discussed for the case of bulk nonlinearity. As we have seen in Sec. 1.3,
SHG from centrosymmetric materials originates from two different sources:
surface nonlinearity and non-local bulk quadrupole nonlinearity. It has been
suggested in Ref. [68] that the mechanism for SHG in the related system
a-Si:H does not follow from a bulk nonlinear susceptibility χ(2) (which van-
ishes on the average for these amorphous materials, due to a small-range
topological disorder), but rather from a surface contribution, i.e., inversion
symmetry is macroscopically broken at the film-substrate and film-air in-
terfaces, thereby leading to a surface χ(2) originating from dipole layers. In
that work a clear evidence was found for two resonances at about 1.2 eV
and 1.4 eV, independently of the polarization state of the impinging beam.
These results strongly suggest that the (local) surface contribution in second
order nonlinear susceptibility is the dominant one in amorphous silicon. In
fact, those resonances are close to the 1.15 and 1.3 eV spectral resonances
observed by Pedersen and Morgen in the SHG spectrum of bulk silicon due
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Figure 2.21: Layout of the microcavity structure, made of a defect layer ”c” em-
bedded between two dielectric mirrors made of layer ”1” and ”2”. A fictitious layer
is introduced at each interface, the red arrows denote the directions from low to
high refractive index, which determine the sign of the χ(2) components.

to transitions from rest-atom to ad-atom dangling-bond surface states [69].
The same conclusion is expected to apply also to the a-Si1−xNx:H multi-
layers investigated here. In order to verify such effect, one can monitor the
SH signal while exposing the sample to the same surface selective process
or interaction, such as, for example, gas and/or liquid absorption. Here
we analyze the nonlinear response of a doubly resonant microcavity based
on amorphous silicon nitride (a-Si1−xNx:H), for which second order nonlin-
earity arises from lack of inversion symmetry at the interface between two
different layers.
These structures are suitable systems for generating second harmonic in the
visible region, due to their large band gap [70]. The microcavities can be
produced by modulating the refractive index, which increases as a function
of the nitrogen content [71, 72].
The transmitted second harmonic intensity was calculated by means of the
nonlinear transfer matrix method [52]. The surface χ(2) is described by in-
troducing very thin layers of thickness δ (typically 0.1 nm) at the interfaces,
with a refractive index which is the average between those at the two sides of

the interface and an effective bulk χ
(2)

bulk given by χ
(2)

bulk = χ(2)/δ. The sur-

face nonlinear susceptibility has three non-vanishing components: χ
(2)
zzz , χ

(2)
xzx
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and χ
(2)
zxx since the surface χ(2) is generated from dipoles which have a com-

ponent pointing from the low to the high refractive index medium as shown
in Fig. 2.21. Each of the χ(2) component changes its sign when the ordering
of the refractive indices is reversed [73]2. For simplicity, we assumed the sur-
face χ(2) of the a-Si0.57N0.43/a-Si3N4 and a-Si3N4/a-Si0.45N0.55 interfaces to
be the same.

A layout of the microcavity is shown in Fig. 2.21. The structure pa-
rameters are as follows: L1=73nm (a-Si0.57N0.43), L2=219 nm (a-Si3N4),
Lc=613nm (a-Si0.45N0.55). The design has been done by the procedure de-
scribed in Secs. 2.1 and 2.2 in order to achieve double resonance at a finite
incidence angle θ = 40◦, for p-polarized pump and harmonic waves. The
sample has been grown in Torino by the research group of Prof. F. Giorgis Sample growth

using 13.56 MHz Plasma Enhanced Chemical Vapor Deposition (PECVD)
system on 7059 Corning glass substrates with area 10 x 10 cm2.
The composition of the a-Si1−xNx:H layers was controlled by operating on
the ammonia fraction present in a SiH4+NH3 plasma, by fixing the total
flux at 75 sccm. Their thickness was estimated taking into account the
growth rate calculated by homogeneous thin films previously grown, while
the composition (x=N/Si+N) of the alloys has been estimated by consid-
ering their refractive indices n, through a calibration curve n(x) obtained
by Rutherford backscattering spectrometry and optical interferometry per-
formed on some selected a-Si1−xNx:H specimens. The substrate tempera-
ture, gas pressure and electrode distance were fixed at 200 ◦C, 0.35 Torr
and 20 mm respectively.

Measurement of transmittance spectra were performed in Napoli by the Linear

characterizationresearch group of S. Lettieri [74]. The results are in close agreement with
numerical calculations of the transmission spectrum based on a linear trans-
fer matrix method. In Fig. 2.22 we show the experimental transmittance
for p-polarized impinging light at θ = 40◦ (open dots) in a wavelength range
centered on the fundamental resonance (λ = 1.09 µm) and the transmission
at the doubled frequency (full dots). It is to be noted that the transmission
peaks overlap: in other words, double resonance occurs.

In Fig. 2.23 we show a typical SH spectrum obtained in transmission geom- Nonlinear

resultsetry for p-polarized fundamental beam. The full dots are the experimental
data, while the continuous line is the result of the numerical calculation
which we will discuss below. The SH signal increases by a factor of about

2The sign change of χ(2) (or of the effective χ
(2)

bulk
) when the interface is reversed is

analogous to the mechanism occurring in periodic poling, which may be used to achieve
quasi phase matching in isotropic nonlinear materials.
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Figure 2.22: Linear transmittance for p-polarized light at an angle of incidence
θ = 40◦, in the spectral region of the pump wave (open dots and dashed line) and
of the harmonic wave (full dot and solid line), as a function of pump wavelength.
Points: experimental results. Lines: theory.

102 as the fundamental wavelength goes from the first order stop-band to
a resonant wavelength of the structure (central resonance and band-edge
peaks): the central peak in the SH spectrum corresponds to the double res-
onance of the microcavity, while the other features corresponds to the edges
of the stop-bands. The resonant enhancement can be ascribed to a high
intensity of the light beams at the fundamental and harmonic frequencies
at the interfaces surrounding the cavity layer. Moreover, it is interesting
to note that the SH signal detected at the central resonance is hundreds
of times larger than the one obtained on a single amorphous silicon nitride
film.

The nonlinear performances of a-Si1−xNx:H microcavity are quite similar
to the bulk system one, in the sense that in both cases the double resonance
condition determines a good enhancement of SHG. Nevertheless we wish
to emphasize that the analytic treatment of SHG presented in Sec. 2.3
is based on the assumption that the cavity layer is characterized by bulk
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Figure 2.23: Transmitted second-harmonic signal as a function of pump wave-
length, for p-polarized pump and harmonic waves, at an angle of incidence θ = 40◦.

nonlinearity, while in the present case nonlinear polarization is localized in
only at the multilayer interfaces. For this reason the analytic results can
not be immediately applied and require an opportune generalization, which
is beyond the aim of this work.

2.7 Remarks on Kerr effect in microcavities

In Secs. 2.4, 2.5 and 2.6 we have described the use of planar microcavities
in order to increase the conversion efficiency of SHG and, in particular, we
have focused our attention on double resonant microcavities. It should be
clear that the main advantage in using a MC is the high pump field inten-
sity that can be achieved in the cavity layer, which is proportional to the
cavity Q-factor. When the pump field intensity is so high, further higher
order nonlinear effects which can affect light propagation in the structure
are present. If we limit our attention to third order nonlinearity, the most
important one is the Kerr effect 3. As a matter of fact in a medium charac- Kerr effect

3This effect is at the base of many interesting phenomena such as light and dark
solitons and light filamentation [75, 76].
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terized by cubic nonlinearity the propagating field induces a refractive index
change which is proportional to the field intensity

n = n0 + n2I, (2.24)

where n0 is the linear refractive index, while n2 depends on the third order
nonlinear susceptibility according to

n2 =
4π2χ(3)

n2
0c

. (2.25)

In a microcavity (or simply in a Fabry-Pérot resonator) with cubic nonlin-
earity, Kerr effect can lead to optical bistability [77–80]. Here we are not
interested in a detailed study of the phenomenon, even though it is the sub-
ject of considerable applicative interests.
In the calculation of the second-order nonlinear response, which we have pre-
sented in Secs. 2.4, 2.5 and 2.6, we completely neglected any other nonlinear
effect. Of course this drastic approximation has to be justified, since very
high Q-factors have been predicted for Alox/Al1−xGaxAs microcavities and
the electric field in the cavity is enhanced correspondingly. We performed
a calculation of the linear transmittance at the pump frequencies by using
the transfer matrix method which has been modified in order to include the
refractive index modulation induced by the third order nonlinearity 4.

In Fig. 2.24 we show the linear transmittance as a function of the pump
energies for increasing incident intensities. We observe a slight shift of the
pump resonance position peak (only 40µ eV !) due to the induced refractive
index change. This very small deviation is obtained by considering input
intensities which are compatible with a non depletion regime for second
harmonic generation (i.e. conversion efficiency less than 10%). In this case
the refractive index can change considerably across the cavity layer, but
since, very high field intensity are reached only in a small cavity region, the
average refractive index deviation is small.
Other calculations have been performed for higher pump field intensities
and effects of optical bistability have been observed, nevertheless in this
limit the nonlinear transfer matrix method cannot be applied for a descrip-
tion of the second harmonic generation because pump depletion should be
considered.

In conclusion we can affirm that in the cases we have examined, higher
order nonlinearities, and in particular refractive index change induce by
the Kerr effect can be neglected. the physical region is the distributed
nature of the dielectric mirrors: a high refractive index change occurs only

4Note that the Kerr effect can affect only the pump resonance position, as a matter of
fact, in the limit of negligible pump depletion, the harmonic generated field is not enough
intense to induce sensitive refractive index changes at 2ω, even for very high Q-factors.
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Figure 2.24: Linear transmittance as a function of the pump energy and intensity
of a doubly resonant microcavity, at an angle of incidence θ = 40◦ for s polarized
incident field. The structure is the same of the linear and nonlinear calculations
shown in Fig . 2.19 The DRM is formed by a defect of Al0.25Ga0.75As embedded
in two mirrors composed by N=5 periods of alternating Al0.4Ga0.6As/Alox with
Lc = 744 nm, L1 = 170 nm and L2 = 140 nm.

in the cavity layer, but it has small effect on the mode frequency which is
determined to a large extent by properties of the mirrors. This is true in
particular in doubly resonant structure in which high conversion efficiency
require lower Q-values and therefore it is easier avoiding bistability effects.

2.8 Conclusions

We have shown that it is possible to design doubly-resonant microcavi-
ties using cubic materials where there is no birefringence to compensate
the refractive index dispersion. To this purpose, it is essential to realize
dual-wavelength dielectric mirrors with two stop-bands centered around the
pump and the second-harmonic frequencies. The use of periodic mirrors al-
lows the design to be carried out by means of the photonic gap map concept,
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and makes the sample growth more robust against imperfections. Analo-
gously, a planar microcavity can be viewed as a one-dimensional photonic
crystal with a repeated defect layer. All the structure parameters can be
found as a function of incidence angle and field polarizations. This way the
incidence angle can be used as a powerful experimental parameter in order
to tune the relative pump and harmonic resonance positions, in particular
by exploiting the polarization splitting in p-s and s-p configurations.

A symmetric doubly-resonant microcavity is characterized by the pres-
ence of a precise phase relation between the nonlinear polarization and the
harmonic field within the cavity layer. In particular we observe two dif-
ferent situations, namely phase matching and anti-phase matching. In the
phase-matched case the nonlinear polarization is perfectly in phase with the
harmonic field, resulting in a very high cavity enhancement factor which can
be more than two orders of magnitude greater than in an equivalent single
resonant microcavity. Furthermore, the increase in nonlinear conversion can
be achieved with Q-factors at the pump and harmonic frequencies which are
lower than in the reference single-resonant microcavity with λ/4 mirrors. In
the anti-phase matched situation, the second harmonic generation turns out
to be much less efficient since the nonlinear polarization is out of phase with
respect to the harmonic field and the extraction efficiency of the generated
harmonic field is drastically reduced. In all these cases there is exponential
growth of the conversion efficiency as a function of the number of periods in
the dielectric mirrors. Specific design for phase-matched, doubly-resonant
microcavities in both p-s and s-p configurations have been provided that
are amenable to experimental verification.

We have reported the first realization of a doubly resonant microcavity
based on periodic mirrors, using a-Si1−xNx:H based multilayer with surface
nonlinearity. Second harmonic emission properties of the structure were
experimentally investigated, demonstrating that the double resonance con-
dition significantly enhances the second harmonic conversion efficiency even
in the case of surface nonlinearity. We also demonstrated that the exper-
imental results can be properly described by a theoretical model based on
the nonlinear transfer matrix method, in which the nonlinear polarization
localized at the interfaces is taken into account by the introduction of ficti-
tious layers at the interfaces. The results open the way towards improving
the conversion efficiency in monolithic cavities made of centrosymmetric or
amorphous materials.

Finally, we have briefly investigated the behavior of a doubly resonant
microcavity including the Kerr effect, taking place inside the cavity layer.
We have observed that for pump field intensities in the limit of negligible
pump depletion, in these structures third order nonlinear effects can be
neglected.



Chapter 3

Third-Harmonic
Generation in Waveguides
and Photonic Crystal
Slabs

In this chapter we present a detailed study of third harmonic generation
(THG) in Silicon-On-Insulator planar waveguides and photonic crystal slabs.
Theoretical modeling of these phenomena has required the development of
a new numerical method in order to describe nonlinear properties of PhC-
slabs. In fact, the analysis of a planar waveguide can be performed by using
the nonlinear transfer matrix method [52], nevertheless in the case of pho-
tonic crystal slabs, this method is numerically unstable. In Secs. 3.1 and
3.2 we present theoretical and numerical results regarding THG in a sim-
ple waveguide and corresponding one-dimensional photonic crystal slabs,
respectively. The comparison of the nonlinear response of these two sys-
tems is necessary in order to understand the different roles of vertical field
confinement induced in the waveguide and in the photonic crystal slab. In
particular, we report the first observation of resonant enhancement of THG
in SOI PhC slabs when the pump is frequency- and momentum-matched
to a photonic mode of the structure. This work is the results of a collab-
oration with the research group of M. Malvezzi at electronics Department
of the University of Pavia, where all the measurements presented here were
performed.
In order to improve the agreement of theoretical calculations with mea-
surements, we have developed an extension of the well-known scattering
matrix (S-matrix) method [29] in order to include the analysis of nonlin-

53
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Figure 3.1: (a) Nature of photonic modes for a waveguide in the kxω plane.
The light lines define radiative and guided mode regions. (b) Scheme of the SOI
waveguide and geometry of the optical setup for third harmonic generation.

ear response of periodical pattern multilayer systems in limit of negligible
pump depletion. This method is presented in Sec. 3.3 but unfortunately no
numerical results are shown since its numerically implementation has to be
still completed.

3.1 The SOI Planar Waveguide

In this section we shall describe the nonlinear response of a planar waveg-
uide. This system has been chosen to represent the standard specimen, for
comparison with the optical response from a 1D patterned sample.
Planar waveguide are commonly constituted of a thin slabs of high refrac-
tive index material (core), embedded between low index semi-infinite me-
dia (cladding). When the thickness of the core region is comparable with
the wavelength of the electromagnetic radiation, we observe interesting ef-
fects in light propagation which are determined by the vertical confinement.
Photonic modes can be calculated by solving Maxwell’s equations and the
solution are classified as guided and radiative (leaky) modes[56]. The first
ones are evanescent in the cladding and oscillating within the core region,
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and are discretized by the confining potential along z. The latter are os-
cillating also in the cladding region, as they radiate energy far away from
the guiding layer. In the plane kxω the guided and radiative modes lies in
different regions which are separated by the dispersion light lines (see Fig.
3.11).

The waveguide investigated here is a SOI wafer constituted by a silicon
substrate , a SiO2 layer, and a thin silicon top layer as shown in Fig. 3.11a.
The high refractive index contrast between silicon (n1 ∼ 3.5) and silica
(n2 ∼ 1.45) defines a planar waveguide, whose silica cladding and silicon
core layers are 1µm and 0.26µm thick, respectively.

As we have seen in Chapter 1 silicon exhibits a very low second har-
monic generation because of its centrosymmetric crystalline structure. On
the other hand, the third harmonic generation process does not require the
lack of inversion symmetry and is quite efficient in silicon. The study of re-
flected THG in this system can be done using the nonlinear transfer matrix,
theoretical results are compared with measurements performed in Pavia.
The geometry of the experimental layout is sketched in Fig. 3.11b, includ-
ing notations for angles involved in the experiment: the angle of incidence θ
and the azimuthal angle φ. THG is measured in a reflection geometry at two
different pump wavelengths of 810nm and 1550nm, the choice of reflection
geometry is due to high absorption of TH signal by silicon which makes it
difficult to perform an experiment in transmission configuration [81].

In Fig. 3.2 we report measurements of reflected THG as a function of the Nonlinear

tensor shapeazimuthal angle φ. Note in particular that since we are dealing with cubic
materials, all linear properties are independent of φ and the π/2 periodic
trend reported in Fig. 3.2 follows form on the symmetry properties of third
order nonlinear susceptibility tensor. In centrosymmetric crystals, like sili-
con, χ(3) has two independent nonvanishing elements A and B, and the i-th
component of nonlinear polarization generated can be written as [82]:

P3ω,i = B(E · E)Ei + (A − B)E3
i . (3.1)

where E indicate the pump field vector. The first term of Eq. (3.1) deter-
mines a THG which has the same polarization of the incident pump field,
while the second term exhibits a rotational symmetry which depends on the
growth direction that, in the present case, is equal to [100] and is associated
to a fourfold rotational symmetry. An analysis of the reflected THG inten-
sity shows that the signal generated in the case of a waveguide can be two
orders of magnitude higher than in the case of silicon, as reported in Fig.
3.2. This enhancement cannot be considered as a general characteristic of
a SOI waveguide and it depends on the pump wavelength. Nevertheless it
indicates that a modification of the spatial distributions of pump and har-
monic fields along the vertical direction can lead to a great amplification of
the TH signal. In our case, multiple reflections of the pump beam from the
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Figure 3.2: Experimental TH nonlinear reflectivity as a function of azimuthal
angle from the surface of the SOI planar waveguide (open circles) and of [100]
bulk silicon sample ( full circle), for p-polarized pump (blue) and s-polarized pump
(red). Pump wavelength λ = 810nm and incidence angle θ = 45◦.

interfaces result in constructive interference of the fundamental field into
the core Si layer.

The waveguide configuration strongly modifies also the TH nonlinearIncidence

angle

dependence

reflectance when measured versus the angle of incidence θ. In Figs. 3.3 and
3.4 the nonlinear reflectance is plotted as a function of incidence angle for
s-polarized (a) and p-polarized (b) input power for pump wavelength equal
to 810nm and 1550nm, respectively. Note that the angular trends are com-
pletely different from those of the corresponding bulk silicon response [81]
and that they depend on the pump wavelength. In both cases, at 810nm and
1550nm, the agreement between measured and experimental data is quite
satisfactory. In Figs. 3.3 and 3.4, panel (c), the linear Fresnel transmission
coefficients calculated for the multilayer structure are plotted. In the first
case, for λ = 810nm, the TH escape length is less than 10nm (the TH linear
transmission coefficient across the waveguide is zero for both polarizations),
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Figure 3.3: Experimental (open circles) and calculated (continuous lines) TH
nonlinear reflectance at 810 nm as a function of the angle of incidence, of a SOI
planar waveguide, for (a) s-polarized and (b) p-polarized input. (c) Calculated
linear transmission coefficients at ω for the two polarizations. The transmission
coefficient at 3ω are zero because of the high absorption.
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Figure 3.4: Experimental (open circles) and calculated (continuous lines) TH
nonlinear reflectance at 1550 nm as a function of the angle of incidence, of a SOI
planar waveguide, for (a) s-polarized and (b) p-polarized input. (c) Calculated
linear transmission coefficients at ω (solid line) and 3ω (dashed line) for the two
polarizations.
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while the pump beam is fully propagating across the multilayer. In this case
the reflected TH field is generated very close to the air/silicon interface and
its angular behavior can be described starting from the linear transmission
at ω, which gives indication on the pump field intensity flowing in the struc-
ture.
When the pump wavelength is tuned at 1550nm, the TH beam propagates
along the structure (the penetration depth is about 1.4 micron) and the
pump beam is not absorbed. In this case the nonlinear SOI reflectance is
heavily affected by the response of the system at the TH frequency. As a
matter of fact TH reflectance closely follows the angular behavior of the
linear transmittance coefficient at 3ω, thus reflecting the higher extraction
efficiency of the TH field generated from the silicon waveguide.

We can conclude by observing that even a such simple system the re-
flected THG can be characterized by a complicated angular and frequency
dependence. This is the resuld of an interplay of linear propagation at ω
and 3ω, nonlinear interaction and absorption.

3.2 The Photonic Crystal Slab

Let us consider now the case in which a periodic pattern is superposed on
the SOI waveguide. A photonic crystals embedded in a planar waveguide
is called photonic crystal slab (PhC-Slab). A scheme of the structure and
an image of the sample are shown in Fig. 3.5a and b, respectively. In the
last few years these systems have attracted a lot of interest since they allow
a full three dimensional control of light and they are also much easier to
fabricate than a three dimensional photonic crystal [55, 56]. Before con-
sidering the problem of THG it is necessary to give a brief overview of the
most interesting linear properties of such systems.
Light propagation in a patterned waveguide presents several differences with Light-line

problemrespect to the ideal reference system (i.e. the bare waveguide). One of the
most important issues is the so-called light-line problem: as a matter of fact
only the modes whose energy lies below the light line are truly guided, while
those lying in the radiative region are coupled to leaky modes and thus are
subject to radiative losses (see Fig. 3.5c). Truly guided mode exist only in
systems with a strong refractive index contrast as in present case. They are
evanescent in the direction perpendicular to the plane and their dispersion
can be measured by attenuated total reflectance [63, 83], in this case light
propagation is characterized only by extrinsic losses due to disorder. On
the contrary, quasi-guided modes lie above the light line and are associ-
ated to sharp resonances arising from coupling of the incident light with the
photonic structures: the dispersion of these mode can be measured using a
variable angle reflectance technique [84]. Analogously, linear scattering ma-
trix theory can be used in order to evaluate theoretical reflectance spectra
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Figure 3.5: (a)Geometry of the optical setup for TH nonlinear measurements.
The in-plane angle θ identifies the incident direction of radiation and θ′ indicates
the direction of radiation collection. The angle φ describes the rotation around
the vertical axes respect to the Γ − X direction.(b) Picture of L4 sample. (c)
illustration of the nature of photonic eigenmodes in photonic crystal slabs.

and to reconstruct the mode dispersion curves [29].

The sample L4 we have considered is constituted by a patterned waveg-
uide whose silica cladding and silicon core are 1000nm and 260nm thick,
respectively (as in Sec. 3.1), and a periodic pattern in the core layer with
lattice constant equal to a = 650nm and 0.18 of air fraction [85]. The sample
was prepared at LPN-Marcoussis by D. Peyrade and Y. Chen, the scanning
electron microscope image of the lattice, shown in Fig. 3.5b, reveals the
very good quality of the sample.
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Figure 3.7: Calculation of Ey amplitude distribution inside L4 sample in the case
of resonant (a) and non-resonant coupling (b). The shaded areas represent linear
regions (air and silica) while the brightest area indicates the silicon.

In Fig. 3.6 calculated reflectance spectra of L4 for TE (s-polarized) and
TM (p-polarized) modes are shown as a function of energy at several in-
cidence angles. The theoretical calculation shows narrow resonant peaks
superimposed to an interference pattern which is associated to the waveg-
uide vertical structure. This peaks correspond to a resonant coupling with
a quasi-guided mode and their dispersion as a function of incidence angle
describe the photonic bands dispersion. When the electromagnetic radia-Pump field

distribution tion is coupled to a quasi-guided mode, the electric field turns out to be
much more intense in the core region as it is shown in Fig. 3.7. This effect
can be exploited in harmonic generation process, in particular to obtained
intense nonlinear polarization when pump is resonant with the photonic
band, or to achieve high extraction efficiency by coupling the harmonic sig-
nal to a quasi-guided mode. Enhancement of harmonic generation through
resonant coupling was theoretically predicted in Ref. [27] and observed in
GaAs [28, 86] and GaN [87, 88] systems. When frequency- and momen-
tum matching is simultaneously realized for pump and harmonic beams we
are in resonant to resonant configuration, otherwise when only the pump
or the harmonic field are coupled to a photonic band we are in resonant
to non-resonant and non-resonant to resonant case, respectively. In the
present case we look for resonant coupling of laser radiation with photonic
modes structures (i.e resonant to non resonant configuration), and we select
an infrared wavelength for the pump field. There are several reasons that
motivate this choice: from an experimental point of view, the effect of the
disorder associated to Rayleigh scattering grow like ω4, leading to a general
broadening of higher-lying bands, but also photonic bands calculations are
increasingly less accurate at high energies, also because the present PhC slab
becomes multimode. One expects that therefore higher pump and stronger
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Figure 3.8: Experimental (a) and theoretical (b) behavior of third-harmonic non-
linear reflectance of sample L4, as a function of the angle of incedence for various
wavelengths, with s polarized pump. the curves are offset for clarity.

nonlinear signals may be obtained.

It is worth remembering that the experiment is conducted in a surface
reflection geometry, in which the incident electromagnetic wave dose not
propagate along the waveguide plane. The comparison between PhC-slab
and the bare waveguide can be done without introducing any coherence
length, which is not easy to define in a PhC-slab.
Experimental and theoretical results for reflected THG are shown as a func- Nonlinear

resultstion of incidence angle for different pump wavelength, in the case of s-
polarized pump, in Fig. 3.8a and b, respectively. For each pump wavelength
the peak position corresponds to the linear reflectance resonance associated
to a photonic mode and the dispersion as a function of pump λ is reproduced
in the nonlinear calculations. This demonstrates that the enhancement of
more than two orders of magnitude with respect to the bare waveguide sig-
nal is due to a resonant coupling of the pump with a quasi-guided mode.

3.3 Nonlinear scattering matrix method

Using the nonlinear transfer matrix method, it is possible to describe second-
and third-harmonic generation in any homogeneous multilayer structure. In
the limit of negligible pump depletion this method is an exact solution and it
requires little computing time. Nevertheless the use of this method, even for
solving linear problems, has found several limitations in patterned multilayer
structures (like the one shown in Fig. 3.9a) due to its intrinsic numerical
instability in the presence of evanescent Fourier model method. In order
to study linear light propagation in these systems, Whittaker and Culshaw
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Figure 3.9: (a) Typical two dimensional pattern multilayer structure.(b) Forward
and backward propagating waves in each pattern layer.

have described a scattering matrix method, which is essentially equivalent
to Fourier modal method well known in diffraction grating theories. [89–
92]. Here we present an extension of this method which allows to treat
not only the linear propagation, but also harmonic generation in limit of
negligible pump depletion. After a brief overview of the linear scattering
matrix method we shall present its nonlinear extension, that can be divided
in three independent steps: (i) description of pump field propagation and
calculation of the nonlinear polarization, (ii) evaluation of the bound field
in the nonlinear layers and (iii) calculation of reflected and transmitted
harmonic fields.

3.3.1 The Scattering Matrix Method

A detailed description of the linear scattering matrix method implemented
in this work [29]. Nevertheless it is worth to recall the main features of
the method before introducing its nonlinear extension. The outline of the
numerical method is as follows: the electromagnetic waves are expanded on
a plane-waves set and Maxwell’s equations are written in-plane momentum
representation. The band structure of each patterned layer, taken to be
homogeneous in the z direction, is evaluated yielding a set of states which
propagates in the z direction as simple plane waves exp(ıqz) (see Fig. 3.9b);
the electromagnetic field is expanded on this set in terms of forward and
backward Bloch states; finally the scattering matrix is constructed.

We consider Maxwell’s equations (1.2), we assume a harmonic time de-Linear problem

pendence exp (−ıωt) for all fields and a linear displacement vector D = εE.
Rescaling ω/c → ω we obtain

∇× H = −ıεE, ∇× E = ıω2H (3.2)
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These equations can be written in the momentum representation and, if we
consider the field components separately, we obtain a set of six equations

ık̂yhz(z) − h′
y(z) = −ıε̂ex(z) (3.3a)

h′
x(z) − ık̂xhz(z)− = −ıε̂ey(z) (3.3b)

ık̂xhy(z) − ık̂yhx(z) = −ε̂ez(z) (3.3c)

and

ık̂yez(z) − e′y(z) = ıω2hx(z) (3.4a)

e′x(z) − ık̂xez(z)− = ıω2hy(z) (3.4b)

ık̂xe′y − ık̂yex(z) = ıω2hz(z) (3.4c)

where hi(z) and ei(z) are the in-plane fourier component vectors whose
elements depend on the incident wave vector k and are a function of z.
Here the symbol (′) indicates partial derivative respect to the z coordi-

nate1. The matrices k̂x and k̂y are diagonal, with (k̂x)GG = (kx + Gx) and

(k̂y)GG = (ky +Gy), where Gx and Gy are the reciprocal lattice vector com-
ponents. Finally the matrix ε̂ is defined as ε̂GG = ε̃(G − G′), where the
symbol ∼ indicates the in-plane Fourier expansion of the dielectric function
for a single layer. In practice, for a numerical calculation, the set of recip-
rocal lattice vector must be truncated, thus hi(z) and ei(z) have dimension

NG, while k̂i and ε̂ are NG × NG matrices.

Now the electromagnetic field is expanded in terms of plane waves, in
basis state with zero divergence in order to guarantee ∇ ·H = 0

H(r, z) =
∑

G

(

φx(G)

[

x̂ − 1

q
(kx + Gx)ẑ

]

(3.5)

+ φy(G)

[

ŷ − 1

q
(ky + Gy)ẑ

])

eı(k+G)·r+ıqz

where φx(G) and φy(G) are the expansion coefficients, and x̂, ŷ and ẑ are
conventional unit vectors that indicate axis directions. It is useful defining
the vectors φx = [φx(G1), φx(G1), ...]T and φy = [φy(G1), φy(G1), ...]T in
order to obtain in the momentum representation

h(z) = eıqz

{

φxx̂ + φyŷ − 1

q
(k̂xφx + k̂xφy)ẑ

}

. (3.6)

Using the Eqs. (3.6) and (3.3) it is possible providing an analogous expres-
sion for electric field Fourier components e(z). Finally, by substituting these

1Note that the whole calculation is carried out for a fixed value of k.
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expressions in Eqs. (3.4), we get an asymmetric eigenvalue problem

{(

ε̂ 0
0 ε̂

)[

ω2 −
(

k̂y η̂k̂y −k̂yη̂k̂x

−k̂xη̂k̂y k̂xη̂k̂x

)]

−
(

k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)}

×
(

φx

φy

)

= q2

(

φx

φy

)

(3.7)

which can be written in a more compact form as

[

ε(ω2 −K) − K
]

φ = q2φ (3.8)

where ε,K and K are 2N × 2N matrices. The eigenvectors φn and the
corresponding eigenvalues qn can be used in order to provide an expansion
of h and e in terms of backward and forward propagating plane waves in
the z direction

(

hx(z)
hy(z)

)

=
∑

n

(

φxn

φyn

)

(eıqnzan + eıqn(d−z)bn) (3.9)

where d is the layer thickness, while an and bn are the coefficients of the
forward and backward going waves at z=0 and z=d interfaces, respectively.
The Eq. (3.9) can be written in a more compact notation by introducing

a diagonal matrix f̂(z), such that f̂nn(z) = eıqnz, and the vectors h‖(z) =
[hx(z), hy(z)]T , a = (a1, a2, ...)

T and b = (b1, b2, ...)
T

h‖(z) = Φ[f̂(z)a + f̂(d − z)b], (3.10)

where the 2N × 2N matrix Φ is composed by the column vectors φn.
Similarly it is possible providing an analogous expression for the electric
field vector, defined as e‖(z) = [−ey(z), ex(z)]T ,

e‖(z) = (ω2 −K)Φq̂−1[f̂(z)a − f̂(d − z)b]. (3.11)

Using the Eqs. (3.10) and (3.11) we can write

(

e‖(z)
h‖(z)

)

=

(

(ω2 −K)Φq̂−1 (ω2 −K)Φq̂−1

Φ Φ

)(

f̂(z)a

f̂(d − z)b

)

(3.12)

= M

(

f̂(z)a

f̂(d − z)b

)

(3.13)

Tangential field components must be continuous at the interface, thus the
amplitudes al and bl satisfy the relation

(

f̂lal

bl

)

= I(l, l + 1)

(

al+1

f̂l+1bl+1

)

(3.14)
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where f̂l = f̂l(dl), while the interface matrix is related to the layers matrices
Ml and Ml+1 by the simple equation

I(l, l + 1) = M−1
l Ml+1 (3.15)

Now we have all the elements in order to evaluate the total structure scat- Scattering

matrixtering matrix. If we consider two layers l and l′, the scattering matrix S(l′, l)
relates the field amplitude vectors in the following way

(

al

bl′

)

= S(l′, l)

(

al′

bl

)

=

(

S11 S12

S21 S22

)(

al′

bl

)

(3.16)

The total scattering matrix can be evaluated through an iterative procedure
starting by the obvious relation S(l, l) = 1. The recipe is the following:

S11(l
′, l + 1) = (I11 − f̂lS12(l

′, l)I21)
−1f̂lS11(l

′l)

S12(l
′, l + 1) = (I11 − f̂lS12(l

′, l)I21)
−1

× (f̂lS12(l
′,l)I22 − I12)f̂l+1

S21(l
′, l + 1) = S22(l

′, l)I21S11(l
′, l + 1) + S21(l

′, l)

S22(l
′, l + 1) = S22(l

′, l)I21S12(l
′, l + 1) + S22(l

′, l)I22f̂l+1 (3.17)

Once the scattering matrix S(0, N) is found, the linear reflected and trans-
mitted amplitudes can be easily evaluated

b0 = S21(0, N)a0 (3.18)

aN = S11(0, N)a0 (3.19)

Now it is only necessary to translate these amplitude into the electric and
magnetic field [29].

3.3.2 Pump field propagation

In this section we briefly present how to evaluate the pump electric Eω(x, y, z)
and the nonlinear polarization PNL(x, y, z). As we have seen in Sec. 3.3.1,
the electric field can be expanded in terms of an appropriate set of function
and the expansion coefficients for the forward and backward propagating
waves are al and bl, respectively. Reference [29] has provided a simple ex-
pression for the amplitudes al and bl in a generic l-th layer as a function of
the reflected (a0)and transmitted (bN ) amplitudes.

al = [1 − S12(0, l)S21(l, N)]−1

×[S11(0, l)a0 + S12(0, l)S22(l, N)bN ], (3.20)

bl = [1 − S21(l, N)S22(0, l)]−1

×[S21(l, N)S11(0, l)a0 + S22(l, N)bN ], (3.21)
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where S(0, l) and S(l, N) are the scattering matrices between the l-th layer
and the first and last one, respectively.

Knowing the amplitudes a and b it is possible calculating the parallel
components e‖(z) using the relation (3.11), already given in Ref. [29]. Here
we provide an analogous formula in order to evaluate even the component
ez(z), that is required to the calculation of the nonlinear polarization

ez(z) = η̂(k̂yΦx − k̂xΦy)[̂f(z)a − f̂(d − z)b]. (3.22)

Note that in this equation Φx and Φy are rectangular matrices N×2N , which
are formed by the first N and last N rows of the matrix Φ respectively.

The electric field in the real space can now be evaluated as

Ei(x, y, z) =
∑

G

Ek(G, z)ei(k+G)·r i = x, y, z (3.23)

and hence the nonlinear polarization can also be calculated. For example,
in the third harmonic generation case we get

P 3ω
i (x, y, z) =

∑

j,k,h

χijkh(x, y, z)Ej(x, y, z)Ek(x, y, z)Eh(x, y, z). (3.24)

It is worth to remember that in numerical calculation the field is evaluated
only for certain finite ensemble of point and therefore the accuracy of the
numerical results depends on the chosen mesh.

3.3.3 Solving the bound field problem in a single layer

We assume to work in the regime of negligible pump depletion, this ap-
proximation greatly simplifies the HG problem since PNL is independent
of the harmonic field so that the contribution of each layer can be treated
independently as it happens in the transfer matrix formalism.
If we assume an harmonic time dependence e−iωt, where now ω indicatesNonlinear

problem the harmonic frequency, we can write Maxwell equations (3.2) including
nonlinear polarization terms:

∇× H = −iǫE− iPNL (3.25)

∇× E = iω2H. (3.26)

The bound field is the particular solution of this non-homogeneous Maxwell
equations in which the nonlinear polarization PNL acts as a source of a
harmonic electromagnetic field. In order to solve Eqs. (3.25) and (3.26) in
a patterned multilayer system it is convenient to introduce a further simpli-
fication. Each layer is divided in Nsub thinner slices along the z direction,
as shown in Fig.3.10. In each slice PNL is taken constant and equal to:

PNL(r) =
1

L

∫ L

0

PNL(r, z)dz. (3.27)
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Figure 3.10: Discretization of nonlinear polarization along the vertical direction.
Each nonlinear layer is divided in smaller sublayers where P NL is taken equal to
the averaged value.

where L = d/Nsub is the subdivision length while d is the total layer width.
The contribution of a single layer is the sum of all the subdivision contribu-
tions where PNL is taken to be constant, now we have to solve the problem
in each ”sublayer” (see Fig. 3.10).Thus all the discussion henceforth will be
referred to the generic single sublayer.

We expand PNL in terms of plane waves

PNL(r) =
∑

G

P̃k(G)ei(k+G)·r (3.28)

where G are the reciprocal wave vectors defined by the layer pattern and
k is the in-plane component of harmonic field wave-vector. It is convenient
to define a new vector

p(z) =
[

P̃k(G1), P̃k(G2), ...
]T

(3.29)

Now we write Eqs. (3.25) and (3.26) in a momentum representation and we
obtain two equation sets analogous to Eqs (3.4) and (3.3)

k̂yhz = −ε̂ ex − px (3.30a)

k̂xhz = ε̂ ey + py (3.30b)

k̂xhy − k̂yhx = −ε̂ ez − pz (3.30c)
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and

k̂yez = ω2 hx (3.31a)

k̂xez = −ω2 hy (3.31b)

k̂xey − k̂yex = ω2 hz (3.31c)

There are two important differences: we have an additive nonlinear polar-
ization term in the first set, which represents the source of harmonic fields
and the z dependence is suppressed.

In order to evaluate the reflected and transmitted harmonic field we need
to calculate the electric and magnetic bound tangential field components
ex, ey, hx and hy. From (3.30a),(3.30b) and (3.31c) we obtain a linear
non-homogeneous system in the bound components of the paralle electric
field:

[(

k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)

− ω2

(

ε̂ 0
0 ε̂

)](

−ey

ex

)

= ω2

(

−py

px

)

(3.32)

which can be written in a more compact form as

(K − ω2ε) e ‖ = ω2p ‖ (3.33)

where p‖=[−py, px]T . Analogously, using the equations (3.30c), (3.31a) and
(3.31b), we obtain a system in hx and hy.

[

ω2 −
(

k̂y η̂k̂y −k̂y η̂k̂x

−k̂xη̂k̂y k̂xη̂k̂x

)](

hx

hy

)

= ω2

(

−k̂y η̂pz

k̂xη̂pz

)

(3.34)

which can be written as
(ω2 −K)h ‖ = p⊥ (3.35)

where p⊥=[−k̂yη̂pz, k̂xη̂pz]
T The solution of these systems can be easily

performed numerically. It is worth to notice that, for sublayers which belong
to the same layer, the coefficient matrix of the linear system is the same.
This fact has important consequence in the numerical implementation for
what concerns the computing time.

3.3.4 Third-harmonic emission by a nonlinear layer

Once the bound field is known, the contribution of the nonlinear layer to
reflected and transmitted harmonic field is evaluated by imposing continuity
of tangential components of the field at layer interface. We consider the l-th
layer and the interfaces l/(l + 1) and (l-1)/l, as shown in Fig. 3.11. In the
nonlinear layer the total field is the sum of the bound contribution, which is
constant, and the free harmonic field, while in the adjacent layers we haveEmission

by a layer
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Figure 3.11: Nonlinear polarization generates in l-th layer bound electric and mag-
netic fields, solutions of the non-homogeneous problem. The terms are constant
within the layer and have to be taken into account at the interfaces with l − 1/l
and l/l + 1. By imposing continuity of field tangential components it is possible
evaluating reflected (b0) and transmitted (an) nonlinear amplitudes.

only free harmonic contributions. The continuity relation can be written as

Ml−1

(

f̂l−1al−1

bl−1

)

− Ml

(

al

f̂lbl

)

=

(

ebound
‖

hbound
‖

)

(3.36)

Ml+1

(

al+1

f̂l+1bl+1

)

− Ml

(

f̂lal

bl

)

=

(

ebound
‖

hbound
‖

)

(3.37)

where ebound
‖ and hbound

‖ are the parallel components vector of the bound

field, solutions of systems (3.32) and (3.34). Multiplying both Eqs. (3.36)
and (3.37) by M−1

l we get the nonlinear analogue of Eq. (3.14)

I(l, l − 1)

(

f̂l−1al−1

bl−1

)

=

(

al

f̂lbl

)

+

(

e′‖
h′
‖

)

(3.38a)

I(l, l + 1)

(

al+1

f̂l+1bl+1

)

=

(

f̂lal

bl

)

+

(

e′‖
h′
‖

)

(3.38b)

where
(

e′‖
h′
‖

)

= M−1
l

(

ebound
‖

hbound
‖

)

The boundary condition in the external media is that there are no incom-
ing waves, therefore a0=bN=0. Using the scattering matrices given by the
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resolution of the linear problem for the free harmonic field, we have that

al−1 = S12(0, l − 1)bl−1 (3.39a)

b0 = S22(0, l − 1)bl−1 (3.39b)

aN = S11(l + 1, N)al+1 (3.39c)

bl+1 = S21(l + 1, N)al+1. (3.39d)

Now, using equations (3.39a) and (3.39d) we can evaluate al−1 and bl+1

and, substituting these expressions in (3.38a) and (3.38b), we obtain a linear
algebraic systems in al+1 and bl−1.

„

R11 + R12 f̂l+1S21(l + 1, N) −f̂lL11 f̂l−1S12(0, l − 1) − f̂lL12

−f̂lR21 − f̂lR22 f̂l+1S21(l + 1, N) L21 f̂l−1S12(0, l − 1) + L22

«

×

×

„

al+1

bl−1

«

=

 

(I − f̂l)e
′
‖

(I − f̂l)h
′
‖

!

(3.40)

where we have indicated with L and R the interface matrices I(l, l−1) and
I(l, l + 1), respectively. Once this system has been solved we obtain b0 and
aN through the relations (3.39b) and (3.39c), and therefore the reflected
and transmitted contribution of l-th layer. Finally a sum over the nonlinear
layer gives the total reflected and transmitted harmonic fields.

3.4 Conclusions

In this work we have presented some preliminary results concerning the
analysis of third harmonic generation problem in a photonic crystal slab.
These results have been compared with the nonlinear response of an un-
patterned planar waveguide. The investigation has revealed an unexpected
richness in nonlinear effect encountered. Theoretical results have been com-
pared with experimental measurement, reaching a first partial agreement.
Basically we observe an increase of THG efficiency when going from bulk
silicon to SOI planar waveguide, due to a partial field confinement in the
slab. The addition of a 1D pattern to the SOI waveguide can determine
a dramatic improvement of the nonlinear response when pump radiation is
resonant with a quasi-guided mode.
In order to increase the accuracy of theoretical results we have developed
a new numerical method based on linear scattering matrix formalism, in
order to calculate harmonic generation in patterned multilayer structure, in
the approximation of negligible pump depletion.



Conclusions and future
perspectives

In this work a theoretical study of second- and third- harmonic genera-
tion in photonic systems of present interest, such as planar microcavities
and photonic crystals slabs, has been conducted. We believe that a better
understanding of nonlinear effects in such systems is important for devel-
opment of new optical devices, in which nonlinearities can be exploited in
order to achieve new functionalities or to improve the existing ones.

Doubly resonant cavities have been already indicated as suitable sys-
tems in order to achieve great enhancement of second-harmonic conversion
efficiency. We have shown that it is possible to realize a doubly resonant
microcavity with periodic dielectric mirrors even when the refractive index
dispersion cannot be compensated by birefringence, for example in cubic
or amorphous materials. The design method, that we have developed in
this work, has required an in-depth study of periodic dielectric Bragg reflec-
tors and microcavities. In particular, we have given a complete description
of optical properties of periodic dielectric mirrors, such as reflectance and
phase delay, as a function of composition. We observed that, even though
mirrors in thick and thin configuration can have similar reflectance, their
phase behavior is complementary. This finding turned out to be crucial in
DRM design, where refractive index dispersion is compensated by an ap-
propriate engineering of mirror phase properties.
The use of periodic mirrors allows the design to be carried out by means
of the photonic gap map concept and, analogously, a planar microcavity
can be viewed as a one-dimensional photonic crystal with a repeated defect
layer. In these systems the external angle of incidence is an important tun-
ing parameter, which becomes a very powerful tool when input and output
field polarizations are different, because of polarization splitting of cavity
modes.
The study of second-harmonic generation in DRM has been performed in
the presence of bulk and surface nonlinearities. In the first case we provided
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a theoretical description of SHG in symmetric microcavities, giving an an-
alytic expression for the cavity enhancement in phase-matching and anti
phase-matching conditions. Numerical calculations have been performed on
GaAs and AlGaAs cavities with Alox/AlGaAs dielectric mirrors. We have
introduced the concepts of phase-matching and anti phase-matching with
reference to microcavity systems. Furthermore we demonstrated that, in a
doubly resonant microcavity with bulk nonlinearity, nonlinear polarization
and harmonic field are phase-matched, or anti phase-matched, only within
the cavity layer. The simulations were found to be in a satisfactory agree-
ment with the analytical model, showing that the conversion efficiency in
resonant cavities grows exponentially with the number N of mirror periods.
In particular we demonstrated that in a phase-matched doubly resonant
microcavity the cavity enhancement can be two orders of magnitude more
intense than in the single resonant case.
We also performed a study of amorphous silicon nitride multilayer systems,
where a second-order nonlinearity arises from symmetry breaking at the
interface between two layers, and thus SHG is a surface effect. Numeri-
cal calculations have been performed using the nonlinear transfer matrix
method, which has been adapted in order to describe surface nonlinearities.
We have found good agreement with the first experimental results, thus
opening the possibility to a more detailed investigations of such systems.

We presented some preliminary results on third-harmonic generation in
photonic crystal slabs. The aim of this work was the understanding of
the enhancement in THG due to resonant coupling of the pump field with
a quasi-guided mode in a Silicon-On-Insulator one-dimensional patterned
waveguides. First, the analysis of PhC-slabs has required a detailed study
of the bare waveguide nonlinear response, in order to separate the THG
enhancement due to the waveguide configuration from that determined by
the photonic pattern. Theoretical and experimental results agree in showing
that THG increases when going from bulk silicon to the SOI waveguide, be-
cause of vertical confinement, and from SOI to the patterned system, when
the pump is coupled to a photonic mode. Preliminary theoretical results
have shown only a partial agreement with measurements. Thus we have
developed a new numerical method which, in principle, allows to describe
nonlinear interactions in one- and two- dimensional patterned multilayer
systems. This method has been presented in detail, nevertheless no numer-
ical results have been presented since its numerical implementation has still
to be completed. The great flexibility of this method opens the possibility
to the study of harmonic generation and parametric conversion in a great
variety of photonic systems.



Appendix A

Nonlinear Transfer Matrix
Method

The transfer matrix method is a commonly used approach in order to
study linear propagation in a one-dimensional multilayer structure. Here
we present an extension which allows to treat harmonic generation process
in the limit of negligible pump depletion [52].
We wish to emphasize that, when the effects of harmonic generation on
pump field can be neglected, the nonlinear transfer matrix method is an
exact solution of the problem and that the process can be divided in three
independent steps: (i) linear propagation of the pump field, (ii) nonlinear
polarization generation and (iii) propagation of the harmonic field through
the structure. The central idea of the method is that, the total reflected
and transmitted harmonic fields can be expressed as the sum of separate
layer contributions from all nonlinear layers.

A.0.1 Linear transfer matrix method

Since we are working in the approximation of negligible pump depletion, we
assume the pump field to propagate linearly in the multilayer. This fact can
be expressed in terms of interface and propagation matrices, which allow to
evaluate field amplitude variations at the interface between two layers and
to describe the field propagation in an homogenous medium, respectively
We consider the multilayer shown in Fig.A.1 composed by n layers of width
di and dielectric constant ǫi, with i=1,2,..,n. The axis z is normal to the
structure and x−z is the plane of incidence. If we assume an harmonic time
dependence exp (−ıωt), the electric field in each layer (for each polarization
s or p) can be written as

Ej(r) = [E+
j eıkzz + E−

j e−ıkzz]eı(kxx−ωt) (A.1)
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Figure A.1: Amplitude scheme in a multilayer

where kz and kx are the wave-vector components along axis x and z, re-
spectively, while E+

j and E−
j indicate forward and backward propagating

wave amplitudes.
By imposing continuity of the tangential components of electric and mag-
netic fields at the interface i-j, we obtain a linear homogeneous system in

field amplitudes E
+(−)
i and E

+(−)
j . This systems can be expressed by the

help of matrices in a more compact form

Ei = MijEj (A.2)

where Ej is the vector of forward and backward propagating filed amplitudes
in the i-th layer and Mij is the interface matrix from the j-th to the i-th
layerInterface matrix

Ej =

[

E+
j

E−
j

]

, (A.3)

with

Mij =
1

tij

[

1 rij

rij 1

]

. (A.4)

The elements tij and rij depend on field polarization and they result

rij,s =
Ni − Nj

Ni + Nj
, tij,s =

2Ni

Ni + Nj
(A.5)

and

rij,p =
ǫiNj − ǫjNi

ǫiNj + ǫjNi
, tij,p =

2[ǫiǫj ]
1/2Ni

ǫiNj + ǫjNi
, (A.6)

for s- and p- polarized fields, respectively. Here Nj = ǫj cos θj , where θj is
the refraction angle in j-th layer given by Snell’s law.
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The propagation of the electric field in the i-th layer is described using the
propagation matrix Φ, which is defined as

Ei(zi + di) = ΦiEi(zi) (A.7)

and Propagation

matrixΦi =

[

φi 0
0 φ̄i

]

, (A.8)

where φi = exp (ıkz,i di) and φ̄i represents field dephasing of forward and
backward propagating waves, respectively.
The structure transfer matrix can be evaluated by simply multiplying in-
terface and propagation matrices following the order given by multilayer
structure: Transfer

matrix

Tn1 = Mn,n−1Φn−1Mn−1,n−2Φn−2 . . .Φ2M21. (A.9)

Once the transfer matrix is found it is possible to evaluate linear reflectance
and transmittance coefficient. In fact, in the hypothesis that the field is
incident in the first layer, we can write

[

E+
n

0

]

=

[

T11 T12

T21 T22

] [

E+
1

E−
1

]

(A.10)

where E+
1 is the incident field, while E−

1 and E+
n are the reflected and trans-

mitted ones, respectively. Thus, reflectance and transmittance coefficients
r and t result

r =
E−

1

E+
1

= −T21

T22
(A.11)

t =
E+

n

E+
1

=
det(T)

T22
(A.12)

Once the reflectance coefficient is known, it is straightforward to evaluate
the electric field amplitudes in the f -th layer. In fact, if we consider the
amplitude vector of the firs layer E1, where E−

1 = rE+
1 , we obtain

Ef = Tf1E1 (A.13)

where Tf1 is the transfer matrix from the first to the f -th layer, evaluated
by using Eq. (A.9) where n must be substituted with f .

A.0.2 Second harmonic generation by multilayer struc-
tures

The method, which has been described in the previous section, allows to
study pump field propagation in a multilayer structure. Now we introduce
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the hypothesis that one or more layers are made of nonlinear material, and
we restrict ourselves to the case of second order nonlinearity 1.
In the approximation of negligible pump depletion, Maxwell equations be-
come non-homogeneous linear differential equations so that the total field
can be expressed as the sum of two contributions: a free electric field E,
solution of the corresponding homogeneous problem, and a bound electric
Es, that is particular solution of non-homogenous wave equation 2. In a
homogeneous layer the particular solution can be analytically found and it
results

Es =
4π

ǫs − ǫJ
(PNL

y + PNL
⊥ ) − 4π

ǫj
PNL

‖ . (A.14)

where ǫj = ǫj(2ω), ǫs = ǫj(ω) and PNL is the nonlinear polarization which
can be evaluated once nonlinear tensor χ(2) is known. Py is the s-polarized
nonlinear polarization, while the components of p-polarized nonlinear po-
larization, which are parallel and orthogonal to the pump wave vector, are
indicated with subscripts ‖ and ⊥, respectively.

The problem can be solved separately for each field polarization (y, ‖
and ⊥). From now we shall use Es in order to indicate the generic bound
field vector

Es =

[

E+
s

E−
s

]

(A.15)

where E+
s and E−

s indicate forward and backward waves amplitudes.
Because of the presence of bound field terms, the condition of tangential
field components continuity must be reformulated by including Es. The
resulting algebraic linear system can be written in a form similar to Eq.
(A.2):

Ei = MijEj + M
(s)
ij E

(s)
J (A.16)

where M
(s)
ij is the bound interface matrix which have the same form of Eq.Bound

interface

matrix

(A.4) but rij and tij depend on field polarization and have the following
expressions:

r
(s)
ij,s =

Ni − N
(s)
j

Ni + N
(s)
j

, t
(s)
ij,s =

2Ni

Ni + N
(s)
j

(A.17)

r
(s)
ij,p⊥ =

ǫi(ω)Nj − ǫj(2ω)N
(s)
i

ǫi(ω)Ni + ǫj(2ω)N
(s)
i

, t
(s)
ij,p⊥ =

2ni(2ω)nj(ω)Ni

ǫi(ω)Nj + ǫj(2ω)N
(s)
i

(A.18)

r
(s)
ij,p‖ = −1, t

(s)
ij,p‖ =

2 cos θ2ω,i

sin θω,j
. (A.19)

1The reader can find a complete treatment of third harmonic generation problem in
Ref [52]

2All field and polarization terms are intended to be at 2ω.
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where Nj = ǫj cos θ2ω,j and N
(s)
j = ǫs cos θω,j.

In analogy with the linear problem, we can define the bound propagation
matrix, which describe Es propagation in the j − th layer. This matrix is
indicated with Φs and it has the same form of (A.8), but with

φ
(s)
j = ei(kz,j(s)dj). (A.20)

Let us calculate the j-th layer contributions to second harmonic field in
the adjacent layers i and k. If we express the boundary condition at the
interfaces i − j and j − k we obtain the following linear system

{

Ej(zj) + MjiM
(s)
ij Ej(zj)

(s) = MjiEi(zi)

Ek(zk) = MkjΦjEj(zj) + M
(s)
kj Φ

(s)
j Ej(zj)

(s)
(A.21)

where (s) indicates all quantities referred to the bound field. From the first
equation we evaluate Ej , and if we substitute the result in the second of
Eq. (A.21), we get:

Ek(zk) = MkjΦjMjiEi(zi)

+ (M
(s)
kj Φ

(s)
j − MkjΦjMjiM

(s)
ij )Ej(zj)

(s). (A.22)

Now we define the vector

Sj = (Φ̄jMjkM
(s)
kj Φ

(s)
j + MjiM

(s)
ij )Ej(zj)

(s) (A.23)

and use the identity Tki = MkjΦjMji, in order to write Eq. (A.22) as

Ek(zk) = TkiEi(zi) + MkjΦjSj (A.24)

Note that the first part of Eq. (A.24) describes the linear propagation of
the free harmonic field, while the terms containing Sj represents a field
contribution originated by the nonlinear polarization.
Now, starting from Eq. (A.24), and putting k = n and i = 1 we obtain

En(zn) = Tn1E1(z1) + MnjΦjSj (A.25)

If we assume that no harmonic fields are incident on the multilayer, we can
write

Rjn

[

E+
n (j)
0

]

− Lj1

[

0
E−

1 (j)

]

= Sj (A.26)

where we have multiplied both members of Eq. (A.25) by the transfer
matrix from layer n to layer j Rjn = (MnjΦj)

−1, and we have defined the
matrix Lj1 = RjnTn1, which is the transfer matrix from the first layer to
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the j-th one.
Solving this linear system in the reflected and transmitted amplitudes, we
obtain the contribution of the j-th layer:

[

E+
n (j)

E−
1 (j)

]

=
1

R11L22 − R21L12

[

L22 −L12

R21 −R11

]

Sj . (A.27)

Finally the total reflected and transmitted fields, for each polarization, are
given by the sum over all nonlinear layers:

[

E+
n

E−
1

]

=
∑

j

[

E+
n (j)

E−
1 (j)

]

. (A.28)

Note in particular that p-polarized result is the sum of the ones obtained
for parallel and orthogonal components of nonlinear polarization, that is

[

E+
n

E−
1

]

p

=
∑

j

[

E+
n (j)

E−
1 (j)

]

p⊥
+
∑

j

[

E+
n (j)

E−
1 (j)

]

p‖
. (A.29)
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Units and Dimensions
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Conversions Tables

Quantity Gaussian MKSA

Velocity of light c (µ0ǫ0)
−1/2

Electric field

(potential or voltage) E(Φ, V )
√

4πǫ0E(Φ, V )

Displacement D
√

4π
ǫ0

D

Charge density

(charge, current density,

current, polarization) ρ(q,J, I,P) 1
4πǫ0

ρ(q,J, I,P)

Magnetic induction

(magnetization) B(M)
√

4π
µ0

B(M)

Magnetic field H
√

4πµ0H

Conductivity σ σ
4πǫ0

Dielectric constant ǫ ǫ
ǫ0

Permeability µ µ
µ0

Resistance

(impedance,inductance) R(Z, L) 4πǫ0R(Z, L)

Capacitance C C
4πǫ0

Linear susceptibility χ(1) 1
4π χ(1)

Second-order

nonlinear susceptibility χ(2) 1
4π

√
4πǫ0

χ(2)

Third-order

nonlinear susceptibility χ(3) 1
16π2ǫ0

χ(3)

Table B.1: To convert any equation in Gaussian variables to the corresponding
MKSA quantities, on both side of the equation replace the relevant symbols listed
below in the ”Gaussian” column by the corresponding in the ”MKSA” one. The
reverse transformation is also allowed. Notice that the symbol of mass, length,
time, force, and other not specifically electromagnetic quantities are unchanged.
Quantities which differ dimensionally from one another only by power of length
and/or time are grouped together where possible.
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Conversions Tables for Given Amounts of Physical Quantity

Physical Quantity Symbol MKSA Gaussian

Length l 1 meter (m) 102 centimeters (cm)

Time t 1 second (sec) 1 second (sec)

Mass m 1 kilogram (Kg) 103 grams (g)

Force F 1 Newton (N) 105 dynes

Energy W 1 J 107 ergs

Power P 1 W 107 ergs sec−1

Charge q 1 coulomb (C) 3 × 109 statcoulombs

Potential V 1 volt 1
300 statvolt

Electric field E 1 volt m−1 1
3 × 104 statvolt cm−1

Polarization P 1 C m−2 3 × 105 dipole moment cm−3

Displacement D 1 C m−2 12π × 105 statvolt cm−1

Linear susceptibility χ 1 1
4π

Second order suscept. χ(2) 1 m V−1 3
4π × 104 esu

Third order suscept. χ(3) 1 m2 V−2 32

4π × 108 esu

n-th order suscept. χ(n) 1 mn−1 V−(n−1) 3n−1

4π × (104)n−1 esu

Table B.2: The table provides the conversion of the most used physical quantities
from the MKSA to the Gaussian system and viceversa. All factors of 3 (apart from
exponents) should be replaced by (c=2.99792456). The second order nonlinear
susceptibility are in general expressed in units of pm V−1, where 1pm V−1= 3

4π
×

10−8 esu.
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Fundamental Constants and Conversions

Constant Symbol Value

Velocity of light c 2.99792456× 1010 cm· s−1

Electron charge −e −4.803× 10−10 esu

Electron mass me 9.10953× 10−28 g

Proton mass mp 1.67252× 10−24 g

Plank constant h 6.62559× 10−27 erg· s−1

4.1357× 10−15 eV·Hz−1

~ = h/2π 1.054588× 10−27 erg· s−1

Boltzmann constant k 1.380662× 10−16 erg· K−1

0.861735× 1027 eV· K−1

Avogadro Number NA 6.022045× 1023 mol−1

1eV = 1.602189× 10−12 erg

(in frequency units) = 2.41797× 1014 Hz

(in wavenumber units) = 8.06548× 103 cm−1

(in wavelength units) = 1.23984× 10−4 cm

(in temperature units) = 1.16045× 104 K
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