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I. EXPERIMENTAL SETUP AND SAMPLE
CHARACTERIZATION

We adopt a transmission geometry (excitation and
emission are collected from opposite sides of the sam-
ple) in order to avoid the stray light of the excitation
laser. A scheme of the experimental setup is depicted in
Fig. S1(a). This configuration allows us to image at the
same time the photoluminescence of the polariton fluid in
real-space and momentum-space, with or without spec-
tral selection. Complemented with a suitable photon cor-
relator to extract the photon statistics within the images,
this configuration appears suitable to experimentally de-
tect the non-trivial intensity correlation signal due to the
analog Hawking radiation.

The polariton dispersion in the upstream and down-
stream regions is measured via non-resonant photo-
luminescence of the flat parts of the microstructure
[Fig. S1.(b)]. The excitation energy is 72 meV blue-
detuned with respect to the exciton energy, Eex =
1477.7 meV. Figure S1(b) shows the photoluminescence
from both the polariton modes and the uncoupled exci-
tons emitting through the wire-edge. From the photolu-
minesce spectrum, we extract a detuning δ = Ecav −
Eex ≈ −3 meV, and a polariton effective mass m ∼
3× 10−5mel (for a parabolic approximation of the lower
polariton branch around k = 0), where mel represents
the free electron mass.

To characterize the shape of the excitation spot, we
measure the spatial profile of the total emission along
the wire axis, at very low excitation power, as depicted
in Fig. S1(c). Thus the excitation spot is a gaussian with
a full width at half maximum of ∼ 16.5 µm.

In order to measure the selected emission in momen-
tum space from the upstream or downstream regions, we
spatially filter the emission from the desired region with
the use of a slit located onto an intermediate image of the
wire [Fig. S1.(a)]. The use of the slit induces a diffraction
effect in the far-field images, particularly when we use a
filter of 20 µm in width, which is the case in the upstream
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measurements. This explains the broadening of the peaks
in Figs. 2(a-c) of the main text compared to those in
Figs. 2(d-f), for which the filter was > 45 µm wide.
Diffraction features are clearly evidenced in Fig. S1(d)
which represents the data of Fig. 2(c) in logarithmic scale.
We observe not only a central peak but also side peaks
that are perfectly fitted by a Fraunhaufer diffraction
formula: I = sin2 [w(kfluid − ky)/2] / [w(kfluid − ky)/2]
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with w = 20.3 µm and kfluid = 0.2 µm−1. This shows
that the side peaks in Fig. 2(c) do not originate from the
backscattering of polaritons but are due to the diffraction
of the central peak by the spatial selection slit.

II. INTERACTION ENERGY IN THE
SUPERFLUID REGIME

The superfluid regime is achieved if the polariton fluid
is subsonic (v < c). This condition is equivalent to:

Eint > 2Ekinetic , (S1)

where Eint = mc2 is the interaction energy and Ekinetic =
mv2/2 is the kinetic energy of the polariton fluid in the
single-particle picture. Moreover, as discussed in the
main text, the total polariton energy is fixed by the ex-
citation laser frequency [1], which implies that

Epump = E0 + Ekinetic + Eint , (S2)

where E0 is the single-particle polariton energy at ky = 0
[see Fig. 1(b) of the main text]. Therefore, in the super-
fluid regime the interaction energy satisfies:

Eint >
2

3
(Epump − E0) (S3)

III. PUMP-PROBE MEASUREMENTS IN THE
DOWNSTREAM REGION

Polariton interactions in the black hole regime result
in significant renormalizations of the polariton branches,
following the Bogoliubov dispersion [1]. In order to evi-
dence this effect and confirm our interpretation in terms
of speeds of sound of the polariton fluid, we measure
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FIG. S1. (a) Scheme of the experimental setup.(b) Photoluminescence of the polariton wire under non-resonant excitation,
showing the linear polariton dispersion. Dotted-black line: bare exciton energy. Dotted-white line (solid-white line): fit
of the lower (upper) polariton branch from a two-coupled oscillators model. (c) Measured spatial profile of the integrated
photoluminescence emission under non-resonant excitation. Red line: gaussian fit with FWHM = 16.5 µm. (d)Measured
momentum distribution of the superfluid in the upstream region at pump power p = 100 mW [see also Fig. 2(c) of the main
text], presented in semilogarithmic-scale. Red line: fit to a Fraunhofer diffraction response through a 20 µm-wide slit. The
fitting parameters are w = 20.3 µm and kfluid = 0.2 µm.

the spectrum of excitations of the downstream fluid in
a pump-probe experiment. The pump power is fixed at
p = 100mW in the upstream region in the conditions
for the realization of the acoustic horizon. A second cw
Ti:Sapphire laser at a slightly different energy and weak
power pprobe = 5 mW, playing the role of a probe, is fo-
cused onto a 30 µm spot in the downstream region [see
Fig. S2(a)]. Polariton emission at the energy of the probe
laser is collected in transmission geometry.

As suggested in a slightly different context [2], the
probe laser is used here to excite a propagating wave
on top of the polariton fluid, similar to pouring a cup of
water on top of a flowing river. Thus, the spectrum of
excitations of the fluid can be reconstructed by measur-
ing the wave vector k of the propagating wave excited
by the probe and the wave vector k′ of the part of the
wave reflected against the defect, at different energies of
the probe laser, Eprobe. The emission of the background

fluid is filtered out with the use of a spectrometer. Fig-
ure S2(b) depicts the probe signal as a function of the
wave vector, with Eprobe = Epump − 0.21 meV. We ob-
serve that the excited wave propagates at smaller wave
vectors in the presence of the pump. Indeed, this ef-
fect is due to the renormalization of the spectrum of ex-
citations due to the presence of the pump fluid in the
nonlinear regime. The observation of excited modes be-
low the pump energy is a clear evidence of the super-
sonic regime [4]. By repeating the same measurements
at different Eprobe values, we are able to reconstruct the
dispersion in the downstream region, both in the linear
(i.e. without pump) and nonlinear (i.e. in the presence
of the pump) regimes [see Fig. S2(c)]. The dispersion
in the linear regime corresponds well to the parabola
E(ky) = E0 + ~2k2

y/2m, while the dispersion in the non-
linear regime follows the expected positive branch of the
Bogoliubov dispersion [1, 5]:

E±(ky) = Epump ±
~2

2m

√
(ky − kfluid)2

[
(ky − kfluid)2 +

2m

~
gn

]
+

~2kfluid(ky − kfluid)

m
, (S4)

where kfluid = 0.52 µm−1 and Eint = ~gn = 50 µeV are
the wavevector and interaction energy of the downstream
fluid, respectively, corresponding to a pump power p =

100 mW [see Figs. 2(f) and 3(a) of the main text]. The
same experiment, but measured in the upstream region,
is technically more difficult since the probe signal is
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FIG. S2. (a) Sketch of the pump-probe experiment to mea-
sure the dispersion of excitations in the downstream region of
the polariton fluid. (b) Momentum distribution of the photo-
luminescence at the probe frequency with (empty red circles)
and without (black squares) the pump. The probe energy is
fixed as Eprobe = Epump − 0.21 meV. A spatial filter from
y = 5 µm to y = 30 µm is used to isolate the light emission
from the downstream region, where y = 0 corresponds to the
position of the defect. (c) Measured excitation spectrum in
the downstream region obtained from the position of the k-
space peak (b) with (red circles) and without (black squares)
pump. The solid red line shows the Bogoliubov spectrum of
excitations in the downstream region, calculated by using the
positive branch of Eq. S4 with the measured kfluid and Eint;
the dashed red line shows the corresponding negative branch.
The black dash-dotted line shows the single-particle spectrum
within the parabolic approximation, to which the Bogoliubov
dispersion reduces in the absence of the pump. (d) Bogoliubov
dispersion in the upstream region, calculated by inserting the
values of kfluid and Eint measured at p = 100 mW into Eq. S4.

washed out by the dominant fluid emission even with the
use of a spectrometer. Nevertheless, we can calculate the
excitation spectrum of the upstream fluid using the Bo-
goliubov dispersion S4 with the parameters measured at
p = 100 mW (kfluid = 0.21 µm−1 and ~gn = 0.35 meV)
as shown in Fig. S2(d). This dispersion, calculated with
the measured parameters presented in the main text, cor-
responds to that of a subsonic fluid, indeed.

IV. ESTIMATION OF THE HAWKING
TEMPERATURE

From the interaction energy above 100 mW [Fig. 3(a)
of the main text], we estimate an average healing length

FIG. S3. Velocity profile as a function of propagation di-
rection. The origin corresponds to the center position of the
microstructured defect. The subsonic/supersonic boundary
actually occurs about 2 µm on its negative side (see arrow).

of:

ξ ≈ ~
2
√
m

 1√
Eu

int

+
1√
Ed

int

 ≈ 1.5 µm. (S5)

where E
u(d)
int is the interaction energy in the upstream

(downstream) region. Since the horizon (d ≈ 8 µm, see
Fig. 1(g) in the main text) is smoother than the healing
length (d� ξ), a Hawking temperature can be estimated
in the hydrodynamic approximation [6]:

TH ≈
~
kBd

(v2
d − c2d)− (v2

u − c2u)

cu + cd
≈ 3K (S6)

where vu(d) and cu(d) are the measured fluid velocity and
speed of sound in the upstream (downstream) region for
an excitation power of 100 mW [see Fig. 3(b,c) in the
main text]. In the case of polaritons, the characteris-
tic energy with which this temperature should be com-
pared is not the lattice or polariton temperature. Ac-
tually, polaritons are very weakly coupled to phonons in
the semiconductor matrix and, when excited resonantly,
their energy distribution is at most determined by their
lifetime [7]. Therefore, TH should be compared to the
polariton lifetime. In the present sample, the polari-
ton lifetime corresponds to a linewidth of ∼ 50 µeV, i.e.
much smaller than the thermal energy associated to the
expected Hawking radiation (∼ 250 µeV for 3 K). A diffi-
culty in the observation of Hawking radiation could come
from the shot noise in the photo-detection process, but
this issue can be overcome with a sufficiently long inte-
gration time.

V. NUMERICAL SIMULATIONS I: DENSITY
AND VELOCITY PROFILES

We have modeled this experiment by a driven-
dissipative Gross-Pitaevskii equation, or generalized non-
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linear Schrodinger equation. In particular, considering
that we work very close to the bottom of the lower po-
lariton dispersion, we restrict our model to a single field
describing the lower polariton. Of course, it is implicit
that the polariton is a composite quasi-particle, and the
radiation detected is only related to its photonic compo-
nent [1].

In the dilute limit of weak polariton-polariton inter-
actions, the dynamics of the system can be accurately
captured by a mean-field treatment where the quantum

polariton field, ψ̂, is approximated by a classical field

equal to its expectation value, φ = 〈ψ̂〉. The evolution
of such field is determined by a one-dimensional driven-
dissipative nonlinear Schrödinger equation, or general-
ized Gross-Pitaevskii equation [1]:

i
d

dt
φ(y, t) =

[
ω(−i∂y) + V (y) + g|φ(y, t)|2 − iγ

2

]
φ(y, t) + Fpump(y, t) , (S7)

which generalizes to the non-equilibrium context of po-
laritons the well-known Gross-Pitaevskii equation (GPE)
of dilute Bose condensed gases [8]. In Eq. S7, V (y) is
the spatially-dependent potential for polaritons propa-
gating along the microwire axis, y, obtained from the
lateral shape of the studied wire (i.e., describing the
microstructured defect), ω(−i∂y) describes the polari-
ton dispersion (approximated with a free-particle disper-
sion with constant effective mass as measured close to
the bottom polariton branch, see main text), g is the
one-dimensional polariton-polariton interaction constant
(assumed 0.3 µeV·µm in these simulations, as appropri-
ate for a microwire width of 3 µm), and Fpump(y, t) =
F0(y) exp[i(kpumpy − ωpumpt)] describes the gaussian
pump spot in continuous wave excitation regime. The
only fitting parameter in the simulations is the absolute
value of the pump intensity.

The numerical solution of Eq. S7 allows to deter-
mine the fluid velocity and speed of sound along the
wire axis, defined as v(y) = ~Im(φ∗∂yφ)/m and c(y) =√

~gn(y)/m, respectively. In particular, for the mi-
crostructure under investigation and at high pump power
(corresponding to the p = 100 mW experimental value,
see the main text) the results are shown in Fig. 3, clearly

evidencing the subsonic/supersonic transition of our ana-
log black-hole event horizon.

VI. NUMERICAL SIMULATIONS II: SPATIAL
CORRELATIONS

The horizon created at the engineered defect of our
microwire is particularly promising for the experimental
detection of spontaneous Hawking radiation by vacuum
field fluctuations at the subsonic/supersonic boundary.
An indirect experimental measure of such an emission
can be performed by intensity correlation measurements
at equal times. In order to estimate the feasibility of
this experiment for the present horizon, we have calcu-
lated the density-density spatial correlations around the
engineered defect, as shown in Fig. 4 of the main text.

To include the fluctuations of the polariton field around
its mean value, we have employed a technique originally
developed in a quantum optics context and then widely
applied to dilute quantum fluids, the so-called truncated
Wigner approximation [9, 10]. This technique was re-
cently extended to treat out-of-equilibrium quantum flu-
ids of polaritons in [5, 11]. In brief, the dynamics of the
quantum field problem can be described by a stochastic
partial differential equation of the form:

i dφ =

[
ω(−i∂y) + V (y) + g

(
|φ|2 − 1

∆y

)
− iγ

2

]
φdt+ Fpump(y, t) dt+

√
γ

√
4 ∆y

dξ , (S8)

where ∆y is the spacing of the real-space grid, and dξ is a
complex valued, zero-mean, independent Gaussian noise
term with white noise correlation in both space and time,
i.e. dξ∗(y, t) dξ(y′, t) = 2δ(y − y′) dt. The equal-time
spatial correlations of density fluctuations are calculated

as g(2)(y, y′) = 〈ψ̂†(y)ψ̂†(y′)ψ̂(y′)ψ̂(y)〉/〈n̂(y)〉〈n̂(y′)〉,
where 〈n̂(y)〉 ≡ 〈ψ̂†(y)ψ̂(y)〉, and the quantum expec-
tation values can be calculated from Wigner averages
〈. . .〉W over a large number of independent stochastic

configurations [11], as obtained, e.g., by sampling the
stochastic evolution at different times spaced by wide
temporal intervals Ts � 1/γ. In particular, the average
density is obtained as

〈ψ̂†(y)ψ̂(y)〉 = 〈|φ(y)|2〉W −
1

2 ∆y
(S9)
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while the density correlation by:

〈ψ̂†(y)ψ̂†(y′)ψ̂(y′)ψ̂(y)〉 =

=
〈
|φ(y)|2|φ(y′)|2

〉
W

+
1

4 ∆y2
(1 + δy,y′)+

− 1

2 ∆y
(1 + δy,y′)

〈
|φ(y)|2 + |φc(y′)|2

〉
W
. (S10)

The results shown in Fig. 4 have been obtained after
averaging over 2× 105 Montecarlo realizations.

VII. SPATIAL POSITION OF THE MAXIMUM
CORRELATION SIGNAL

The first calculations of the density correlation signal
in [12, 13] addressed the case of fluids whose density,
flow velocity and interaction energy is spatially piece-
wise constant in both upstream and downstream regions.
In such case, the intensity of the signal for the differ-
ent processes was maximum on straight lines defined by
same optical-path conditions. Locating the horizon at
yhor = 0, for standard Hawking processes (u− d2 in the
notation of [14]), this condition reads

y

−cd + vd
=

y′

−cu + vu
(y′ < 0 < y) (S11)

while it reads

y

−cd + vd
=

y′

cd + vd
(0 < y, y′) (S12)

y

cd + vd
=

y′

−cu + vu
(y′ < 0 < y), (S13)

for other processes labelled as d1 − d2 and u− d1 in [14],
respectively.

When the flow velocity and/or the speed of sound are
spatially varying, the above equations have to be modi-
fied into integrals. For instance, the standard Hawking
processes are expected to give a maximum signal on the
curve defined by the implicit integral equation∫ y

≈0

dY

−cd(Y ) + vd(Y )
=

∫ y′

≈0

dY

−cu(Y ) + vu(Y )
(S14)

Of course, this equation is valid only within a geomet-
rical optics approximation where the spatial variations
are assumed to be slow as compared to the wavelength
of the Hawking phonons. While this condition can be
reasonably valid away from the horizon, exact determi-
nation of the lower integration limit in the vicinity of the
horizon point at y = 0 goes beyond this approximation.
In Fig. 4 of the main text, the integration limits have
been determined by hand, so to optimize agreement with
the numerical result. In spite of this arbitrariness, the
green line is in good agreement with the main fringe of
standard Hawking correlations, i.e. the u− d2 feature of
Ref. 14. A similar calculation has been performed with

comparable success to obtain the black line for the d1−d2

feature of Ref 14. The appearance of additional fringes
parallel to the main ones (barely visible in [14]) can be
explained in terms of the strong curvature of the ky < 0
part of the Bogoliubov dispersion in the downstream re-
gion, and from the complex density and velocity profiles
in the horizon region [15].

VIII. ESTIMATION OF THE INTEGRATION
TIME IN THE PROPOSED CORRELATION

EXPERIMENTS

In order to experimentally access the intensity correla-
tion map of the polariton fluid, a very convenient and
recently developed experimental technique based on a
streak camera allows measuring statistics by taking cor-
relations of different photocounts instead of just aver-
ages [16]. In this technique, the arrival time of photons
on the photocathode of the streak camera is registered
with a time resolution as small as 1 ps. One of the
advantages of this technique is the following: since de-
tection is given by a linear photocathode and a CCD,
the arrival time from different points of the sample (in
our case, e.g., points upstream and downstream from the
horizon, respectively) can be registered simultaneously.
From these images, the space- and time-resolved intensity
correlation function, g(2)(y, y′, t, t′), can be reconstructed
by performing a statistical analysis.

Figure 4 of the main text shows the expected equal-
time (i.e., t = t′) correlation signal for the sample used
in our experiments, where nominal parameters have been
used in the simulations, as explained above. In order to
observe the Hawking signal, it is required a sensitivity in
g(2)(y, y′) of ∼ 5× 10−5. If we concentrate on the emis-
sion from two specific points of the sample, y and y′, a
signal to noise ratio of ∼ 1 requires a total number of co-
incidences 1/(5×10−5)2 ∼ 109. Given the time resolution
of the streak camera and its repetition rate, we estimate
a detection of about 3000 two-photon coincidences per
second for the typical photon emission rates of our ex-
periment. This estimate implies about 100 hours of con-
tinuous measurements to resolve the expected correlation
signal of the spontaneous Hawking emission process. We
notice that such an estimate assumes ideal stability con-
ditions of the experimental set-up, but we trust that this
is within reach with available technology.

Finally, we notice that an optimization of the struc-
ture can greatly reduce the integration time. Two pos-
sible strategies include (i) reducing the microwire width
and (ii) working at an exciton-cavity detuning closer to
zero. Both approaches would result in a larger effec-
tive value of the polariton-polariton interaction constant.
We estimate that by reducing the wire width by a fac-
tor of two and by working at zero detuning, the polari-
ton interaction constant can be increased by an order of
magnitude. Monte-Carlo simulations under such condi-
tions (not shown) predict a Hawking signal as strong as
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g(2)(y, y′)−1 ≈ 5×10−4, i.e. an order of magnitude larger
than the one predicted for the current sample in Figure
4 of the main text. The above estimate adapted to this

situation predicts an integration time as low as ∼ 22 min-
utes, with strongly reduced stability requirements for the
realization of the proposed experiment.
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