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Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by
resonant light scattering
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We report a study of photonic crystal nanocavities as a function of lattice disorder, which is implemented by
deliberate radius variations of the holes forming the photonic crystal. Using cross-polarized laser light scattering,
we demonstrate that lattice disorder affects the cavity mode symmetry, as is crucially evidenced by measuring
scattering resonances for different sample orientations and explained by group-theoretical analysis together with
calculations of the mode profile. We also quantify how the increase of lattice disorder leads to a reduction of
the cavity Q factors and to a spread of both Q factors and resonance wavelengths. The trends as a function of
disorder and for different radii distributions are well reproduced by theoretical calculations when both intentional
(deliberate) and intrinsic (residual) disorder are taken into account. The results shed light on the effects of disorder
on cavity resonances and on the interplay between intentional and intrinsic disorder, yielding reliable estimations
of residual disorder (which ultimately affects technology limits) from optical measurements. Interestingly, the
disorder values derived from the variation of the Q factor are lower than those derived from the wavelength
spread: this suggests the occurrence of subtle interhole correlation effects that turn out to be beneficial for cavity
Q factors.
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I. INTRODUCTION

In recent years, high-Q optical nanocavities have been
widely used in many different scientific areas such as
nanophotonics,1–6 cavity quantum electrodynamics,7,8 nonlin-
ear enhancement,9 and biochemical sensing.10,11 The interest is
motivated by the possibility to concentrate the electromagnetic
field in a very small spatial region, increasing the radiation-
matter interaction. In this way, physical phenomena on the
nanoscale level can be studied. It has been demonstrated
that by using planar photonic crystal (PhC) nanocavities,
obtained by two-dimensional patterning of a slab waveguide,
ultrahigh-Q factors2–5 can be realized. The key to obtaining
high Q’s is related to the optimization of the position and
radius of some holes constituting the photonic crystal.12–14

For this reason, the positions and the radii of holes forming
the cavity, and the photonic crystal in general, become
very important parameters. But, during fabrication, some
unintentional lattice disorder is invariably introduced, i.e., an
unexpected variation in the hole radii forming the PhC. This
motivates a systematic study of the effects of lattice disorder
on the cavity mode in order to understand how it modifies
the cavity properties such as the Q factor and the mode
symmetry.

The quality factors of passive (nonemitting) PhC slab
cavities can be determined by measuring transmission through
a waveguide optically coupled to the nanocavity, by measuring
light released from the cavity in the channel-drop filter
geometry, or else by resonant scattering of light. The latter
technique, first introduced in Ref. 15 for two-dimensional
PhC slabs and later applied to nanocavities,16,17 consists of
measuring the reflection of light from the surface of the PhC
slab with crossed polarizations for the incident and outgoing
beams: the optical signal has a strong resonance enhancement

at the wavelength of a cavity mode. This technique is highly
valuable as a tool for systematic studies of cavity Q factors
while varying the PhC lattice geometry (e.g., as a function of
hole positions and radii) without the need of using coupling
waveguides. Also, cross-polarized light scattering with the
resulting Fano lineshapes18 depends strongly on coupling
of the cavity mode with the incoming and outgoing fields,
which in turn depends on the cavity mode symmetry and
may be affected by disorder. Thus, a study of the effects of
disorder on cavity modes may also be useful in order to shed
light on physical mechanisms determining the light-scattering
phenomenon.

In this paper, we consider L3 cavities in silicon PhC slabs,
obtained by removing three holes along the �-K direction
of the triangular lattice, and perform a systematic study of
the effects of disorder on cavity modes by means of resonant
light scattering. To this purpose, we introduce a deliberate
amount of disorder by modifying the hole radii according to a
Gaussian distribution with r.m.s. deviation σ , and investigate
the resulting properties as a function of σ in a lithographically
controlled way. The paper is organized as follows: In Sec. II,
we briefly describe sample fabrication, the optical technique,
and the theoretical methods, including a group-theoretical
analysis of coupling with external photons based on cavity
mode symmetry. In Sec. III, we analyze the effect of disorder
on resonant light scattering. In Sec. IV, we present systematic
results for cavity Q factors with different hole geometries
as a function of increasing disorder. Section V contains
concluding remarks. The results will be shown to be useful in
order to quantify the interplay between intentional (deliberate)
and intrinsic (technology-limited) disorder, with a precise
estimation for the residual effect of intrinsic disorder in the
investigated PhC cavities.
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FIG. 1. (Color online) SEM images of cav-
ities with nominal disorder parameter σ = 0, 5,
and 10 nm, respectively.

II. SAMPLES AND METHODS

A. Sample fabrication

The nanocavities were fabricated from a Silicon-on-
Insulator wafer (SOITEC, 220 nm nominally thick silicon on
2000 nm of silica) using electron beam lithography (hybrid
ZEISS GEMINI 1530/RAITH ELPHY system) and reactive
ion etching. Then, the silica was removed by means of wet
etching via a vapor hydrofluoric-acid method in order to
obtain airbridged PhC nanocavities. The procedure, similar
to that of Refs. 19 and 20, is optimized for high-quality
photonic crystals. A 50-μm size writing field was used and
each cavity had the same location in the write field, avoiding
any possible variations caused by the write field distribution.
All the fabricated cavities have lattice constant a = 420 nm
and hole radii of approx 126 nm (r/a = 0.3). Optimization
of radius and position of the holes adjacent to the cavity12–14

(hole shrinking �r/a = −0.06 and shifting �x/a = 0.14 to
0.2) has been performed in order to obtain high-Q factors.

In order to study the effects of lattice disorder, cavities with
different hole radii distribution, that is, with different degree
of disorder, were fabricated. The amount of lattice disorder is
quantified by the parameter σ , defined as the r.m.s deviation
of the Gaussian distribution of the hole radii. Figure 1 shows
scanning electron microscope (SEM) images of three cavities
with different values of σ . The large cavity area (10 μm ×
10 μm) is realized in order to reduce in-plane losses to
a negligible level. The first image refers to a cavity with
zero intentional disorder (a small unintentional contribution to
disorder is still present, as discussed later). The last one refers
to a cavity with the highest disorder parameter σ = 10 nm;
it is noteworthy that the variation in the hole radii is clearly
visible in the SEM image. Cavities with disorder parameter
σ ranging from 0 to 10 nm (1 nm step) were fabricated and
optically characterized.

B. Experimental technique

The optical characterization was carried out using cross-
polarized laser light scattering.15,16 The scheme of the
experimental setup is shown in Fig. 2(a). Light from a
continuous-wave (CW) tunable laser is linearly polarized by
the polarizer P and focused on the sample by means of a

polarization-maintaining high numerical aperture objective
(NA = 0.8). The light reflected by the sample is collected
using a beam splitter and analyzed by the analyzer A in
cross polarization with respect to the polarizer P . Figure 2(b)
shows the orientation of the cavity with respect to polarizer
P : the cavity axis (dotted line) forms an angle φ with the
polarizer and this angle can be controlled in the experiments.
In the figure, this angle equals 45◦, which is the configuration
that maximizes cross-polarized light scattering, as will be
shown in Sec. IV. In order to increase the signal-to-noise
ratio, incident light is modulated using an optical chopper
with the modulation frequency taken as reference for a lock-in
amplifier. Once the incident light polarization is chosen, the
analyzer is oriented in order to minimize the signal on detector
when the laser light frequency is off resonance with respect
to the cavity mode. This was shown to yield the maximum
on-off ratio of the resonant signal, with the same Q factor
being obtained from a Fano-lineshape analysis.16

Figure 3 shows typical scattering spectra (black dots) and
best fits with Fano curves16,18 (red lines) for cavities with
different degree of disorder (σ = 0, 5, 9 nm, respectively).
These spectra were taken for a rotation angle φ = 45◦, which
maximizes the signal. As it can be seen, the first effect of
intentional lattice disorder is a reduction of the quality factor.
The first cavity [Fig. 3(a)], in which the intentional disorder

FIG. 2. (Color online) (a) Scheme of the experimental setup for
cross-polarized CW light scattering measurements. (b) SEM image
of an L3 PhC nanocavity, showing its orientation with respect to
polarizer and analyzer.
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FIG. 3. (Color online) Cross-polarized scattering spectra (square dots) for three cavities with a = 420 nm, r/a = 0.3, �x/a = 0.16,
�r/r = −0.06 but with different amount of disorder (0, 5, and 9 nm, respectively). Best fits with Fano lineshapes are also shown (continuous
lines).

is zero, has a quality factor of 67 700, meaning a full width
at half-maximum (FWHM) of �λ = 22.5 pm. Increasing the
intentional disorder [σ = 5 nm, Fig. 3(b)] reduces the Q to
24 800 with the FWHM equal to �λ = 61.4 pm. A further
increase of disorder [Fig. 3(b), σ = 9 nm] leads to a further
decrease of the quality factor (13 900) and increase of FWHM
(�λ = 109.5 pm). A detailed study of the effect of disorder
on Q will be presented in Sec. III.

C. Theory

Numerical results for cavity mode profiles and Q factors
are calculated with a guided-mode expansion (GME) method
that consists of expanding the electromagnetic field on the
basis of guided modes of an effective homogeneous waveguide
and calculating coupling to radiative modes by perturbation
theory.21 To treat an L3 cavity, a supercell is introduced along
the cavity axis �K and along the perpendicular direction �M .
Typical supercell dimensions are 10a along �K and 4

√
3a

along �M . The quality factor is obtained as Q = ω/[2Im(ω)],
where ω is the cavity mode frequency and Im(ω) is its
imaginary part. Results for Q factors of L3 cavities with
optimized local geometry (i.e., shift and shrink of nearby
holes in the absence of disorder) are given in Ref. 13 and
are close to the results obtained with a three-dimensional
(3D) frequency-domain modal method.14 The effect of radial
disorder on cavity modes is treated within the GME method by
assuming a random distribution of the hole radii r according
to P (r) ∝ exp[−(r − r̄)2/(2σ 2)] within the same supercell.
Notice that, in this paper, the zero-order calculation (i.e.,
before applying perturbation theory for coupling to radiative
modes) is made with the hole’s radii in the chosen supercell
being randomly distributed with variance σ , thus, the effect
of disorder is treated in a nonperturbative way. It is only
the very weak coupling to radiation modes of the PhC slab
that is treated perturbatively: this approximation, which is
validated in Ref. 21, is very well justified for high-Q modes
that have a small coupling to radiative PhC slab modes. The
present approach is suitable and necessary when the disorder

parameter σ becomes larger than a few nm; indeed, the inverse
Q factor as a function of σ deviates from the perturbative
∝ σ 2 behavior found in previous work.22,23 Also, the cavity
mode profiles and local electromagnetic field variation in the
disordered lattice are fully calculated, as shown below.

We start the discussion of resonant light scattering by a
group-theoretical analysis of the symmetry of cavity modes,
along the lines of Ref. 24. This allows us to discuss coupling
of cavity modes to the radiation field, concerning polarization
properties and the mechanism of resonant scattering, in the
most general way. The point group of an L3 cavity in the
triangular lattice is C2v [considering only two-dimensional
(2D) operations] or D2h [considering full 3D symmetry
operations]. In order to determine the symmetry of the ground
cavity mode, in Fig. 4 we show the field components Ex and
Ey with respect to the cavity axes (notice that the axes x

and y in Fig. 4 are different from the polarizer and analyzer
axes X, Y in Fig. 2). It can be seen that the component Ey is
larger and more concentrated in the cavity region; indeed, this
is the dominant component of the index-guided mode in the
corresponding W1 waveguide, which is confined in the region
of the three missing holes to yield the ground L3 cavity mode.

Now, the behavior of a field component Eξ (r) under
the action of a symmetry operation Ô follows from the
transformation properties of the vector component Eξ and of
its spatial coordinate r, i.e.,

ÔEξ (r) = (ÔEξ )(Ô−1r). (1)

Considering, for example, mirror reflection with respect to
the xz plane, represented by the operator σxz, the Ey vector
component is odd under the action of σxz, while its spatial
dependence is even; thus,

σxzEy(r) = (σxzEy)
(
σ−1

xz r
) = (−Ey)(x, − y,z) = −Ey(r)

(2)

and the component has a −1 eigenvalue under mirror-reflection
operator σxz. The other vector component Ex is even under the
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FIG. 4. (Color online) Imaginary part of the electric field (a) Ey

and (b) Ex .

mirror-reflection operator σxz, while its spatial dependence is
odd, also yielding a −1 global eigenvalue. This allows us to
conclude that the cavity mode is globally odd under the action
of σxz. By proceeding in the same way for all the symmetry
operations of the 3D point group D2h (which of course includes
all operations of C2v as a subset), we get the transformation
shown in Table I.

By comparing with the character table of Refs. 24 and 25,
we recognize that the ground L3 cavity mode behaves as
the B2u irreducible representation (for D2h) or as B2 (for
C2v). These are also the irreducible representations of the y

coordinate or the dy dipole component; thus, the ground L3
cavity mode has y symmetry and, in the 2D photonic crystal
without disorder, can only be excited by a y-polarized field
component. Since cross-polarized scattering requires coupling
of the cavity mode with incoming and outgoing fields at
crossed polarizations, this implies that the cavity mode can
not appear in resonant scattering when the cavity axes are at
an angle of 0◦ or 90◦ with respect to the polarizer and analyzer
axes. Indeed, for a rotation angle φ = 0◦ [see Fig. 2(b) for
the definition of the angle φ], the y axis is aligned with the
analyzer and the cavity mode is coupled to the outgoing field,

TABLE I. Character table for the ground mode of an L3 cavity
in the absence of disorder. The operators E, C, i, and σ stand for
identity, π rotation, inversion, and mirror reflection.

D2h

E C2(z) C2(y) C2(x) i σxy σxz σyz

1 −1 1 −1 −1 1 −1 1 B2u(y)

FIG. 5. (Color online) Squared electric field profiles for the cases
of (a) nominal zero disorder and (b) nominal σ = 10 nm disorder.
The random variations of the radii can be noticed in (b).

but not to the incoming field; on the contrary, for φ = 90◦,
the y axis is aligned with the polarizer and the cavity mode is
coupled to the incoming field, but not to the outgoing one. The
φ = 45◦ configuration is the one that maximizes the resonant
scattering signal, as it is the best compromise for simultaneous
coupling of the incoming and outgoing fields.

These symmetry properties are changed in the presence of
lattice disorder. Indeed, a variation in the hole radii forming
the lattice leads to a breaking of the D2h symmetry. Figure 5
shows the squared field profiles for two different cases: on
top the field is calculated for σ = 0 nm (no disorder) and
on bottom for σ = 10 nm (highest disorder). It is clear that
the presence of lattice disorder breaks the symmetry of the
lattice and of the mode profile. In the presence of disorder,
there is no symmetry operation beyond the identity and the
selection rules previously derived for the case of zero disorder
are broken. Thus, we expect that, on increasing the degree of
disorder, the cavity mode can couple to incoming or outgoing
light for any polarization, and that resonant light scattering
becomes observable for all rotation angles φ. The experi-
mental consequences of these results are studied in the next
section.

III. EFFECT OF INTENTIONAL DISORDER ON LIGHT
SCATTERING

In order to study the effects of intentional disorder on light
scattering, measurements on samples with different orienta-
tions were made. In detail, Fig. 6 shows the three different
orientations of the sample chosen in our measurements. As
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FIG. 6. (Color online) The figure shows three different orientations of the cavity axis with respect to the polarizer P : (a) 45◦, (b) 90◦,
and (c) 0◦.

explained in Sec. II C, the 45◦ configuration represents the
best compromise for simultaneous coupling with incoming
and outgoing fields. For this reason, the signal should be
stronger with respect to every other orientation, in particular,
with respect to the 90◦ or 0◦ configurations, for which the
coupling is only with incoming or outgoing field but not
both simultaneously: in these cases (90◦ and 0◦), the signal
should be a flat background. The situation is different in the
presence of lattice disorder: As suggested by the mode profile
calculations, the disorder leads to a different coupling with
incoming and outgoing fields, leading to the expectation of a
scattering signal also for 90◦ and 0◦.

In order to demonstrate this, measurements in the three
configurations were made. Figure 7 shows scattering spectra
for increasing degrees of disorder (σ = 0, 5, 10 nm) and for
the three rotation angles φ = 45◦, 90◦, and 0◦. In Fig. 7(a),
nominal σ = 0, the signal for the 45◦ orientation (square dots)
is much stronger than for 90◦ and 0◦ (triangular and circular
dots, respectively). However, we can notice that in the 90◦ and
0◦ cases, a scattering signal is present, even if very weak. There
are two reasons for the presence of a signal: First, a small
amount of unintentional lattice disorder is always present,16

even in the case of nominal σ = 0; second, the cavity axis
can not be perfectly oriented at 90◦ or 0◦ angles. The situation
changes with the introduction of intentional lattice disorder
[Figs. 7(b) and 7(c)]: The ratio between the spectra changes
significantly and, for σ = 10 nm, the spectra for the three
angles are comparable to each other.

In the cases with appreciable disorder, σ = 5 or 10 nm,
the presence of a clear signal for all three orientations means
that there is simultaneous coupling of the ground L3 cavity
mode with incoming and outgoing fields. In other words, these
results demonstrate that lattice disorder breaks the in-plane
symmetry of the system, as expected from calculations of
the fundamental mode previously shown in Fig. 5. At the same
time, the results demonstrate that the cross-polarized light-
scattering technique can be operated in two different regimes:
In the case of weak disorder, the signal is very weak for 0◦ and
90◦ and is maximum for φ = 45◦, which is the configuration
that maximizes coupling of the cavity mode with the incoming
and outgoing fields. On the other hand, when disorder is strong,
resonant scattering can be easily observed for any orientation
as coupling between the cavity mode and ingoing or outgoing
field is provided by the disorder through breaking of planar
symmetry of the PhC cavity.

IV. EFFECT OF INTENTIONAL DISORDER ON
CAVITY Q FACTORS

Aside from the variation of the mode symmetry, lattice
disorder influences also the quality factor of the cavity mode,
as was shown in Fig. 3. To study the effect on the Q in
a systematic way, we optically characterized six series of
cavities with different nearby hole shifts �x/a (equal to 0.14,
0.16, 0.17, 0.18, 0.19, and 0.2, respectively) and with disorder
parameter σ ranging from 0 to 10 nm. Referring to Fig. 8,

FIG. 7. (Color online) Scattering spectra for three cavities with �x/a = 0.16 and disorder parameter (a) σ = 0 nm, (b) σ = 5 nm, and (c)
σ = 10 nm, respectively. Spectra are measured for three different sample orientations: 45◦ (square dots), 90◦ (triangular dots), and 0◦ (circular
dots).
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FIG. 8. (Color online) (a) Experimental be-
havior of the Q factors versus the disorder
parameter σ for six series of cavities with dif-
ferent nearby hole shifts �x/a. (b) Theoretical
calculation of Q versus σ , assuming an intrinsic
Qres = 230 × 103 (see text). It should be noted
that each experimental datapoint corresponds
to a different disorder distribution, whereas the
distribution is the same for each of the theoretical
curves and is scaled with σ .

each series of cavities is characterized by a fixed hole shift and
different amounts of disorder. All measurements shown below
were made with a sample orientation of 45◦.

In Fig. 8(a), one can notice that, as might be expected,
there is a reduction in the Q factor for every series of
cavities with increasing disorder parameter σ . The relative
reduction is stronger for series in which the Q value for zero
intentional disorder is higher, i.e., the cavities with lower
Q factor are more robust to lattice disorder. In Fig. 8(b),
we show the theoretical points, obtained as follows: For a
particular disorder distribution, the Q factor is calculated for
each σ and �x/a, giving a design value Qdesign. The effect
of unintentional, residual disorder is taken into account by
using the phenomenological formula22,26 1/Q = 1/Qdesign +
1/Qres, where the term Qres is obtained from the best fit of
data and is found to be Qres = 230 × 103. Figure 8 shows
that the reduction of the quality factor for increasing σ is in
good agreement with the theoretical calculation. Notice that
the trend as a function of nearby hole shift �x/a is also well
reproduced. Following Ref. 22, we can estimate the residual
disorder by using the result

1/Qres = A(σ/a)2, (3)

where A is calculated27 to be 0.62 for the present cavities, and
obtain σ = 1.1 nm. This is a measure of the residual r.m.s.
variation of hole radii in the present sample.

As it is possible that different disorder distributions give
very different effects (even for the same σ ), we fabricated and
measured cavities with many disorder distributions in order to
verify that the reduction of the Q factor as a function of σ

is a general feature and not related to a particular realization
of disorder. All the new samples have the same geometrical
parameters (a = 420 nm, r/a = 0.3, �r/a = −0.06, �x/a =
0.16) but different disorder distributions, i.e., different sets of
random numbers were used to generate the radii. The values
for σ for this new set of samples are restricted to 0, 5, and
10 nm. We can notice in Fig. 9(a) that, similar to before, there
is an overall reduction of the quality factors by increasing the
disorder, but we can also recognize a considerable spread of
values for a fixed σ . In Fig. 9(b), we report the theoretical
calculation of Q’s versus disorder for 15 distributions (labeled
by the seed for random number generator). Again, we use
the formula 1/Q = 1/Qdesign + 1/Qres and find Qres = 700 ×
103, which indicates the improved quality of the new sample.

By using Eq. (3), we obtain a residual disorder parameter
σ = 0.64 nm, considerably lower than in the previous sample
because of improved fabrication.

The overall behavior and the spread of values is quite
similar in experiment and theory; however, the theoretical
Q’s and the corresponding spreads tend to be smaller than
the experimental values. This discrepancy is probably due
to imperfections in the implementation of the disordered
radii during electron-beam lithography. During the exposure,
it is possible that the backscattering of electrons from the
substrate28 has a slightly homogenizing effect on the resulting
hole radii. When a large hole and a small hole are adjacent
to one another, stray electrons from the large hole enlarge the
radius of the small hole by an amount that is proportional
to the area of the larger hole (i.e., to the number of incident
electrons). In return, the small hole enlarges the large hole
by an amount that is proportional to its own area. Thus, this
phenomenon may correlate the radii of neighboring holes,
reducing the randomness and increasing the experimental Q

factors relative to the calculations with uncorrelated disorder.
Due to the nanometer scale of this disorder, observing this
correlation using analysis of SEM images is very challenging.

Looking at the values without intentional disorder (σ = 0),
we would expect the Q’s to be the same for all the cavities,
as is indeed the case in the theoretical results; in the exper-
iments, however, the reproducibility limits of the fabrication
processes can lead to different Q values for nominally identical
cavities. Indeed, as we can see in Fig. 9(a), the cavities
with no intentional disorder show a noticeable difference in
the Q factors. This spread in Q values corresponds to the
theoretically calculated spread for σ of the order of half a
nanometer: this yields an independent estimation of the level
of unintentional (technology-limited) disorder, which is quite
close to the previous one.

It is interesting to note that, among the calculated dis-
tributions of Fig. 9(b), there is one case in which disorder
increases the quality factor of the cavity mode with respect to
σ = 0. In that case, a special realization of disorder improves
local geometry optimization of the cavity mode, leading to a
further increase of the Q factor. This may be explained by
the following: As light oscillates in the cavity, it encounters
exactly the same disorder on each trip. This results in the
formation of a distorted, but well defined, standing wave
pattern, generally with different k-vector components inside
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FIG. 9. (Color online) (a) Experimental be-
havior and (b) theoretical calculation of Q

factors versus the disorder parameter σ for 15
different disorder distributions. The nearby hole
shift is fixed to �x/a = 0.16.

the light cone. In some instances, the k-vector distribution
may be such that out-of-plane radiation is actually reduced,
improving the Q factor. Similar behavior is also observed
experimentally, with remarkably high Q factors measured for
cavities with significant disorder, e.g., Q = 80 × 103 for σ =
5 nm in Fig. 9(a).

Figure 10 shows the measured and calculated wavelengths
for the same cavities of Fig. 9. Apart from a small overall
shift (∼5 nm), the trend of cavity mode wavelengths versus
disorder parameter is very well accounted for by theory.
Most importantly, the spread of wavelengths is accurately
reproduced. Again, the difference between the theoretical and
experimental spreads at zero intentional disorder indicates the
level of residual disorder and compares well with previous
estimates. The effect of any unintentional correlation on the
resonance wavelengths will also be different to that on the
Q factors. As the resonance wavelength is primarily given
by the mode shape and volume, it will be less strongly
affected by any correlation of disorder and, consequently,
the agreement between theory and experiment is better. This
also shows that the definition of disorder parameter σ is
consistently given in experiment and theory, a nontrivial
point.

Thus, the comparison of measured and calculated wave-
lengths confirms the validity of the theoretical description with
a one-parameter disorder model and is compatible with the
previous argument about the possible presence of correlated
disorder. Generally speaking, a more refined description of the
effects of fabrication imperfections would require adopting a

two-parameter disorder model with intrahole correlations23,29

in addition to possible inter-hole correlations resulting from
stray electrons in e-beam lithography. Such a model is not
expected to change any of the previous conclusions about the
effect of disorder on cross-polarized light scattering (Sec. III)
and on the general behavior of mode wavelengths, Q factors,
and their spread.

It is interesting to notice that the spread of wavelengths at
zero intentional disorder in Fig. 10(a) is well accounted for by
a disorder parameter σ = 1 nm in Fig. 10(b), while the spread
of Q factors at zero disorder in Fig. 9(a) corresponds to σ

much smaller than 1 nm in Fig. 9(b). This suggests again that
wavelengths and Q factors are affected in a different way by
deviations from the designed disorder distribution, which we
attribute to correlations due to proximity effect in lithography.

Hagino et al. have reported qualitatively similar results
in their theoretical work on the effect of fluctuations in
hole radii and positions in heterostructure nanocavities.30 The
general trends in Q factor and resonant wavelength are in
good agreement with those reported here. However, there are
differences in the actual values of Q as a function of σ ; for
example, a Q of 2 × 106 is obtained in Ref. 30 for σ =
1 nm, while all our values (theoretical Qdesign and residual
Qres) are considerably smaller. Some of these quantitative
differences can be attributed to the well-known fact that the
designed Q factors of heterostructure cavities are generally
much higher than those of L3 cavities. Nevertheless, we
believe that caution is required when comparing absolute
numbers for the effects of disorder in different systems and/or

(a) (b)

FIG. 10. (Color online) (a) Experimental
behavior and (b) theoretical calculation of cavity
mode wavelength versus the disorder parameter
σ for 15 different disorder distributions. The
nearby hole shift is fixed to �x/a = 0.16.
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with different computational implementations (meaning real-
or reciprocal-space cutoffs, gridding effects, etc). The various
aspects may interfere in a nontrivial way, thereby jeopardizing
a precise comparison of results. The comparison with the
experimental data shown in Figs. 8, 9, and 10 provides strong
support for the method presented in this paper, nevertheless,
since the parameter A in Eq. (3) is design dependent, the
application of this method to other cavity designs is nontrivial.

A comparison with waveguides22,23,29,31–36 is challenging
for similar reasons. In a waveguide, the traveling wave always
experiences a different distribution of imperfections, being
subject to “truly random”disorder rather than the repeated
distribution (with a period given by the roundtrip) experienced
by the standing wave of the cavity. In addition, for a
waveguide, some physical effects such as distribution of
backscattered electrons may be different and there is also a
complex interplay between backscattering and out-of-plane
loss. This makes quantitative comparisons difficult at the
current time.

V. CONCLUSIONS

In this paper, we have studied the effects of intentional
lattice disorder on the fundamental mode of L3 PhC cavities,
focusing on the mode symmetry and quality factor. By using
measurements of cross-polarized laser light scattering for
different sample orientations, we have demonstrated that the
presence of lattice disorder gives rise to a signal for every
orientation, including 90◦ and 0◦ (i.e., cavity axis aligned with
either the analyzer or the polarizer). The results are consistent
with a group-theoretical analysis of cavity mode symmetry.
In the absence of disorder for 90◦ and 0◦ orientation, there is
no simultaneous coupling of cavity mode with incoming and
outgoing fields, thus, the cross-polarized scattering signal is
zero. In the presence of disorder, calculations of the mode
profile indicate that the in-plane symmetry is broken and

resonant scattering can occur for any orientation, in agreement
with the experiments. Thus, cross-polarized light scattering
can occur in two circumstances: when the cavity axis is tilted
with respect to polarizer and analyzer axes, or when the sample
contains disorder, which allows for in- and out-coupling for
any orientation.

We have also demonstrated that, as might be expected, the
Q factors generally decrease with increasing lattice disorder,
but the detailed behavior of Q versus disorder parameter
σ can be quite different from one hole radii distribution
to another. The spread of mode Q factors and wavelengths
for different values of σ is also an interesting quantity in
relation with the effects of disorder. The spread in Q factor
reaches a maximum for σ = 2.5–5 nm before reducing as the
disorder-induced loss dominates. The resonance wavelengths
behave differently, with their spread always increasing with
disorder. It is particularly striking that, for certain distributions,
even significant disorder causes only a small reduction in
Q, with one cavity giving a Q of 80 × 103 for σ = 5 nm,
i.e., even when the intentional disorder parameter is nearly
10 times larger than the residual one. Analysis of the results
by means of theoretical calculations allows estimating the
amount of residual, unintentional disorder, which ranges from
∼1.1 to 0.6 nm for the investigated samples. We emphasize
that these values, which represent the technology limits for
the nanofabrication procedure, apply to a large set of cavities
and, in this sense, the results are truly representative of a
reproducible technology.
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(2009).

35S. Mazoyer, J. P. Hugonin, and P. Lalanne, Phys. Rev. Lett. 103,
063903 (2009).

36L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White,
M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer,
J. P. Hugonin, P. Lalanne, and T. F. Krauss, Opt. Express 18, 27627
(2010).

045423-9

http://dx.doi.org/10.1063/1.3107263
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1049/el:20063077
http://dx.doi.org/10.1364/OE.19.001991
http://dx.doi.org/10.1103/PhysRevB.73.235114
http://dx.doi.org/10.1016/j.photonics.2005.09.012
http://dx.doi.org/10.1002/pssb.200743182
http://dx.doi.org/10.1002/pssb.200743182
http://dx.doi.org/10.1016/S0167-9317(03)00070-4
http://dx.doi.org/10.1103/PhysRevLett.94.033903
http://dx.doi.org/10.1103/PhysRevLett.94.033903
http://dx.doi.org/10.1103/PhysRevB.79.085112
http://dx.doi.org/10.1103/PhysRevB.79.085112
http://dx.doi.org/10.1103/PhysRevLett.99.253901
http://dx.doi.org/10.1103/PhysRevLett.99.253901
http://dx.doi.org/10.1364/OE.16.017076
http://dx.doi.org/10.1103/PhysRevB.80.195305
http://dx.doi.org/10.1103/PhysRevLett.102.253903
http://dx.doi.org/10.1103/PhysRevLett.102.253903
http://dx.doi.org/10.1103/PhysRevLett.103.063903
http://dx.doi.org/10.1103/PhysRevLett.103.063903
http://dx.doi.org/10.1364/OE.18.027627
http://dx.doi.org/10.1364/OE.18.027627

