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We detail here the Montecarlo and master equation treatments used to produce the results of
figures 1 and 2 in the main text. We also give details on the photonic crystal cavities design, and
the corresponding estimation of the single-photon nonlinearity reported in the manuscript.

I. MONTECARLO WAVE FUNCTION METHOD

The statistics of the photons emitted by the system
under pulsed excitation were first addressed by perform-
ing quantum Montecarlo simulations [1]. This method
not only allows to work with larger truncated Hilbert
spaces but also provides direct access to individual pho-
ton counts, thus embodying the closest theoretical sim-
ulation of an actual Hanbury Brown-Twiss experiment.
In brief, the algorithm is based on the stochastic evolu-
tion of the system wave function through the Schrödinger
equation

Ĥ |ψ〉 = i~
∂

∂t
|ψ〉 , (1)

written for the non-Hermitian effective Hamiltonian

Ĥ = Ĥs −
i~
2

∑
j

κj â
†
j âj , (2)

The non Hermitian part of 2 results in a decay of
the norm 〈ψ | ψ〉. During the evolution of Eq. 1, ran-
dom numbers 0 < r < 1 are drawn and the condition
〈ψ | ψ〉 ≤ r decides for the action of a jump operator,
âj |ψ〉, corresponding to the measurement of a photon.
The proper quantum jump operator is chosen such that
j is the smallest integer satisfying

∑
j Pj ≥ r, where Pj

are the probabilities for the mode j to emit a photon at a
given time. Each evolution of Eq. 1 produces a stochas-
tic quantum trajectory associated with the state |ψ(t)〉j ,
and the procedure can be repeated N times to form an
ensemble average of realizations in view of approximat-
ing the system density matrix as ρ̂ (t) =

N→∞
|Ψ (t)〉〈Ψ (t)|,

where

|Ψ (t)〉 =

N∑
j=1

|ψ (t)〉j/N , (3)

and its potential mixed nature. Any observable or cor-
relation are obtained from 〈Ô(t)〉 = Tr[ρ̂(t)Ô]. The full
access to photon counts and emission times history al-
lows to mimic the experimental detection scheme. The
two-times second-order correlation function, g(2)(t1, t2),
can be reconstructed from the statistics of photons de-
lays analogously to a Hanbury Brown and Twiss (HBT)
setup. Further details on the numerical procedure em-
ployed to obtain the results of Fig. 2 in the main text are
given in the following.

II. TWO-TIME CORRELATIONS UNDER
PULSED EXCITATION

In our Montecarlo simulations we have worked on the
basis of trajectories containing single pulses, which makes
the data analysis more flexible. We have tracked the
quantum jumps performed by the driven cavity from
which the photon antibunching is expected. We point out
that in reality one should expect a weak mixing between
both cavity fields to occur in the guiding channels. It can
be accounted for within an input-output treatment. In
such a case the laser detuning should be properly adapted
according to the prescriptions of Ref. 2. To analyze de-
lays within a given pulse we need to track the trajectories
where at least two quantum jumps occurred within ∆T
and these events are obviously rare given the relatively
small occupation of the cavity 1 as one can see from Fig. 2
of the main text. We have therefore performed a large
campaign of massively parallelized simulations on an high
end cluster based on N = 1.5 × 108 pulses from which
we have recorded the whole quantum jump history. We
considered pulses of duration 4 ns separated by 20 ns
to avoid any overlap bringing some unwanted pulse to
pulse correlations. Our simulation therefore covers not
less than 1 seconds of recorded data.

To build the Monte-Carlo curve of Fig. 2g (blue disks),
we have worked on quantum jumps that occurred in a
time window of width ∆T = T2 − T1 = 1.57 ns centered
on the g(2)(t, t) minimum (see yellow surface and blue
curve of Fig. 2f) mimicking the temporal filtering. In-
side this global window we have considered sub-windows
of variable duration ∆t = t2 − t1 ranging from 6.5 ps to
∆T . Each of these sub-windows was gradually displaced
by ∆t within ∆T , starting from the condition t1 = T1

(t2 = t1 +∆t) and until t2 = T2 (t1 = t2−∆t) is fulfilled.
For a given value of ∆t, the un-normalized second order
correlation G(2)(∆t) is obtained from the sum of photon
pair counts recorded by slicing the time window, which
increases the statistics by Nw = ∆T/∆t. Therefore it
allows to work with a number of counts that would cor-
respond to N ×Nw trajectories (pulses) reducing by Nw

the required computational time. Finally, the g(2)(∆t) is
obtained by normalizing G(2)(∆t) to the number double
counts expected from a Poissonian statistics. The errors
(magenta curve) are computed from the square root of
the number of counts averaged over the sliding windows.
Obviously the error is inhomogeneous versus ∆t, given
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that Nw is variable, and it is small both in the regions of
narrow and wide ∆t where respectively Nw is large and
number of counts is important. The previously described
procedure is summarized in Fig. S1 (see captions).

To build the histograms of Fig. 2d-e displaying the
pulse-to-pulse statistics, we have performed a Monte-
carlo rearrangement of our single pulse trajectories to
randomize their time ordering, as it would be obtained
from many pulse trajectories or in an actual experimental
situation.
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FIG. 1. (a) Average occupation of cavity 1 (red) and the equal
time second order correlation function (blue line). The yellow
region highlights the global time window ∆T from which the
photon counts are extracted. (b) Zoom in between the vertical
dashed lines of panel (a) showing an illustrative set of sub-
windows for a given value of ∆t. The wavy lines illustrate
and example of quantum jump series for a given trajectory.
Only the 2 jumps event are kept for the G(2)(∆t) statistics.
3 and more jumps events are totally absent in the conditions
we consider.

III. QUANTUM MASTER EQUATION

The master equation for the density matrix reads

ρ̇ =
1

i~
[ρ, Ĥs] + L(1,2) , (4)

where losses are accounted for through Liouvillian oper-
ators in the usual Lindblad form for the two resonators
modes, L(1,2) =

∑
i=1,2 κi[âiρâ

†
i − 0.5(â†i âiρ − ρâ†i âi)].

Further sources of loss, such as nonlinear absorption (e.g.
related to the imaginary part of χ(3)) or pure dephasing,
could also be added to Eq. 4 (see, e.g. 5 and 13), but
we neglect them here for simplicity. Moreover, the model
can be generalized to include input and output quantum
channels [2].

Single-time evolution and steady state numerical re-
sults of Eq. 4 can be straightforwardly performed, as
in Refs. 3–5. Here, we were additionally able to con-
firm the Montecarlo results (cyan curve in Fig. 2g of
the main text). The un-normalized and normalized two-
times second-order correlation functions of cavity 1 were

computed as

G(2) (t, t′) = Tr
[
â†1â1Ut→t′

(
â†1â1ρ̂ (t′)

)]
(5)

g(2) (t, t′) =
G(2) (t, t′)

Tr
[
â†1â1ρ̂ (t)

]
Tr
[
â†1â1ρ̂ (t′)

] , (6)

where Ût→t′(Ô) is the propagator of the operator Ô from
t to t′ associated with Eq. 4. The photon statistics pro-
duced within a time window ∆t = t2 − t1 is obtained
from

g(2) (∆t) =

˜
∆t
G(2) (t, t′) dtdt′˜

∆t
n1(t)n1(t′)dtdt′

(7)

where n1(t) = Tr[â†1â1ρ̂ (t)]. This exact calculation per-
fectly reproduces the Montecarlo wave function results
within the error envelope, as it is reported in Fig. 2g
(cyan curve).

IV. PHOTONIC CRYSTAL CAVITIES DESIGN

Photonic crystal cavities allow to achieve record fig-
ures of merit today, such as ultra-small mode volumes
and ultra-high quality factors [6]. One of the most used
photonic crystal cavity designs is realized by removing
three air holes in a triangular lattice [7], which is usu-
ally defined a L3 point defect. Recently, a combination
of fast simulation tools [8] and genetic optimization [9]
have allowed to show that Q factors largely exceeding
106 can be designed for such cavities, which was shown
experimentally [10].

For the photonic crystal cavities design used in this
work, we started from a standard SOI photonic crystal
membrane, with the silicon layer thickness of 220 nm.
We set the lattice constant to a = 400 nm and the holes
radius to r = 112 nm (r/a = 0.28) to tune the cavity
mode resonant wavelength in the relevant telecom band,
i.e. λ = 1.5 µm (∼ 0.825 eV). The three holes along the
cavity axis have been shifted by s1 = 120 nm (s1/a = 0.3)
s2 = 100 nm (s2/a = 0.25), and s3 = 40 nm (s3/a = 0.1),
to reach a theoretical (unloaded) Q ∼ 1.25 × 106. Since
we aim at coupling these cavities with access and output
waveguides, we thus allow the loaded Q-factor to be in
the 0.8× 106 range.

A plot of the normalized electric field intensity, i.e.
.the function |~α(r)|2 with

´
|~α(r)|2dr = 1, is shown in

Fig. S2 for our optimized L3 cavity design, which was
the building block for the the photonic crystal molecules
in Fig. 3 of the main text.

V. ESTIMATING THE EFFECTIVE
PHOTON-PHOTON INTERACTION

In this work, we focus on photonic nanostructures in
silicon, which is a strongly nonlinear material already at
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FIG. 2. Electric field intensity profile at the center of the
silicon photonic crystal membrane.

the level of classical electromagnetic response. In par-
ticular, bulk silicon is characterized by a relatively large
χ(3) susceptibility, while nominally χ(2) = 0 (neglect-
ing surface contributions) owing to the centrosymmetric
nature of the elementary crystalline cell [11]. Strongly

enhanced nonlinear effects have been already reported in
L3 photonic crystal cavities [12].

The photon-photon interaction energy in each res-
onator is given in terms of the material χ(3) by the sim-
plified expression [13]

U =
D(~ωi)

2

8ε0

ˆ
dr

χ(3)(r)

ε2(r)
|α(r)|4 , (8)

where ~α(r) is the three-dimensional cavity field profile,
normalized as

´
|~α(r)|2dr = 1, and D represents the mul-

tiple contributions of the same order of magnitude given
by the different elements of the χ(3) tensor [11].

From the calculated mode profile shown in Fig. S2, the
effective nonlinearity of such a silicon nanocavity can be
estimated through Eq. 8, by using χ(3) ∼ 0.9 × 10−18

m2/V2, which is an appropriate order of magnitude for
the elements of the bulk silicon third-order susceptibility
tensor [11], and D=24 [14]. For the cavity mode profile
of our optimized photonics crystal structure, see Fig. S2,
a quantitative estimate of this integral results in U '
0.8× 10−3 µeV, close to what was assumed in the model
calculations of the main text and confirming the order of
magnitude estimates already given in the literature [5].
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