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We show that photons in two tunnel-coupled microwave resonators each containing a single superconduct-
ing qubit undergo a sharp non-equilibrium delocalization-localization (self-trapping) transition due to strong
photon-qubit coupling. We find that dissipation favors the self-trapped regime and leads to the possibility of
observing the transition as a function of time without tuning any parameter of the system. Furthermore, we
find that self-trapping of photons in one of the resonators (spatial localization) forces the qubit in the opposite
resonator to remain in its initial state (energetic localization). This allows for an easy experimental observation
of the transition by local read-out of the qubit state.

In circuit quantum electrodynamics (QED), superconduct-
ing qubits are coupled with microwave photons in a transmis-
sion line resonator reaching extremely strong light-matter in-
teractions within an integrated circuit [1]. Device integration,
high tunability and individual addressability of each resonator
make wide parameter regimes easily accessible. Circuit QED
thus constitutes one of the most promising solid-state architec-
tures for quantum information processing and offers the pos-
sibility to study fundamental questions of interacting quantum
systems [2]. Initially, the focus has been on the control of the
coupling between a single cavity and a single qubit and subse-
quent work demonstrated a great level of experimental control
of single-cavity systems [3–7]. Now, a key challenge for scal-
ability and further progress in the field is the understanding
of small coupled systems, in particular effective qubit-qubit
and photon-photon interactions and their interplay with dissi-
pation [8–10].

In this letter, we study theoretically a photon Joseph-
son junction (PJJ) consisting of two tunnel-coupled mi-
crowave resonators each containing a single superconduct-
ing qubit (Fig. 1). We show that photons undergo a sharp
non-equilibrium delocalization-localization transition from a
regime where an initial photon population imbalance between
the two resonators undergoes coherent oscillations (delocal-
ized) between the two resonators to another regime where it
becomes self-trapped (localized) as the photon-qubit interac-
tion is increased. Similar self-trapping transitions werefound
in optical fibres [12], molecules [13], cold atom [14–16] and
polariton BEC’s [17]. In all of these systems self-trappingis
due to a Kerr/Bose-Hubbard like nonlinearity and has been
experimentally observed in the semiclassical regime with a
large number of particles. The circuit QED implementation
proposed in this paper has several advantages with respect to
these systems: (i) Self-trapping is due to a Jaynes-Cummings
(JC) rather than a Kerr/Bose-Hubbard like nonlinearity. The
JC interaction accurately describes the photon-qubit coupling
in a microwave resonator [11]. In contrast, a Kerr/Bose-
Hubbard like nonlinearity is often a rather crude approxima-
tion of the experimental conditions [18, 19]. (ii) The PJJ isa
genuinely dissipative system. We show that dissipation favors

the localized regime and leads to the possibility of observ-
ing the localization transition experimentally as a function of
time without tuning any parameter of the Hamiltonian. (iii)
The PJJ may operate in the semiclassical (many photons) as
well as quantum (few photons) limit since each resonator can
initially be pumped with an almost arbitrary number of pho-
tons.
In the following, we study in detail the classical versus quan-
tum nature of this transition and present numerical as well as
analytical results including the effects of dissipation. At the
end of the paper, we outline a precise proposal on how to mea-
sure the localization transition of photons experimentally.

We describe the PJJ (Fig. 1) by a two-site Jaynes-
Cummings-Hubbard Hamiltonian (JCHM) or Jaynes-
Cummings dimer (JCD)

H =
∑

i=L,R

hJCi − J(a†LaR + h.c.) , (1)

wherehJCi denotes the local JC HamiltonianhJCi = ωc a
†
iai+

ωxσ
+
i σ

−
i + g(σ+

i ai + σ−
i a

†
i ) for the left(L) or the right (R)

cavity,ai (a†i ) andσ+
i (σ−

i ) are the photon creation (annihila-
tion) and qubit raising (lowering) operators, respectively. The
photon mode frequency isωc, the qubit transition energy isωx

and the photon-qubit coupling is given byg (we set~ = 1).
The photon-qubit interaction induces an anharmonicity in the
spectrum of the JC Hamiltonian which leads to an effective

J κ
L R

κ g g

FIG. 1: Schematic diagram of the photonic Josephson junction (PJJ)
proposed in this paper. Two transmission line microwave resonators
(L,R) are coupled in series with a tunneling rateJ , determined by
the series capacitance of the resonators. Each resonator isstrongly
coupled to a superconducting qubit with a coupling rateg, providing
a strong JC non-linearity. Photons can leave each resonatorat a rate
κ, providing a mechanism for dissipation.

http://arxiv.org/abs/1006.0094v1


2

-1

0

1

z

0 20 40 60
t [1/J]

-1

0

1

z

-0.5
0

0.5

σ zL

0 20 40 60
t [1/J]

-1

0

1

z

0 5 10
t [1/J]

-0.5
0

0.5

σ zR

40 40.5 41
t [1/J]

0.96

1

z
0.99

1

z

40 42 44
t [1/J]

-1

0

1

z

-0.5
0

0.5

σ zL

0 0.5 1
t [1/J]

-0.5
0

0.5

σ zR

(a) (b)

(c)

(d) (e)

(f)

FIG. 2: Photon imbalancez(t) and inversion of the qubitsσz(L,R)(t)
obtained from a semiclassical approximation for the dissipative JCD
with κ = 0 (black curves) andκ = 0.05J (red curves) for ini-
tially nL(0) = N(0) = 20 photons (and qubits initially in their
groundstateσz(L,R)(0) = −1/2). Shown are results in the Joseph-
son regime withg = 0.9gc (Figs. (a),(b),(c)) and in the self-trapped
regime withg = 1.1gc (Figs. (d),(e),(f)). Figures (a),(c) and (d),(f)
are zoom-in’s corresponding to the boxes in figure (b) and (e). Here,
the photon number scales asN(t) = N(0)e−κt.

on-site repulsion (anti-bunching) for photons. Throughout the
paper we will assume zero detuning (ωx = ωc) for which this
anharmonicity is strongest. The JCHM has originally been in-
troduced to describe a superfluid-Mott transition of polaritons
in an infinite array of cavities [21–28]. Recently, dynamical
aspects have been investigated restricted to the one excitation
(either photon or qubit) subspace and neglecting dissipation
[29–31]. In the JCD discussed here, cavity photon dissipation
is taken into account by a Lindblad master equation for the
system’s density matrixρ

∂ρ

∂t
= i[ρ,H ] +

κ

2

∑

i=L,R

(

aiρa
†
i − a†iaiρ− ρa†iai

)

, (2)

whereκ−1 is the photon life time in each cavity. Using a Fock
state basis the master equation is solved for up to20 photons.
The central quantity of interest is the population imbalance
z(t) = (nL(t) − nR(t))/N(t) with ni = Tr â†i âiρ̂ and the
total photon numberN = nL + nR. Throughout the paper,
we consider the experimentally most relevant initial condition
where the left cavity is pumped withN photons, the right cav-
ity is empty and both qubits reside in their respective ground-
state att = 0. For large photon numbers, we can resort
to a semiclassical approximation in which correlation func-
tions in Eq. (2) are decoupled by simple factorization, e.g.,
〈a†σ−〉 ≈ 〈a†〉〈σ−〉, yielding eight coupled equations of mo-
tion for the expectation values of the photon and qubit opera-
tors which can be solved for an arbitrary number of photons.
In the following, we present results of the semiclassical ap-
proximation (Fig. 2) as well as the full quantum solution of
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FIG. 3: Photon imbalancez(t) obtained from a full numerical so-
lution of the master equation (2) (including quantum fluctuations)
with κ = 0 (black curves) andκ = 0.05J (red curves) for ini-
tially N(0) = 20 photons (and qubits initially in their ground-
stateσz(L,R)(0) = −1/2). Figs. (a)-(f) show results forg =
0.1, 0.4, 0.6, 0.8, 0.9, 2gc. The inset shows the time-averaged im-
balance〈z〉 (averaged over the time intervalt ∈ [0, 100/J ]) with-
out dissipation (κ = 0) (dashed line) as a function of the photon-
qubit couplingg normalized with the semiclassical critical valuegc
in Eq. 4. In comparison, the semiclassical transition at this scale is
essentially abrupt (dotted line).

Eq. (2) (Fig. 3). In both cases, we have chosen the same num-
ber of initial photons for better comparison [33].

We first discuss results of the semiclassical approximation
without dissipation (κ = 0). In this case one can further re-
duce the number of coupled equations using energy conserva-
tion and the specific initial condition chosen above, yielding
only four equations of motions

θ̇L = −2gRe(ψL)

θ̇R = −2gIm(ψR)

Re(ψ̇L) = g sin(θL)/2− JIm(ψR)

Im(ψ̇R) = g sin(θR)/2 + JRe(ψL) , (3)

whereψ(L,R) = 〈a(L,R)〉, Im(ψL) = Re(ψR) = 0 and the an-
glesθi describe the qubit states〈~σL〉 = −(sin θL, 0, cos θL)/2
and 〈~σR〉 = −(0, sin θR, cos θR)/2. At zero interaction
(g = 0) Eqs. (3) are exactly solvable. In this limit the
photon imbalance undergoes coherent harmonic oscillations
z(t) = cosωJ t with frequencyωJ = 2J . As g becomes non-
zero this frequency decreases and the oscillations become an-
harmonic. At a critical value of the coupling constant

gc ≈ 2.8
√
NJ (4)

the period of oscillation diverges (critical slowing down)and
an abrupt transition occurs to a localized regime, where the
initial photon imbalance stays almost completely in the left
cavity, i.e.,z(t) ≈ 1. Solutions of Eq. (3) near the transition
(g ∼ gc) are shown in Fig. 2. An important and useful result
is that the localization transition of photons can effectively be
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observed in the population inversions of the two qubits, which
depend on the number of photons in each cavity. In the de-
localized regime (g < gc), when photons are tunneling, e.g.,
from the left into the right cavity, Rabi oscillations of theleft
qubit slow down considerably while those of the right qubit
speed up (Fig. 2(a)). After half a tunneling period the sce-
nario is reversed. On the other hand, in the localized regime
(g > gc) the left qubit displays fast, complete Rabi oscilla-
tions while the right one displays slow, small amplitude os-
cillations (Fig. 2(d)). In other words, spatial localization of
photons in the left resonator induces an energy state localiza-
tion of the right qubit (notice that deep in the localized regime
(g ≫ gc) the right qubit remains very close to the ground-state
at all times, i.e.,σz(L,R)(t) ≈ σz(L,R)(0)). This suggests that
the localization transition of photons in a PJJ can be observed
experimentally by a local readout of the qubit states. It also
shows that qubit-qubit correlations are largely suppressed in
the localized regime.

Taking into account dissipation within the semiclassical ap-
proximation (i.e., solving all eight coupled equations of mo-
tion) leads to two important effects : (i) Dissipation stabi-
lizes the localized regime, i.e., we find self-trapped solutions
for significantly smaller values of the photon-qubit coupling
g < gc; (ii) Dissipation also leads to the possibility of observ-
ing the localization transition dynamically, i.e., in timewith-
out tuning any parameter of the Hamiltonian. This is shown
in Fig. 2(b). If the interaction parameter is slightly belowthe
critical value (g = 0.9gc), the system first undergoes coher-
ent, large amplitude oscillations but switches to self-trapping
after a critical timetc1 ≈ 30/J . When less than two pho-
tons are left in the PJJ (zero effective photon on-site repul-
sion) attc2 ≈ 70/J , the qubit Rabi oscillations induce single-
photon Rabi oscillations between the cavities with amplitude
z(t) ≈ 1. If, on the other hand, the interaction strength is
above the critical value (g = 1.1gc), the system always re-
mains self-trapped as long asN(t) > 1 (before it enters the
regime of single-photon Rabi oscillations attc2). This in-
teresting behaviour can be explained with the different scal-
ing of the qubit-photon interaction (∼ g

√
N ) and the tun-

neling term (∼ JN ) with photon numberN , which leads to
the square-root dependence of the critical interaction strength
gc ∼

√
NJ (see Eq. (4)). Consequently, as the system starts to

dissipate photons,gc effectively decreases and the system can
switch to self-trapping at a certain timetc1 > 0, irrespective
of the fact that we initially started in the delocalized regime
with g < gc. Notice that this effect is fundamentally differ-
ent from a Kerr/Bose-Hubbard like nonlinearity (with Hub-
bard parameterU ), where the repulsive interaction scales like
∼ UN2 and thus the critical interaction strength is inversely
proportional to the particle number (Uc ∼ J/N ).

Full numerical solutions (including quantum fluctuations)
of the master equation (2) are shown in Fig. 3. Most im-
portantly, we observe that the localization transition survives.
However, specific quantum correction show up: (i) Deep in-
side the delocalized regime (see Fig. 3(a)) the photon imbal-
ance displays beatings of the coherent oscillations, a quan-
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FIG. 4: Rescaled photon imbalancez̃ = (n1(t)−n2(t))/N(0) deep
in the self-trapped regime forN(0) = 5 photons withg = 3gc
and κ = 0. Shown are small amplitude Rabi oscillations on
short time scales (Fig. 4(a)) and large amplitude ultra-long tunnel-
ing (Fig. 4(b)). Results of a full numerical solution of the quantum
master equation (2) (red curve in Figs. 4(a) and 4(b)) are compared
with strong-coupling degenerate perturbation theory (sdPT) (blue
curve) based on the effective level scheme shown in in Fig. 4(c).
Here, |Mσ,Kµ〉 = {|Mσ〉L|Kµ〉R, |Kµ〉L|Mσ〉R} denotes the
pair of degenerate polariton eigenstates of the Hamiltonian (1) at
J = 0 with (M,K) lower/upper (σ, µ = ±) polaritons in left
(L) and right (R) cavity, respectively. Note that a polariton eigen-
state |Mσ〉 is a mixed photon (M,M − 1) - qubit (g, e) state,
i.e, |Mσ〉 = (|M , g〉 + σ|(M − 1) , e〉)/

√
2 (for zero detuning

(ωx = ωc) andM > 0; the zero polariton state is a special case
with |0〉 ≡ |0−〉 = |0 , g〉). Their degeneracy is lifted due to tun-
neling J , which induces the splitting∆. The short and long time
dynamics deep inside the localized regime (Figs. 4(a) and 4(b)) can
be explained quantitatively using this effective level scheme together
with sdPT. The frequency of the Rabi oscillations (due to exchange
of one photon between local qubit and cavity) is given by the large
splitting between lower and upper polariton states which yields for
large photon numbersωR = 2g

√
N +O(1/N). The period of ultra-

long tunneling is set by the splitting∆, which we have calculated in
leading order fromN -th order sdPT yielding∆ = cNJ(J/g)

N−1

with a constantcN that depends on the number of photonsN . The
inset in Fig. 4(b) shows the scaling of the corresponding time pe-
riod T = 2π/∆ of the large amplitude oscillations as a func-
tion of N . Neglecting the perturbative corrections to the eigen-
vectors of the Hamiltonian (1), we find for the rescaled imbalance
z̄ = cos(∆t)

[

1− (1/N) sin2(ωRt)
]

+ O(J2/g2) which quanti-
tatively reproduces the numerical results in Figs. 4(a) and4(b) (red
curve).

tum feature that is absent in semiclassical solutions. Dissi-
pation strongly damps the large amplitude oscillations and
suppresses these beats if the dissipation time is smaller than
the beating time; (ii) the localization transition is shifted to
smallerg values and smoothened (see inset Fig. 3); (iii) in
the localized regime with dissipation (see Figs. 3(e,f)) the im-
balance approaches zero asymptotically at long times display-
ing no single-particle Rabi oscillations. (iv) due to the strong
damping of the initial large amplitude oscillations, the clear
switching behavior observable in the semiclassical limit for
g < gc (Fig. 2(b)) is washed out while below the transition
(see Fig. 3(c)), the system still reaches a small non-zero aver-
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age of the imbalance at intermediate times. (v) the deeply lo-
calized regime displays rich multi-scale time dynamics, which
can be explained using the effective level scheme shown in
Fig. 4(c) (for a detailed explanation see caption in Fig. 4).
For short times, Rabi oscillations of the qubit at a frequency
ωR ≈ 2g

√
N (corresponding to the large splitting between

upper and lower polariton states) induce small amplitude os-
cillations (on the order∼ 1/N ) of the rescaled photon imbal-
ancez̄(t) (see caption in Fig. 4) at the same frequency. How-
ever, at ultra-long times the localization of photons is unsta-
ble and almost complete oscillations of the imbalance set in.
The small frequency of these oscillations is given by the split-
ting ∆ ∝ J(J/g)N−1 of two degenerate polariton states due
to tunneling. The periodT = 2π/∆ of these oscillations is
found to increase very fast (quasi-exponentially) with increas-
ing photon number (see inset in Fig. 4(b)), Thus, true local-
ization disappears in a small system, but turns exponentially
’good’ with increasing system size (photon number). Already
for five photons the ultra-long tunneling regime is hardly ac-
cessible experimentally. Ultra-long tunneling times werealso
predicted for the BHM [32]. We should note, however, that
under experimental conditions any asymmetry between the
two cavities (e.g., due to small differences in detunings orcou-
pling constants) will lift this degeneracy and set the effective
time period of the large amplitude oscillations. A corollary
of this statement is that as long as such an asymmetry is much
smaller than the frequencyωJ = 2J the localization transition
should be observable.

The physics of a PJJ should be readily observable using a
circuit QED implementation with realistic device parameters.
A possible device consists of two series-coupled transmission
line resonantors, each containing a single superconducting
qubit (Fig. 1). A broad parameter space is available through
changes in lithographic patterning. In particular, qubit-cavity
couplingg can range from 1 MHz to 300 MHz, while cavity-
cavity couplingJ and cavity dissipation rateκ can be tuned
independently in a range 50 kHz to 50 MHz. An experimen-
tal observation of the localization transition proceeds inthree
parts. One cavity is populated with an initial photon popu-
lation (initialization), evolution proceeds for a fixed duration
of time (evolution), and the photon occupancy of each cav-
ity is finally measured (read-out). This entire process would
be repeated for varying evolution times, thus allowing fullre-
construction of the population imbalancez(t). Initialization
can be accomplished using three different methods: (i) In the
simplest method, the cavity is populated with a coherent pho-
ton state while the qubit is far off resonance (ωx ≪ ωc); the
qubit is then quickly brought into resonance (ωx = ωc) for the
evolution [4, 5]. This scenario is best described by the results
of the semiclassical approximation in Fig. 2. (ii) The cavity-
qubit system can also be populated directly with a polariton
state, i.e., an eigenstate of the JC Hamiltonian, using a prop-
erly timedπ-pulse [6]. (iii) Finally, aN -photon Fock state
can be constructed sequentially by successively exciting the
qubit very quickly and bringing it into resonance (ωx = ωc).
The multi-photon/polariton transitions in the latter two scenar-

ios are resolvable up to5 − 10 excitations and are faithfully
realized by the initial conditions chosen in Fig. 3 (full quan-
tum calculation). After evolution for a given time, the qubits
coupled to each cavity will be used to measure the photon
occupation of that cavity. When strongly coupled, the qubit
frequency is shifted depending on the number of photons in
the cavity [3]; by interrogating these different frequencies, a
quantum non-demolition experiment of photon number can be
performed [7].

In this work we have shown that two tunnel-coupled mi-
crowave resonators each containing a Jaynes-Cummings type
nonlinearity undergo simultaneously sharp localization tran-
sitions of photons (spatial) and qubits (energetic). We have
shown that dissipation can drive this transition if the coupling
constants are properly chosen without the necessity of tuning
any parameter of the system. Our results suggest many direc-
tions of further theoretical investigations including effects of
detuning, quantum-classical crossover and interplay of local-
ization and entanglement.
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