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We show that photons in two tunnel-coupled microwave rewaaach containing a single superconduct-
ing qubit undergo a sharp non-equilibrium delocalizatiocalization (self-trapping) transition due to strong
photon-qubit coupling. We find that dissipation favors te#-trapped regime and leads to the possibility of
observing the transition as a function of time without tunamy parameter of the system. Furthermore, we
find that self-trapping of photons in one of the resonatagpat{al localization) forces the qubit in the opposite
resonator to remain in its initial state (energetic loclian). This allows for an easy experimental observation
of the transition by local read-out of the qubit state.

In circuit quantum electrodynamics (QED), superconductthe localized regime and leads to the possibility of observ-
ing qubits are coupled with microwave photons in a transmising the localization transition experimentally as a fuootof
sion line resonator reaching extremely strong light-mratte  time without tuning any parameter of the Hamiltonian. (iii)
teractions within an integrated circuit [1]. Device intation, The PJJ may operate in the semiclassical (many photons) as
high tunability and individual addressability of each nestor ~ well as quantum (few photons) limit since each resonator can
make wide parameter regimes easily accessible. Circuit QEitially be pumped with an almost arbitrary number of pho-
thus constitutes one of the most promising solid-stateiech  tons.
tures for quantum information processing and offers the posin the following, we study in detail the classical versusmua
sibility to study fundamental questions of interactingigiuen ~ tum nature of this transition and present numerical as veell a
systems|__[|2]. Initially, the focus has been on the controheft analytical results including the effects of dissipationt the
coupling between a single cavity and a single qubit and subsend of the paper, we outline a precise proposal on how to mea-
guent work demonstrated a great level of experimental obntr sure the localization transition of photons experimentall
of single-cavity systemE[El—?]. Now, a key challenge folsca We describe the PJJ (Fidl] 1) by a two-site Jaynes-
ability and further progress in the field is the understagdin Cummings-Hubbard Hamiltonian (JCHM) or Jaynes-
of small coupled systems, in particular effective qubibiju Cummings dimer (JCD)
and photon-photon interactions and their interplay wigsdi
pation [8--10]. H = Z hC = J(afar +hc), 1)

In this letter, we study theoretically a photon Joseph- =LR
son junction (PJJ) consisting of two tunnel-coupled mi-whereh! denotes the local JC Hamiltonian® = w, afa; +
crowave resonators each containing a single superconduq_:,y—zajai— + g(o}ta; + o7 al) for the left(L) or the right R)
ing qubit (Fig.L[1). We show that photons undergo a sharR.avity, a; (a!) ando;" (o7) are the photon creation (annihila-

non-equilibrium delocalization-localization transitidrom a tion) and quibit raising (lowering) operators, respectiv@he

regime where an initial photon population imb_ala_nce betwee photon mode frequencyis,, the qubit transition energy s,
the two resonators undergoes coherent oscillations (deloc and the photon-qubit coupling is given by(we seth = 1).

ized) between the two resonators to another regime where o photon-qubit interaction induces an anharmonicity t

t_)ecc_)m_es self-trapp_ed_ (localized) as the phpt_on—qubitante spectrum of the JC Hamiltonian which leads to an effective
tion is increased. Similar self-trapping transitions wienend

in optical fibres|[12], molecules [13], cold atoEth] and
polariton BEC’s [17]. In all of these systems self-trappiag | |

= S ~

due to a Kerr/Bose-Hubbard like nonlinearity and has been n%\ /'H’Hmm\»\ I ~
experimentally observed in the semiclassical regime with a BIS \9_1/ AN ‘”H|C]’| e f‘~@|KD
large number of particles. The circuit QED implementation P RS AR

proposed in this paper has several advantages with regpect t

these systems: (i) Self-trapping is due t(.) a Jayn_es-anBnlnqzle_ 1: Schematic diagram of the photonic Josephson jum¢RdJ)
(JC) rather than a Kerr/Bose-Hubbard like nonlinearitye Th ,3h4sed in this paper. Two transmission line microwaverators
JC interaction accurately describes the photon-qubitlaogip (L R) are coupled in series with a tunneling ratedetermined by
in a microwave resonatoﬁlll]. In contrast, a Kerr/Bose-the series capacitance of the resonators. Each resonativorigly

Hubbard like nonlinearity is often a rather crude approxima coupled to a superconducting qubit with a coupling ateroviding

tion of the experimental conditionls [18,19]. (ii) The PJais astrong JC non-linearity. Photons can leave each resoatorate
genuinely dissipative system. We show that dissipatioariay *+ Providing a mechanism for dissipation.
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tiaM] t{1m] lution of the master equatiof(2) (including quantum flutitres)

with k = 0 (black curves) andk = 0.05J (red curves) for ini-
FIG. 2: Photon imbalance(t) and inversion of the qubits, 1, r)(t)  tially N(0) = 20 photons (and qubits initially in their ground-
obtained from a semiclassical approximation for the datsip JCD stateo, (1, r)(0) = —1/2). Figs. (a)-(f) show results foy =
with v = 0 (black curves) ande = 0.05.J (red curves) for ini-  0.1,0.4,0.6,0.8,0.9,2¢.. The inset shows the time-averaged im-
tially ,(0) = N(0) = 20 photons (and qubits initially in their halance(z) (averaged over the time intervale [0,100/.J]) with-
groundstater. ., ry(0) = —1/2). Shown are results in the Joseph- out dissipation £ = 0) (dashed line) as a function of the photon-
son regime witty = 0.9g. (Figs. (a),(b),(c)) and in the self-trapped qubit couplingg normalized with the semiclassical critical valge
regime withg = 1.1g. (Figs. (d),(e),(f). Figures (a),(c) and (d).(f) in Eq.[4. In comparison, the semiclassical transition at $viale is
are zoom-in's corresponding to the boxes in figure (b) andHeje, essentially abrupt (dotted line).
the photon number scales A5t) = N (0)e™ "'
. . . . Eqg. Fi . In both cases, we have chosen the same num-
on-site repulsion (anti-bunching) for photons. Througtba bgr (%)irgitigltr?%otons for better comparis@[%].
paper we will assume zero detuning.(= w.) for which this

h ity is st ¢ The JCHM h iqinallv b . We first discuss results of the semiclassical approximation
anharmonicity Is strongest. The as onginaty Deen i, ip ot dissipation £ = 0). In this case one can further re-

.”Odu‘?ef.' t.? descrlbefa Suge%%%tt trsn3|t|otrl1 ngmdﬂr:hs. duce the number of coupled equations using energy conserva-
In an infinite array ot cavitie 1. Recently, dynantica tion and the specific initial condition chosen above, yiaidi

as_pects have been |n\_/est|gated restricted to th(_e one_mna_ only four equations of motions

either photon or qubit) subspace and neglecting dissipati
]. In the JCD discussed here, cavity photon disgipati o — —

: . . ) L = —2gRe(yr)

is taken into account by a Lindblad master equation for the

system’s density matrix Or = —2glm(yr)
5 Re(yr) = gsin(0y)/2 — JIm(yr)
P_ r N S f w) = gsi
o =ile H] + 5 i:ZLjR (aspal — alaip = pala;) . @ Im(¢r) = gsin(0r)/2+ JRe(vr), (3)
1 . . . wherey 1, ry = (a(L,r)), Im(¢r,) = Re(yr) = 0 and the an-
wherer ™" is the photon life time in each cavity. Using a Fock glesy; describe the qubit statésy) = —(sinfy, 0, cos fr,) /2
state basis the master equation is solved for uitphotons.  and (33) = —(0,sinfg,cosfr)/2. At zero interaction

The central quantity of interest is the population imbatanc (;, — () Eqgs. [3) are exactly solvable. In this limit the
2(t) = (ni(t) — n(t))/N(t) with n; = Trafa;p and the photon imbalance undergoes coherent harmonic oscilition
total photon numbeN = ny, + ng. Throughout the paper, ;) — cosw ¢ with frequencyw, = 2.J. As g becomes non-
we consider the experimentally most relevant initial céindi  zero this frequency decreases and the oscillations become a

where the left cavity is pumped witN' photons, the right cav-  harmonic. At a critical value of the coupling constant
ity is empty and both qubits reside in their respective gtbun

state att = 0. For large photon numbers, we can resort Je & 2.8VNJ 4)

to a semiclassical approximation in which correlation func

tions in Eq. [2) are decoupled by simple factorization, ,e.g.the period of oscillation diverges (critical slowing dowan)d
(aTo™) ~ (a){c™), yielding eight coupled equations of mo- an abrupt transition occurs to a localized regime, where the
tion for the expectation values of the photon and qubit operainitial photon imbalance stays almost completely in the lef
tors which can be solved for an arbitrary number of photonscavity, i.e.,z(t) ~ 1. Solutions of Eq.[{B) near the transition
In the following, we present results of the semiclassical ap(g ~ g.) are shown in Fid12. An important and useful result
proximation (Fig[R2) as well as the full quantum solution of is that the localization transition of photons can effesivbe



observed in the population inversions of the two qubitsalvhi

depend on the number of photons in each cavity. In the de, g g

localized regimed < g.), when photons are tunneling, e.g.,
from the left into the right cavity, Rabi oscillations of thedt
qubit slow down considerably while those of the right qubit

speed up (Fid.J2(a)). After half a tunneling period the sce-

nario is reversed. On the other hand, in the localized regim
(9 > g.) the left qubit displays fast, complete Rabi oscilla-

tions while the right one displays slow, small amplitude os-

cillations (Fig.[2(d)). In other words, spatial localizati of
photons in the left resonator induces an energy state kacali
tion of the right qubit (notice that deep in the localizedineg

(g > g.) the right qubit remains very close to the ground-state

at all times, i.e.¢ (. r)(t) = 0.1,r)(0)). This suggests that
the localization transition of photons in a PJJ can be oleserv
experimentally by a local readout of the qubit states. Ib als
shows that qubit-qubit correlations are largely suppregse
the localized regime.

Taking into account dissipation within the semiclassiqal a
proximation (i.e., solving all eight coupled equations af-m
tion) leads to two important effects : (i) Dissipation stabi
lizes the localized regime, i.e., we find self-trapped sohst
for significantly smaller values of the photon-qubit coangli
g < ge; (ii) Dissipation also leads to the possibility of observ-
ing the localization transition dynamically, i.e., in tinagth-
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FIG. 4: Rescaled photon imbalange= (n1(t) —n2(t))/N(0) deep
in the self-trapped regime fav(0) = 5 photons withg = 3g.
and k 0. Shown are small amplitude Rabi oscillations on
short time scales (Fig. 4(a)) and large amplitude ultratlamnel-
ing (Fig. 4(b)). Results of a full numerical solution of theamtum
master equatioil2) (red curve in Figs. 4(a) and 4(b)) arepeved
with strong-coupling degenerate perturbation theory [3d@lue
curve) based on the effective level scheme shown in in Fig). 4(
Here, |Mo, Ku) = {|Mo)o|Ku)r,|Kp)r|Mco)r} denotes the
pair of degenerate polariton eigenstates of the Hamiltofi} at
J = 0 with (M, K) lower/upper &, = =) polaritons in left
(L) and right (R) cavity, respectively. Note that a polaniteigen-

out tuning any parameter of the Hamiltonian. This is showrstate |[Mo) is a mixed photon §/, M — 1) - qubit (g,¢) state,

in Fig.[2(b). If the interaction parameter is slightly beltve
critical value ¢ = 0.9¢.), the system first undergoes coher-
ent, large amplitude oscillations but switches to selppiag

i.e, |Mo) (|M ,g) + o|(M — 1),¢))/+/2 (for zero detuning
(we = we) and M > 0; the zero polariton state is a special case
with |0) = |0—) = |0, g)). Their degeneracy is lifted due to tun-
neling J, which induces the splitting\. The short and long time

after a critical timet., ~ 30/J. When less than two pho- gy namics deep inside the localized regime (Figs. 4(a) abjj 4an
tons are left in the PJJ (zero effective photon on-site repulbe explained quantitatively using this effective leveletie together

sion) att., ~ 70/J, the qubit Rabi oscillations induce single-
photon Rabi oscillations between the cavities with amgétu
z(t) = 1. If, on the other hand, the interaction strength is
above the critical valueg(= 1.1g.), the system always re-
mains self-trapped as long &8(¢) > 1 (before it enters the
regime of single-photon Rabi oscillations #t). This in-
teresting behaviour can be explained with the different-sca
ing of the qubit-photon interaction( gv/N) and the tun-
neling term ¢ JN) with photon numberV, which leads to
the square-root dependence of the critical interactiength

~
~

ge ~ V'NJ (see Eq[()). Consequently, as the system starts t

dissipate photong,. effectively decreases and the system ca
switch to self-trapping at a certain timg > 0, irrespective
of the fact that we initially started in the delocalized ragi

n

with sdPT. The frequency of the Rabi oscillations (due tchexge
of one photon between local qubit and cavity) is given by trgé
splitting between lower and upper polariton states whi@idg for
large photon numbetsg = 2gv/N 4+ O(1/N). The period of ultra-
long tunneling is set by the splitting, which we have calculated in
leading order fromN-th order sdPT yielding\ = ey J(J/g)™ "
with a constanty that depends on the number of photd¥is The
inset in Fig. 4(b) shows the scaling of the correspondingetiye-
riod T = 2x/A of the large amplitude oscillations as a func-
tion of N. Neglecting the perturbative corrections to the eigen-
vectors of the Hamiltoniar]1), we find for the rescaled irabak

g = cos(At) [1 = (1/N)sin®*(wrt)] + O(J?/g®) which quanti-
tatively reproduces the numerical results in Figs. 4(a) 4l (red
curve).

tum feature that is absent in semiclassical solutions. iDiss

with g < g.. Notice that this effect is fundamentally differ- pation strongly damps the large amplitude oscillations and
ent from a Kerr/Bose-Hubbard like nonlinearity (with Hub- suppresses these beats if the dissipation time is sma#ar th
bard parametely), where the repulsive interaction scales like the beating time; (i) the localization transition is shitto
~ UN? and thus the critical interaction strength is inverselysmallerg values and smoothened (see inset Elg. 3); (iii) in
proportional to the particle numbev{ ~ J/N). the localized regime with dissipation (see F[ds. 3(e,®)ith-
Full numerical solutions (including quantum fluctuations) balance approaches zero asymptotically at long timesalispl
of the master equatiof](2) are shown in Hi@j. 3. Most im-ing no single-particle Rabi oscillations. (iv) due to theosg
portantly, we observe that the localization transitiorvaigs.  damping of the initial large amplitude oscillations, thean
However, specific quantum correction show up: (i) Deep in-switching behavior observable in the semiclassical lirait f
side the delocalized regime (see Fiy. 3(a)) the photon imbaly < g. (Fig.[2(b)) is washed out while below the transition
ance displays beatings of the coherent oscillations, a-quarisee Fig[B(c)), the system still reaches a small non-zeso av
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age of the imbalance at intermediate times. (v) the deeply loios are resolvable up t& — 10 excitations and are faithfully
calized regime displays rich multi-scale time dynamicsigth  realized by the initial conditions chosen in Hig. 3 (full qua
can be explained using the effective level scheme shown itum calculation). After evolution for a given time, the qisbi
Fig.[4(c) (for a detailed explanation see caption in Eig. 4).coupled to each cavity will be used to measure the photon
For short times, Rabi oscillations of the qubit at a freqyenc occupation of that cavity. When strongly coupled, the qubit
wr ~ 2¢gv/N (corresponding to the large splitting between frequency is shifted depending on the number of photons in
upper and lower polariton states) induce small amplitude osthe cavity [:B]; by interrogating these different frequeassia
cillations (on the order 1/N) of the rescaled photon imbal- quantum non-demolition experiment of photon number can be
ancez(t) (see caption in Fid.14) at the same frequency. How-performed|I_|7].

ever, at ultra-long times the localization of photons istans In this work we have shown that two tunnel-coupled mi-
ble and almost complete oscillations of the imbalance set in.;qowave resonators each containing a Jaynes-Cummings type
The small frequency of these oscillations is given by thé-spl nonlinearity undergo simultaneously sharp localizatiemt

ting A oc J(J/g)"~* of two degenerate polariton states duesjtions of photons (spatial) and qubits (energetic). Weehav
to tunneling. The period” = 27 /A of these oscillations is - shown that dissipation can drive this transition if the dag
found to increase very fast (quasi-exponentially) with&@&s-  constants are properly chosen without the necessity ofiguni
ing photon number (see inset in Fg. 4(b)), Thus, true localny parameter of the system. Our results suggest many direc-
ization disappears in a small system, but turns exponéntial tjons of further theoretical investigations includingests of

'good’ with increasing system size (photon number). Aliead getuning, quantum-classical crossover and interplay clio
for five photons the ultra-long tunneling regime is hardly ac j;ation and entanglement.

cessible experimentally. Ultra-long tunneling times welso
predicted for the BHM|E2]. We should note, however, that
under experimental conditions any asymmetry between th
two cavities (e.g., due to small differences in detuningsoar
pling constants) will lift this degeneracy and set the ffec
time period of the large amplitude oscillations. A coroflar
of this statement is that as long as such an asymmetry is much
smaller than the frequency; = 2J the localization transition
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