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Abstract

Recent experimental and theoretical work on two-dimensional (2D) and waveguide-embedded photonic crystals is reviewed. The
investigated systems are 2D macroporous silicon and photonic crystal slabs based on silicon-on-insulator as well as GaAs/AlGaAs. In
all these structures, reflectance at varying angles of incidence allows to determine the dispersion of photonic modes above the light line.
For macroporous silicon, reflectance from the side yields a complementary measurement of the photonic gaps. In the GaAs-based system,
second-harmonic generation in reflection shows a resonant enhancement when the pump beam is frequency- and momentum-matched
to a photonic mode in the slab. A theory of photonic states in waveguide-embedded photonic crystals leads to a determination of mode
dispersion and diffraction losses for leaky photonic modes.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Photonic crystals are materials whose dielectric constant
is periodic in one, two, or three dimensions. They were
first proposed by Yablonovitch[1] and John[2] as a way
to suppress spontaneous emission and to localize light by
disorder. The spatial periodicity leads to Bloch–Floquet the-
orem and to the existence ofphotonic bands, which are
analogous to electron bands in crystalline solids. A fre-
quency region in which photons cannot propagate is called
a photonic gap.

Three-dimensional (3D) photonic crystals may possess a
complete band gap for all propagation directions and polar-
izations[3,4], yet they are not easy to realize at near-infrared
and optical wavelengths. Moreover, self-assembled struc-
tures like direct and inverse opals are obtained through a
bottom-up approach, which is not suitable for introducing
linear and point defects in a controlled way. 2D photonic
crystals, on the other hand, can be realized at optical wave-
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lengths by top-down approaches based on lithography and
etching: the fabrication procedure allows to introduce linear
defects (acting as channel waveguides, perhaps with sharp
bends) or point defects (acting as microcavities) at the level
of the lithographic mask.

The prototype of a 2D photonic crystal is macroporous
silicon [5]. 2D photonic structures can also be embedded in
planar waveguides, thereby realizing the so-calledphotonic
crystal slabs[6,7]: they have the advantage that propagation
of light is controlled by the photonic structure in the 2D
(xy) plane, and by the refractive index discontinuity of the
slab waveguide in the vertical (z) direction. However, modes
lying above the light line in photonic crystal slabs are subject
to radiation losses due to diffraction out of the plane.

In this paper, recent experimental and theoretical work on
2D and waveguide-embedded photonic crystals is reviewed
[8–18]. We consider 2D macroporous silicon (Section 2) and
photonic crystal slabs based on silicon-on-insulator (SOI) as
well as GaAs/AlGaAs (Section 3). In Section 4, we describe
a theoretical model which allows to calculate the dispersion
of modes in photonic crystal slabs, both below and above the
light line, as well as diffraction losses of radiative photonic
modes.
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2. Two-dimensional photonic crystals: macroporous
silicon

Macroporous silicon is obtained by anodic dissolution
of Si in an electrochemical cell. A regular lattice of etch
pits is first defined on the sample surface by optical or
electron-beam lithography; subsequently, a wet etching pro-
cedure yields macropores up to 50–100�m deep. Since the
pore depth is much larger than the wavelength of light, the
photonic crystal can be considered as homogeneous in the
vertical direction and can be viewed as two-dimensional.
Macroporous silicon can be realized on n-type[5,8] as well
as on p-type substrates[9].

Transmittance measurements in the 2D plane yield a
direct determination of the gap energy window and of the
attenuation as a function of thickness[5], however, they
require the sample to be cut from both sides and to be a few
period thick. As an alternative, the sample can be cleaved
on one side only and the reflectance can be measured with
conventional microscope optics combined with Fourier
transform infrared spectroscopy[9]. In Fig. 1a, we show the
normal incidence reflectance from the side of a macroporous
Si sample patterned with a triangular lattice of holes, and in
Fig. 1b, the corresponding photonic bands: both are taken
along the�M direction of the 2D Brillouin zone and for E
polarization (electric field along the pore axisz). The mea-
sured reflectance is very well reproduced by the results of
a calculation, in which the electromagnetic field in the pho-
tonic crystal is represented by Bloch modes of the periodic
structure, which are matched to the external field by Maxwell
boundary conditions. Only modes that are even with re-
spect to a vertical mirror plane are considered (solid lines
in Fig. 1b), as appropriate to normally incident light with E
polarization. When more than one Bloch mode propagates

Fig. 1. (a) Experimental and theoretical reflectance from the side of a macroporous silicon sample for TM polarization (electric field along thez-direction);
(b) corresponding E-polarized photonic bands. The sample, which is patterned with a triangular lattice of holes with 2�m period and 28% air fraction,
is cut along the�K direction; therefore, the reflectance and the bands are along the�M direction of the Brillouin zone. The theoretical spectrum in (a)
includes a Gaussian broadening of 8 meV.

at a given frequency, only the one yielding the larger trans-
mission coefficient is kept. The maxima of the reflectance
correspond very well to the photonic gaps in the mode
dispersion, considering that only even modes are probed.

Transmittance or reflectance measurements from the side
yield thephotonic gaps, but not themode dispersion. The lat-
ter can be determined from variable-angle reflectance from
the sample surface, as first shown in[19] on photonic crys-
tal waveguides: when the incident beam has the same fre-
quencyω and in-plane wavevectork‖ of a photonic mode
along a given orientation (i.e. whenk‖ = (ω/c) sinθ, where
θ is the angle of incidence), a diffracted beam is generated in
the material and a corresponding spectral structure appears
in the reflectance spectrum. The angular evolution of the
spectral structures yields the dispersion of photonic modes
lying above the light dispersion in air. InFig. 2a, we show
variable-angle reflectance spectra taken on a macroporous
silicon sample, again with a triangular pattern of holes. It
can be seen[8] that even if the sample is homogeneous
along the vertical direction (i.e. no waveguide is present),
well-defined structures show up in reflectance spectra and
have a regular behavior as a function ofθ. The photonic band
dispersion in the first Brillouin zone is shown inFig. 2b:
good agreement between experiment and theory is found in
a wide energy window. Since the 2D photonic crystal retains
an out-of-plane dispersion in thez-direction, each spectral
structure in reflectance marks thethresholdfor the excita-
tion of a photonic mode and it is shown to correspond to a
critical point of 1D type[8].

Looking at the intensities of reflectance structures in
Fig. 2a, it is interesting to observe that most of them become
vanishingly weak at near-normal incidence, with the excep-
tion of a strong structure near 0.3 eV. This and other fea-
tures can be understood by a symmetry analysis combined
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Fig. 2. (a) Reflectance of a macroporous silicon sample for TE-polarized light incident along the�M orientation. The angle of incidenceθ is varied from
5 to 60◦ in steps of 5◦. The curves at 5, 10 and 15◦ are slightly offset for clarity. Vertical bars mark the positions of 2D photonic modes for 5 and 60◦.
Insets: AFM micrograph of the sample (dimensions: 10�m × 8.4�m) and 2D Brillouin zone. (b) Measured (points) and calculated (lines) dispersion of
the photonic bands for TE polarization (odd modes). The sample is patterned with a triangular lattice of holes with 2�m period and 30% air fraction.

with the following selection rule:a photonic mode can
appear in reflectance only if it has the same symmetry of
the incident beam. The strong feature around 0.3 eV corre-
sponds indeed to a mode with dipolar symmetry at the�

point. At oblique incidence, the incoming beam couples to
both E and H modes of the photonic structure: in addition,
for an orientation along a symmetry direction of the Bril-
louin zone photonic modes may and should be classified
according to mirror symmetry with respect to the plane of
incidence. In a sense, variable-angle reflectance from the
crystal surface has analogies to spectroscopic studies of
electronic or vibrational excitations in solids—it may be
called “spectroscopy of photonic modes”.

3. Waveguide-embedded photonic crystals:
silicon-on-insulator, GaAs/AlGaAs

Silicon-on-insulator photonic crystal slabs consist of a Si
core layer on top of a SiO2 lower cladding: thanks to the
large dielectric contrast between core and cladding, only the
Si layer need to be patterned. The fabrication procedure is
based on electron-beam lithography and reactive-ion etching
with fluorine chemistry[11]. The high control of processing
in the Si/SiO2 system makes SOI photonic crystal slabs very
attractive for the realization of passive optical interconnects.

Fig. 3 shows TE-polarized variable-angle reflectance
spectra and the corresponding photonic bands of a 1D
lattice patterned in a SOI waveguide[10]. Well-defined

spectral structures with a smooth angular evolution are
visible: their identification is simplified by comparing ex-
perimental spectra with those theoretically calculated by a
scattering matrix approach[20]. An anticrossing of modes
around 0.9 eV can be recognized. The measurements give
direct evidence of a gap around 0.75 eV (λ = 1.65�m): the
band dispersion identifies it as a second-order gap, i.e. a
gap at the� point in the first Brillouin zone. Only photonic
modes lying above the light dispersion in air (dashed line
in Fig. 3b) are probed by reflectance from the surface. The
anticrossing of modes at 0.9 eV, as well as similar features
at higher energies, are seen to correspond to coupling be-
tween a first-order waveguide mode and a second-order one
whose cutoff energy is just above 0.8 eV.

The solid lines inFig. 3brepresent the dispersion of pho-
tonic modes calculated by a finite-basis expansion method
(seeSection 4). Modes that lie below the light lines of the
two claddings aretruly guided modesof the photonic crys-
tal slab, while those lying above the light line should be
viewed as resonances, orquasi-guided modes, since they
are subject to radiative losses corresponding to out-of-plane
diffraction. In fact, the resonances inFig. 3a appear be-
cause of the reverse mechanism, namely the generation of
a quasi-guided mode in the slab due to diffraction of the
incident beam. The calculated dispersion of quasi-guided
modes is in very good agreement with the experimental re-
sults: of course, frequency dispersion of the dielectric func-
tions (especially for Si) is essential and has been taken into
account.
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Fig. 3. (a) TE-polarized reflectance spectra from 5 to 75◦ in steps of 2.5◦ of a SOI photonic crystal slab patterned with a 1D lattice with 0.65�m period
and 18% air fraction (the curves are offset for clarity); (b) corresponding photonic bands for odd (TE) modes, as measured from the reflectance (points)
and calculated (solid lines). The dashed (dotted) lines in (b) indicate the dispersion of light in air (SiO2 and Si).

GaAs/AlGaAs photonic crystal slabs are based on a pla-
nar waveguide with low refractive index contrast, therefore
both core and claddings need to be patterned. The prepara-
tion procedure usually involves electron-beam lithography
followed by reactive-ion etching with chlorine chemistry;
in [13], X-ray lithography was also used. Variable-angle re-
flectance measurements on samples with square lattices lead
again to the determination of the photonic mode dispersion
above the light line and to the study of selection rules and
symmetry properties[12].

A particularly interesting feature of III–V-based sys-
tems is their second-order susceptibilityχ(2) arising from
the lack of inversion symmetry of the zinc blende lat-
tice: they are therefore suitable for non-linear studies like
second-harmonic generation (SHG). Malvezzi et al.[14]
described SHG measurements on GaAs/AlGaAs photonic
crystal slabs in reflection and diffraction geometries: in par-
ticular, the observation ofsecond-harmonic diffractionis
reported. The latter is a coherent process whereby the laser
pulse generates a second-harmonic beam, which is at the
same time diffracted by the grating. Also, resonance effects
are expected when the pump and/or the second-harmonic
beam are frequency- and momentum-matched to photonic
modes in the slab[21]. The experimental observation of the
resonance effect of the pump beam is reported inFig. 4,
which shows the SH reflection signal for different pump
wavelengths as a function of the azimuthal angle, i.e. the
rotation angle of the sample around its normal. Eight sharp
peaks are seen to occur in each full turn, due to the four-
fold rotational symmetry of the square photonic lattice
and to the fact that each photonic band is crossed twice
in each 90◦ irreducible portion of the 2D Brillouin zone.
Each pair of peaks has a regular evolution as a function of
pump wavelength: this allows mapping the photonic band

dispersion with an increased sensitivity compared to linear
spectra[15]. Moreover, the SH structures associated to the
excitation of photonic modes have always the form of res-
onant peaks, i.e. photonic modes lead to enenhancement
of SHG. The reason lies partly in the strong increase of
the electric field strength in the core layer when a mode is
excited, and partly in the very nature of SHG which arises

Fig. 4. Non-linear reflectance vs. azimuthal angleφ (at θ = 45◦, TM
polarization of the pump) of a GaAs/AlGaAs photonic crystal slab at
different pump wavelengths. The curves are offset for clarity. The sample
has a square lattice of tilted air rings with 0.5�m period and 12% air
fraction.
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from a non-linear polarization producing a source field in
the non-linear medium: SHG generation can be viewed as
an “emission” process due to the source field, thus its spec-
tral lineshape reflects the natural linewidth of the resonance
involved (unlike linear reflectance, in which a photonic
mode can appear with widely different lineshapes including
dispersive ones). This allows in principle to measure the
radiative linewidthof photonic modes and therefore their
intrinsic diffraction losses from SHG. The resonance effect
shown inFig. 4 is weaker than predicted[21], due to the
spectral width of the 130 fs laser pulse as well as to sample
inhomogeneity: still, photonic-mode enhancement of SHG
has interesting prospects both for exploiting resonance
effects and as a non-linear spectroscopic tool for optical
studies of photonic crystals.

4. Mode dispersion and radiative losses in photonic
crystal slabs

While the energies of guided modes in photonic crystal
slabs can be calculated by introducing a supercell in the
vertical direction and using 3D plane-wave expansion[22],
the frequency dispersion and especially the losses (i.e. the
imaginary part of the frequency) of quasi-guided modes are
more difficult to obtain and are often calculated by numerical
simulation with the finite-difference time domain technique.
We follow an alternative approach[16–18], which consists
on expanding the magnetic field on the basis of guided
modes of an effective homogeneous waveguide, whose di-

Fig. 5. (a) Photonic mode dispersion (real part of energy), (b) reflectance spectra from 0 to 80◦ in steps of 5◦, and (c) imaginary part of energy calculated
for a self-standing membrane withε = 12, patterned with a triangular lattice of holes with 32.6% air fraction. All curves are calculated for TM polarized
modes along the�K orientation. Solid (dashed) lines refer to even (odd) modes with respect to a horizontal mirror plane. The dotted line in (a) is the
light line in air.

electric constants are given by the spatial average of the
position-dependent dielectric constant in each layer. The
second-order equation for the magnetic field is transformed
into a linear eigenvalue problem, which can be solved nu-
merically to obtain the photonic-mode energies as well as the
field profiles. The off-diagonal components of the dielectric
matrix ε(G, G′) lead to a folding of photonic modes in the
first Brillouin zone and to a splitting of degenerate eigen-
modes, resulting in the formation of photonic bands and
gaps. The method is a generalization of usual plane-wave
expansion in 2D, the third dimension being taken into ac-
count by the spatial dependence of the guided modes of the
effective waveguide. When the photonic modes folded in the
first Brillouin zone fall above the light line of the cladding
material (or materials, if the waveguide is asymmetric), they
become quasi-guided. The imaginary part of the complex
frequency of quasi-guided modes is computed by taking into
account coupling of guided modes to leaky modes of the
effective waveguide by Fermi’s Golden Rule.

An example of complex frequency dispersion is given
in Fig. 5, which shows the real and imaginary parts as a
function of wavevector and compares them to the calculated
reflectance at various angles of incidence. Theenergy posi-
tions of the spectral features in reflectance as a function of
incidence angle are seen to correspond to the wavevector
dispersion of thereal part of the frequency(Fig. 5a). The
linewidthsof the resonances also change with the incidence
angle and correspond to theimaginary part of the frequency
shown in Fig. 5c: for example, the first even band has a
linewidth which increases as a function of wavevector (until
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it drops to zero at the light cone), whereas the third even
band has a finite linewidth atk‖ = 0 (indeed it has dipolar
symmetry at the� point) which decreases as a function of
wavevector. These and other features can be recognized in
the reflectance curves inFig. 5b.

A few applications of the method to calculating photonic
bands, gap maps and radiative losses for the triangular lat-
tice of holes are discussed in[16,17]. The model may also
used for calculating the photonic dispersion and the intrinsic
losses for defect modes associated to channel waveguides,
like the so-called W1 waveguide (i.e. a single missing row
of holes along the�K direction in the triangular lattice)[18].
The imaginary parts and the propagation losses are found
to be strongly dependent on the wavevector and on the pre-
cise structural parameters: generally, however, they tend to
increase with the air fraction of the triangular lattice and to
decrease on increasing either the channel width or the core
thickness of the planar waveguide.

5. Conclusions

Photonic modes are viewed here as “elementary
excitations” of the system that are probed by external pho-
tons, very much like elementary excitations (vibrational or
electronic) in crystalline solids are studied by spectroscopic
means. Reflectance from the side, variable-angle reflectance
from the sample surface, second-harmonic generation yield
complementary information that allows reconstructing the
photonic gaps and mode dispersion. Photonic crystal slabs
support both truly guided and quasi-guided modes: the lat-
ter are characterized by a complex frequency, which can be
probed by the energy positions and linewidths of reflectance
structures. A thorough understanding of the photonic band
structure is a basic piece of knowledge before studying
more complex problems like radiation–matter interaction
(e.g. spontaneous emission control), other kinds of elemen-
tary excitations (plasmons, polaritons) or non-linear optical
properties like phase-matching conditions or non-linear
switching. All these problems are likely to be very active
areas of research in the near future.
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