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Abstract. Traditionally, Electromagnetism is taught following the chronological

development of the matter. The final product of this path is a presentation

of Electromagnetism realized by adding one layer over another with the risk of

transferring concepts and formulae from Electrostatics to Electrodynamics. In

this paper, we suggest a new approach based on the idea that the matter should

be presented within the conceptual framework of Maxwell-Lorentz-Einstein Elec-

tromagnetism. This approach is founded on the concept of a field as a primary

theoretical entity and on the statement that a point charge produces, in general,

an electric and a magnetic field and that the force exerted by these fields on a

point charge is the Lorentz force. Developing this idea, one finds that macroscopic

laws corroborated by experiments have a microscopic origin. It also follows that

the electromotive force induced in a closed conducting circuit must be defined as

the line integral of the Lorentz force on a unit positive charge. This definition

leads to a local law of electromagnetic induction, Lorentz’s invariant for rigid and

filiform circuits. This law contrasts with what Feynman labeled as the “flux rule”

—generally taught in textbooks and teaching practices— downgrading it from the

status of physical law. Particular attention is given to the teaching dilemma of

Maxwell’s equations: ignore them, write them in integral form, or speak of them,

focusing on their conceptual and physical meaning.

1. Introduction

Traditionally, in elementary physics and upper high school courses, Electroma-

gnetism is taught following the chronological development of the matter (1). With

the term “elementary physics courses”, we refer to college courses whose level is

intermediate between high school and university. As for high schools, the studen-

ts’ mathematical and physical background knowledge varies widely from country to

country. As for Italy, we refer to the last three years of scientific high school.

(1) This approach is typical for first-level university textbooks.
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The first topic is Electrostatics, based on Coulomb’s law. Usually, the definition of

the electric field derives from the concept of force. There are two typical approaches.

One states the Coulomb law as

(1) F = q

(
kQ

r2

)
,

where k is a constant depending on the unit system employed, Q is a large charge,

and q is a small enough charge called test charge. The term in brackets depends only

on the charge Q. Then, the norm of the electric field vector is defined as F/q, and
�E = �F/q gives the electric field vector. This approach is found, for instance, in [1],

p. 46.

Otherwise, one can define the electric field “as the force exerted on a unit positive

charge by a charged body”. See, for instance [2], p. 421. If we step forward in time by

about fifty years, we see that nothing has changed (see [3], pp. 630–635, [4], pp. 450-

451). In these definitions the field concept is derived from that of force: it is not a

primary concept.

The further development of the matter deals with continuous currents. The mi-

croscopic nature of currents is somewhat remembered; however, it generally does not

enter into any calculation. Here, we have a conceptual discontinuity. While Coulomb’s

law talks about of point charges, their constitutive role in currents is overlooked.

The magnetic field is introduced by considering magnets or by recalling Ørsted’s

discovery of the deviation of a magnetized needle by a current-carrying wire. The

experiments by Ampère allow us to discuss the magnetic forces exerted by current-

carrying wires within a macroscopic description. The role of moving point charges as

ultimate sources of the magnetic field needs to be recovered.

The magnetic component of Lorentz force is introduced as an experimental finding.

Then, the force exerted by an electromagnetic field on a point charge becomes

(2) �F = q
(
�E + �v × �B

)
,

where �v is the charge velocity. Nonetheless, the induced electromotive force is defined

as

(3) E =

∮
�E · �dl,

instead of

(4) E =

∮ (
�E + �vc × �B

)
· �dl,

as the expression of Lorentz force implies and as argued in [5, 6] (�vc is the charge

velocity).

Critical issues are constituted by electromagnetic induction and Maxwell’s equa-

tions. For electromagnetic induction, textbooks, and teaching practices rely on the
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“flux rule”. Feynman (see [7], pp. 17.1–17.3) and, more recently, Giuliani [6] have

shown that the “flux rule” is only a calculation shortcut and not a physical law. As

for Maxwell’s equations, their differential form requires mathematical skills that are

out of reach. Then, how to manage these two fundamental issues?

An epistemological stand accompanies this traditional approach, according to

which experiments must induce physical laws. Moreover, the diffuse habit of referring

to students’ daily life and sensorial experiences obscures the role of the theories and

the need for abstraction. The final product of this traditional path is a presentation

of Electromagnetism realized by adding one layer over another with the risk of trans-

ferring concepts and formulae from Electrostatics to Electrodynamics. The definition

of the induced electromotive force given by eq. (3) instead of the correct one (4) is a

striking example.

The broad literature in Physics Education generally deals with students’ difficulty

understanding fundamental concepts or focuses on typical students’ misconceptions

or misunderstandings. These studies often rely on multiple-choice tests, sometimes

integrated with interviews. The validity of multiple-choice tests as a means to evaluate

students’ understanding have been studied by many authors. See, for instance, [9] and

the references therein. However, their utility in unrevealing students’ misconceptions

or misunderstandings seems out of doubt.

We shall discuss two papers particularly suited for our discourse. Sağlam and Mil-

lar used a multiple choice test administered to English and Turkish upper high school

students [10]. They also interviewed a sample of Turkish students to determine the

reasoning followed in answering the test. The questions concerned three fundamental

topics of Electromagnetism: “magnetic field (caused by moving charges), magnetic

forces (on moving charges and current-carrying wires), and electromagnetic induction”

(see [10], p. 546). Sağlam and Millar found four types of difficulty in understanding

these electromagnetic topics (see [10], p. 558):

1) inappropriate analogies between the effect of magnetic and electric field on electric

charges,

2) an over-literal flow interpretation of magnetic field lines,

3) incorrect use of direct cause-effect reasoning in situations where it does not apply,

4) confusion between change, and rate of change, of variables (such as magnetic flux).

In their conclusions, Sağlam and Millar wrote (see [10], p. 564; our italics):

By using samples from two countries, the study also shows a striking level

of agreement in the questions (and hence perhaps the ideas) that students

found most straightforward and most difficult. This increases confidence that

learning difficulties are due to inherent characteristics of the material, rather

than stemming from the way it is taught (which is quite different in the two

countries).

Indeed, Maxwell’s Electromagnetism, in its modern version —owing to the contribu-

tions by Lorentz and Einstein (Maxwell-Lorentz-Einstein Electromagnetism— MLE),

is conceptually challenging for two fundamental reasons: it requires a theoretical ap-

proach centered on the concept of the field; it incorporates the special relativity result
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of a limited speed for material particles and physical interactions. These conceptual

features are at stake with the Newtonian view, where forces-at-a-distance are the main

actors, and every speed is allowed. Coulomb’s law operates in a strictly Newtonian

view. We underline that students’ difficulties are enhanced by teaching practices —

fueled by textbooks and syllabuses— based on the chronological development of the

matter. A possible way out is teaching Electromagnetism within the MLE conceptual

framework.

A relatively recent study by Zuza et al. [11] reinforces this working hypothesis.

The authors used a test made of six conceptual free-response questions proposed to

first- or second-year university students in three different European countries (Spain,

Belgium and Ireland). Also in this study, the students’ difficulties are independent

of their country, “regardless of differences in their educational system and cultural

background”. The fact that people involved in the test were first years university

students is not significant unless we assume that the misconceptions or misinterpreta-

tions surfaced were due to university teaching and that this teaching has completely

canceled previous misconceptions or misinterpretations. After a careful discussion of

the answers, the authors wrote:

In conclusion, we believe that more attention should be paid to the specific

characteristics of field theory and the difference between fields and forces, with

particular emphasis on the conceptual interpretation of the interaction process

rather than rules. Such an approach would guide students in the transition

from a Newtonian to a Maxwellian viewpoint, underpinned by a changing view

of the field from a calculational convenience to a physical entity.

The difficulty of substituting the Newtonian force-centered viewpoint with the field

conceptual framework demands a change also in how we teach electromagnetic

phenomena in high school or in elementary physics courses.

The proposal discussed in this paper requires abandoning the chronological deve-

lopment of the matter and presenting Electromagnetic phenomena to students within

the conceptual framework of MLE.

This paper is organized as follows. Section 2 presents the main traits of our

proposal. Section 2.1 deals with the concept of the field as a primary theoretical

entity. Section 2.2 suggests how to introduce the idea that a point charge produces,

in general, an electric and a magnetic field. Section 2.3 deals with the opportunity of

introducing the vector potential in an elementary way. Section 2.4 treats the problem

of electromagnetic induction. Section 2.5 discusses to what extent, if any, teachers

should speak about Maxwell’s equations. The reader will find a general discussion

and conclusive remarks in the last sect. 3.

2. The broad lines of the proposal

The present proposal is not —and could not be— a receipt ready to use. It only

highlights the main and interrelated conceptual features of MLE that could be trans-

ferred into high school or elementary physics teaching. It can be read at two levels:
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as an occasion for refreshing the teachers’ cultural background or as a guide for trying

some changes in the teaching practices. We know the many constraints that limit the

teachers creativity (at least in Italy): the syllabuses prepared by the Ministry of Edu-

cation and the local tendency to standardize teaching practices in all the classrooms,

with the adoption of the same textbooks, also in the view of preparing the students

for the final state exam. Also, the textbook publishers’ policy of supplying many

developed didactic tools (lessons included) does not stimulate teachers’ creativity.

The proposal contemplates the possibility of using some formalism more complicated

than the one commonly used. However, at each step of this kind, it is stressed that

the important thing is the concept, not the formula accompanying it. The choice of

formalism is left to the teacher, who must consider his teaching context (2).

An introductory discourse should take up again the difference between Galileo’s

and Einstein’s relativity principles. Both principles require that physical laws have

the same form in every inertial frame. However, while the former obeys Galileo’s

coordinates transformations, the latter obeys Lorentz’s. The former allows physical

interactions with infinite speed. Instead, the latter implies that physical interactions

can propagate only with a finite velocity whose upper limit is light speed in a vacuum.

The physical differences between the two views are well illustrated by considering the

gravitational field produced by a mass in Newtonian mechanics and the electric field

produced by a point charge in Electromagnetism. In Newton’s gravitational theory,

the gravitational field produced at the point �r1 at the time t by a mass depends on

the position �r2 of the mass at the same time t (physical interactions propagate at

infinite speed). Instead, in Electromagnetism, in a chosen inertial reference frame,

the electric field produced at the point �r1 at the time t by a moving point charge

depends on the position of the charge at an earlier time, named “retarded time”: to

this retarded time also pertain a “retarded position”, a “retarded velocity”, and a

“retarded acceleration” of the point charge.

Independently of the fact that teachers use Maxwell’s equations in some form or

not, they should emphasize that these equations have allowed, through the work of

Hertz, Lorentz, and Einstein, the possibility of describing all electromagnetic pheno-

mena in a vacuum in an axiomatic way. This step is, among others, necessary for

correcting students’ conception of physics, and in general of science, as a discipline

founded essentially (if not only) on experiment. Consequently, teachers should talk

about physicists’ two principal methods to establish their discipline’s laws: the in-

ductive and the axiomatic method. This discourse should conveniently refer to the

historical development of Electromagnetism. The inductive method was dominant

during the nineteenth century. Referring to Faraday’s fundamental contributions to

electromagnetic induction, Maxwell wrote: “The method which Faraday employed in

his researches consisted in a constant appeal to experiment as a mean of testing the

(2) The physical and mathematical background knowledge of the students potentially involved

in the experimentation varies widely from country to country. The teachers must decide what the

extent to adapt the present proposal to their teaching conditions.
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truth of his ideas, and a constant cultivation of ideas under the direct influence of

experiment” (see [8], p. 163). Maxwell wrote his equations after having derived many

laws from experimental results. Hertz, referring to Maxwell’s equations, vindicated

the importance of the axiomatic method with these words:

These statements [Maxwell’s equations] form, as far as the ether is concerned,

the essential parts of Maxwell’s theory. Maxwell arrived at them by starting

with the idea of action-at-a-distance and attributing to the ether the properties

of a highly polarisable dielectric medium. We can also arrive at them in other

ways. But in no way can a direct proof of these equations be deduced from

experience. It appears most logical, therefore, to regard them independently of

the way in which they have been arrived at, to consider them as hypothetical

assumptions, and to let their probability depend upon the very large number of

natural laws which they embrace (see [12], p. 138, italics added).

Teachers should also draw students’ attention to their study of Newtonian mechanics

and thermodynamics within an axiomatic approach.

The present proposal rests on three cornerstones:

1) The use of the field concept as a primary theoretical entity and the necessity

of introducing the field concept beginning with the gravitational interaction (In

Italian scientific high schools, during the third year).

2) The idea that electromagnetic phenomena must be treated within the conceptual

domain of Maxwell-Lorentz-Einstein Electromagnetism.

3) The statement that only local equations can be interpreted causally. This sta-

tement stems from special relativity, and it means that an equation is local if it

connects two physical quantities at a given point at the same time t, or the equa-

tion connects a physical quantity at point �r1 at the time t1 to another physical

quantity at the point �r2 at the time t2, with t2 > t1, provided that the distance

between the two points ≤ c(t2 − t1).

Point 1) above is the more delicate because it involves the passage from the action-

at-a-distance view to that of the field. The study by Zuza et al. [11], discussed in

the Introduction, shows how this passage disorients university students of the first

two years. We suggest that the traditional way to introduce the field presented by

textbooks (see the second page of this paper) does not help this conceptual transi-

tion and that a new approach is necessary. In the next section, we shall see how a

passage from Feynman’s Lectures can help us. Point 2) leads to the introduction,

from the beginning, of the idea that a point charge produces, in general, an electric

and a magnetic field and that, coherently, the force exerted by these fields on a point

charge is the Lorentz’s force. Point 3) directly impacts the treatment of electroma-

gnetic induction, the relation between the electric and the magnetic field during their

propagation, and their causal connection with the sources (moving electric charges).

Finally, we emphasize that the formulae are written as concisely as possible in the

following sections. The teachers should adapt them to their teaching context.
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2.1. The field concept

Introducing the concept of the field as a primary theoretical entity needs some

practice of abstraction. As Feynman put it (see [7], p. 15–7):

What we mean here by a field is this: a field is a mathematical function we

use for avoiding the idea of action at a distance. If we have a charged particle

at the position P , it is affected by other charges located at some distance from

P . One way to describe the interaction is to say that the other charges make

some “condition” —whatever it may be— in the environment at P . If we

know that condition, which we describe by giving the electric and magnetic

fields, then we can determine completely the behavior of the particle —with

no further reference to how those conditions came about.

[. . . ]

A field is then a set of numbers we specify in such a way that what happens at

a point depends only on the numbers at that point. We do not need to know

any more about what’s going on at other places (3).

Feynman’s conception of the electromagnetic field stresses that it is only a theoretical

tool for describing electromagnetic phenomena, with no commitment to its existence

in the world. Indeed, a theory aims to predict the values that the physical quantities

can assume. Its aim is not to describe what is happening in the world: we do not have

any means to ascertain that. This conception of the theories and their fundamental

role contrasts textbooks’ inductive and naively realistic stand.

According to point 1) above, the field concept must be introduced in the physics

course as soon as possible. The occasion is, naturally, Newton’s gravitational law.

Besides the traditional equation in terms of the force of attraction between two (point)

masses, teachers should introduce the description in terms of the gravitational field.

A mass M produces at point �r a gravitational field �g given by

(5) �g = −G
M

r3
�r,

where G is the gravitational constant. The field �g is such that, if another mass m is

positioned at the point �r, then a force F given by

(6) �F = m�g,

which acts on the mass m. Two points should be emphasized: A) the gravitational

field has the dimensions of an acceleration and B) the conceptual scheme is: mass

→ field → force on another mass. Teachers should comment on how deeply the

(3) The original text speaks of a “real” field. We have omitted the adjective “real” because
its use by Feynman concerns the epistemological status of the vector potential. Indeed, Feynman
acknowledges from the beginning that “First we should say that the phrase ‘a real field’ is not very
meaningful”.
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description in terms of field differs from that of the action-at-a-distance. Moreover,

point A) suggests a series of reflections that could be developed according to the

teaching context. See Appendix A.

Similarly, the treatment of Galilean-Newtonian relativity is the occasion of intro-

ducing the basic concepts of Einstein’s relativity and discussing their fundamental

differences. Teachers could do this based on the following points:

1) In an inertial reference frame, the acceleration measured by an accelerometer is

null (see, for details, Appendix A). Accordingly, this is the best way of defining

an inertial reference frame.

2) In both Galilean-Newtonian relativity and Einstein’s, all phenomena develop

in the same way in every inertial frame, i.e., the equations describing each

phenomenon have the same form in every inertial frame.

3) In both cases, the space is Euclidean, i.e., it is homogeneous and isotropic, and

the (variable) time is homogeneous.

4) The difference between the two approaches lies in that, while in the Galilean-

Newtonian case, the coordinates’ transformations are the so-called Galilean tran-

sformations, in Einstein’s, the so-called Lorentz transformations are valid. The

latter introduces the big novelty of a speed limit, given by the speed of light in

a vacuum. This speed limit is responsible for the time-dilation and the length-

contraction effects, as can be easily seen by putting in their formulae c = ∞, pas-

sing, in this way, from Lorentz’s to Galilean-Newtonian transformations. In [13],

chapter II, [14], chapter III, and [15], teachers will find derivations of the basic

formulae of Einstein’s kinematics obtained with thought experiments with the ex-

change of light pulses of ideal null duration between two inertial reference frames.

The mathematics involved are elementary algebraic calculations.

2.2. The electromagnetic field produced by a moving charge

Treating electromagnetic phenomena within the conceptual framework of MLE

requires a microscopic description of the phenomena. This description, in turn, implies

that teachers must —as an introductory but fundamental part— give a picture of

what matter is made of. How detailed this picture can be, depends primarily on the

teaching context. This description should include information on what atoms and

molecules are made of and how atoms enter and behave in conducting or insulating

material. A focus should be put on the conducting mechanism in metals and the fact

that electric currents in metals are made of moving electrons. Without ignoring that,

by convention, mobile electric carriers are considered positive. The equation of the

current density vector

(7) �J = nq�vq,

where n is the number of charges q per unit volume and �vq their velocity, should be

written explicitly. From eq. (7), it follows that if the charge q is that of the electron,
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then the direction of the vector current density is opposed to that of the electrons’

velocity. The electric current through a surface S is then defined as

(8) I = −
∫
S

�Je · n̂ dS,

where �Je is the electrons current density, n̂ is the unit vector perpendicular to the

surface element dS, and where we have taken into account the convention about the

current charge carriers. Instead of eq. (8), teachers can use the simplified version in

which the surface S is perpendicular to the motion of the charges. This simplified

treatment is particularly apt in the case of a metal wire. Considering this case, the

stress must be on the charge velocity being the drift velocity.

Within this conceptual framework, teachers can state that, in general, an electric

charge produces an electric field �E and a magnetic field �B and that an electromagnetic

field exerts on a point charge q a force that is given by

(9) �F = q
(
�E + �vq × �B

)
,

where �vq is the velocity of the charge. Equation (9) is named “Lorentz force” (4).

These statements can be grounded on experimental observations. In a vacuum,

the electric field produced at the point �r by a charge at rest (�vq = 0) at the origin

has been proved to be

(10) �E =
1

4πε0
q
�r

r3
,

where ε0 is the dielectric constant in a vacuum. Equation (10) has been corroborated

by experiments with the Cavendish method [17]. Precisely, this method tests the

formula

(11) E =
1

4πε0

q

r(2±α)
,

with the aim of reducig the value of α as much as possible. Cavendish obtained

α ≤ 2 × 10−2; Maxwell improved to α ≤ 1/21600 ≈ 4.6 × 10−5 (see [18], p. 77).

Modern measurements have reduced the value of α to about 10−17 [19].

In discussing Cavendish’s method, teachers should stress the relevance of conti-

nuously increasing the accuracy of our knowledge of fundamental physical laws and

constants. They should also underline that it is based on an axiomatic approach.

Indeed, the inverse square law is assumed to be true, and its implication —the inside

conducting sphere must be free of charges— is tested by experiment. This axiomatic

approach should be compared with Coulomb’s inductive experiment to underlying the

variety of methods used by physicists to unveil the properties of phenomena.

(4) Indeed, as shown in [6, 16], Maxwell anticipated the expression of the Lorentz force.
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As for the magnetic field, the issue is more delicate. We could begin by recalling

Ørsted’s experiment on the magnetic effect of a continuous current. Since macroscopic

currents in metals are made of electrons moving with constant velocity (drift velocity),

we can assume that a moving charge produces a magnetic field. Since the expression

of the magnetic field can be obtained only by fully developing the implications of the

modern formulation of Maxwell’s equation in a vacuum, we can only state that the

magnetic field produced by a moving charge is given by (5)

(12) �B ≈ μ0

4π
q
�vq × �r21

r321
,

where �vq is the velocity of the charge q and �r21 = �r1 − �r2 is the vector pointing

from the position �r2 of the charge to the position �r1 of the point in which the field is

calculated. The sign ≈ reminds us that eq. (12) is approximately valid if the velocity

of the charge vq � c and its variations are sufficiently slow to ignore the acceleration

effects. Within this approximation, the retarded quantities of the charge q (position

and velocity) can be replaced by the actual ones. The validity of eq. (12) rests on its

experimental corroboration. Indeed, eq. (12) can be used to calculate the magnetic

field produced by a continuous current flowing in a long enough rectilinear wire or the

magnetic field produced by a continuous current flowing in a wire of arbitrary form

(Biot-Savart’s law). These macroscopic equations have been experimentally tested.

Teachers could also add that —in the same approximations of eq. (12)— the electric

field produced by a moving charge is

(13) �E ≈ q

4πε0r321

(
�r21 − r21

�vq
c

)
.

By using the basic relation

(14) �B =
1

c

(
1

r∗21
�r ∗
21 × �E

)
≈ 1

c

(
1

r21
�r21 × �E

)
,

where �r ∗
21 is the retarded distance between the charge and the point in which the

field is calculated, one can obtain the expression of the magnetic field (12). Going

on, we should develop some order of magnitude calculations. Let us consider a long

enough rectilinear metallic wire with a steady current. If the wire has a section of a

square millimeter and a current of one A flows in it, the electron’s drift velocity comes

out to be ≈ 7.34 × 10−5 ms−1. Then, the second term of eq. (13) is approximately

2.44 × 10−13 smaller than Coulomb’s term, and can be ignored in the calculation of

the electric field produced by the electron. However, its presence is fundamental in

calculating the magnetic field produced by a slowly moving electron (eq. (13)).

(5) For the calculation of the electromagnetic field produced by an arbitrarily moving charge,
see, for instance, [20], pp. 870–877.
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The teachers should adapt the above treatment to their teaching context by kee-

ping the essential concept: a moving charge produces an electric and a magnetic field

responsible for the magnetic effects of the current flowing in a wire. Here, there is an

intriguing problem. We have stated that the magnetic field is produced by moving

charges. Then, we learned that a moving charge adds a correction to the value of the

electric field produced by the same charge at rest. Is there a physical quantity that

can describe both phenomena? Teachers know that this quantity exists and is the

so-called vector potential �A.

2.3. The vector potential

Teachers should say at least some words about the vector potential to illustrate

the conceptual role played by it. Students are introduced from the beginning to the

scalar potential ϕ. Then, the idea that another potential exists should not appear as

a strange thing. The sources of the scalar potential are static distributions of charges;

the sources of the vector potential are the currents, namely, charges in motion. From

the knowledge of its sources, i.e., charges in motion, we can calculate the value of

the vector potential �A. Knowing the vector potential, we can calculate the magnetic

field produced by the moving charges through a relation involving a particular spatial

variation of the vector potential. Teachers know that this relation is curl �A = �B (it is

not necessary to show this equation to the students). Moreover, a particular temporal

variation of the vector potential yields the contribution of the moving charges to

the electric field (−∂ �A/∂t = �E). Then the complete expression of the electric field

is given by the sum of the contributions from charges at rest and from charges in

motion: �E = − gradϕ − ∂ �A/∂t. Again, it is not necessary to show this equation to

the students. In [6], sec. VII, the reader will find a detailed proposal for introducing

the vector potential in elementary physics and high school courses. A less recent

proposal to introduce the vector potential in high schools can be found in [21].

2.4. Electromagnetic induction

Textbooks and teaching practices describe electromagnetic induction with what

Feynman labeled as the “flux rule”, downgrading it from the status of physical law

(see [7], pp. 17.1–17.3). The “flux rule” states that

(15) E = − d

dt

∫
S

�B · n̂ dS = −dΦ

dt
,

where �B is the magnetic field, and S is any surface that has the circuit as a contour. As

shown in [6], the “flux rule” is not a physical law but only a calculation shortcut that

must be handled carefully. Instead, the law of electromagnetic induction is founded

on the definition of the induced emf as [5, 6]

(16) E =

∮
l

(
�E + �vc × �B

)
· �dl =

∮
l

�E · �dl +
∮
l

(
�vc × �B

)
· �dl,
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where the electric field �E and the magnetic field �B are solutions of Maxwell’s equation,

and �vc is the velocity of the positive charges that, by convention, are the current

carriers. This integral yields —numerically— the work done by the electromagnetic

field on a unit positive charge through the entire loop. Equation (16) is local because

it connects the physical quantity E defined on the line l at the time t to other physical

quantities defined at every point of the line l at the same instant t.

The expression of the electric field in eq. (16) contains a particular time depen-

dence of the vector potential �A (its partial derivative with respect to time −∂ �A/∂t),

as explained in sect. 2.3. Then, the induced emf is the sum of two line integrals as

shown by the last equality of eq. (16). The induced emf thus obtained describes all

known phenomena of electromagnetic induction [6]. See also Appendix C.

Let us apply eq. (16) to the relative inertial motion of a magnet and a rigid,

filiform circuit. For Einstein, this (thought) experiment was one of the reasons for

founding special relativity (see [22], Engl. transl., p. 140). In the reference frame of

the magnet, there is no electric field. Therefore, only the second integral of eq. (16)

is operative. Instead, in the reference frame of the circuit, both integrals are, in

principle, operative. However, the last integral of eq. (16) is null because �vc = �vd
and �vd is always parallel to �dl. The circuit sees the vector potential produced by

the magnet varying with time owing to the relative motion between the magnet and

the circuit. In conclusion: in the reference frame of the magnet, only the magnetic

component of Lorentz’s force on a unit positive charge is operative; in the reference

frame of the circuit, only the time variation of the vector potential operates.

It will be of great pedagogical value to experiment on this fundamental topic. An

experiment of this kind has been described in detail in [23]. The laboratory session

is held before any electromagnetic induction discourse but after the special relativity

lessons. Students, divided into pairs, are invited to experiment at will. After about

an hour or so of experimenting, students are asked to describe what they have seen

with a formula. The teacher intervenes as little as possible. Spontaneously, the

students describe the observed phenomena in the magnet reference frame. Then, the

students are asked to describe their observations in the reference frame of the moving

coil. After some discussion, the teacher suggests to guess a formula that obeys the

locality principle. In this way, students learn or apply the principle that the equation

describing a phenomenon must have the same form in every inertial frame.

It is possible to rewrite eq. (16) in terms of a single surface integral under severely

restricting conditions concerning the integral (6):

(17)

∮
l

(
�vc × �B

)
· �dl.

Let us consider a rigid and filiform circuit that moves with velocity V in the laboratory.

Let us further assume that the motion of the circuit occurs along the positive direction

(6) The following calculations are for the teachers. Considering the available mathematical tools,
they should adapt them to their teaching context.
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of the x axis. In the Galilean limit (c = ∞), the velocity of the charge �vc can be

written as �vc = �V + �vd, where �vd is the drift velocity of the charges (7). Then,

eq. (16) assumes the form

(18) E =

∮
l

�E · �dl +
∮
l

(
�V × �B

)
· �dl +

∮
l

(
�vd × �B

)
· �dl,

where all the line integrals are evaluated in the laboratory reference frame. After

some calculations [6], it can be proved that the induced emf is given by

(19) E = − d

dt

∫
S

�B · n̂ dS +

∮
l

(
�vd × �B

)
· �dl.

The line integral is null for filiform circuits because the drift velocity �vd is always

parallel to �dl. Then, we get the “flux rule”. This rule has been obtained in the Galilean

limit and for inertially moving rigid and filiform circuits. Equation (19) is also valid

in the reference frame of the circuit. Indeed, the “flux rule” is Galileo-invariant, as

can be easily proved. In the Galilean limit �B′ = �B, t′ = t, and S′ = S, where the

primed quantities refer to the circuit reference frame. Then dΦ′/dt′ = dΦ/dt.

The “flux rule” is a piece of Galilean-Newtonian physics within the Lorentz inva-

riant theory of MLE. Approximations in the Galilean-Newtonian limit can, of course,

be used. However, an inescapable condition is to discuss with the students the se-

rious (physical and epistemological) problems posed by the “flux rule”. Moreover, the

Galilean limit of the law of electromagnetic induction is conceptually very different

from the Newtonian limit of relativistic dynamics. While Newtonian dynamics can

be interpreted causally, the “flux rule” cannot (see below).

Therefore, teachers should underline that:

– The “flux rule” implies an improper use of the field concept, because it describes

what is going on in the closed circuit with what happens —at the same instant—

on an arbitrary surface with the circuit as a contour. In this way, the essential

feature of the field concept is lost: a field is a set of numbers we specify in such a

way that what happens at a point of the circuit depends only on the numbers at

that point. We do not need to know anymore about what is happening at other

places (on the surface with the circuit as a contour). The reader will recognize in

this statement what Feynman said in the quote in sect. 2.1, adapted to our case.

(7) For a rigid and filiform circuit at rest in the laboratory, the drift velocity �vd is defined as the
velocity of mobile charges when a steady or slowly varying current flows. When the circuit moves
inertially with velocity V along the positive direction of the common x ≡ x′ axis, the drift velocity
is defined in the moving reference frame in which the circuit is at rest and is denoted by �v′

d. From
the above definition, it follows that �vd = �v′

d, because every phenomenon develops similarly in every
inertial frame. In other words: if we measure the drift velocity in a circuit in the laboratory, we shall
find a specific value q. If the same circuit is in the moving inertial frame, and we measure the drift

velocity in this frame, we shall find the exact value q measured in the laboratory. Of course, this
equivalence is true in special and Galilean relativity.
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– The “flux rule” cannot be interpreted causally because it relates the physical

quantity E defined on the line l at the instant t to the values of the magnetic field
�B defined at all points of an arbitrary surface at the same time t, thus implying

the propagation of physical interaction with infinite speed (see also the discussion

of eq. (21) in the next section).

– It cannot say where the induced emf is localized [6]. To illustrate this point,

teachers should discuss the case (generally treated in textbooks) of a bar sliding

on a U-shaped conductive frame immersed in a constant and uniform magnetic

field. As shown in [6], the induced emf is localized in the bar for both inertial

reference frames (the laboratory’s and the bar’s).

– Frequently, it requires an ad hoc choice of the path used as a contour of the

integration surface [24].

– As shown by Blondel (1914) [25], it is falsified by a clear-cut experiment [6].

In a study of electromagnetic induction understanding by first years university stu-

dents, Guisasola et al. found “that most of the students failed to distinguish between

macroscopic levels described in terms of fields and microscopic levels described in

terms of the actions of fields” [26]. According to the authors, the “flux rule” is a

macroscopic description, while Lorentz’s force is microscopic. The definition of the

induced emf given by eq. (16) is a microscopic description. If developed coherently,

it leads to a microscopic theory of electromagnetic induction.

Teaching electromagnetic induction with a full microscopic description will avoid

the use and the pitfalls of the macroscopic description of the “flux rule”. Teachers have

to make a choice depending on their teaching context. If, as tradition, textbooks, and

teaching habits imply, the choice is the “flux rule”, this choice should be accompanied

by a full discussion of its physical and epistemological drawbacks. What should

be avoided is speaking of the “flux rule” as the law of electromagnetic induction

without any critical discussion, which, by the way, would stimulate the students’

critical reasoning.

2.5. What to say about Maxwell’s equations?

A choice is that of ignoring them. Giancoli does not even mention Maxwell [4].

Another option is to write them in integral form. Italian textbooks for high school

widely adopt this choice (see [27], pp. 233–234, [28], pp. 299–306, [29], pp. 105–106).

In the United States, we have encountered an example in Halliday, Resnick, and

Walker’s book (see [3], pp. 941–951). Instead, Cutnell and Johnson do not mention

Maxwell’s equations [30] (8).

(8) We have not been able to ascertain if these texts are considered in the United States or in

other English speaking countries as textbooks for high school or for higher teaching levels. We know

that their Italian translations are considered as textbooks for high schools.
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Indeed, all textbooks speak about two of Maxwell’s equations in integral form (or

as a sum of finite terms of the type �E · �ΔS (Gauss law (9)) or �B · �ΔS (“flux rule”),

perhaps without labeling them as Maxwell’s equations.

Writing Maxwell’s equations in integral form is conceptually deceptive. For

instance, consider the equation

(20) curl �E = −∂ �B

∂t
,

and its integral form

(21)

∮
l

�E · �dl = − d

dt

∫
S

�B · n̂ dS.

This equation relates what happens on the closed line l at the time t to what happens,

at the same time t, on an arbitrary surface S with the line l as a contour. This equa-

tion cannot be interpreted causally because physical interactions cannot propagate at

infinite speed. Equation (21) only establishes a relation between quantities defined

on the line with quantities on the arbitrary surface chosen.

Textbooks and teaching practices, in discussing eq. (21), state that a varying

magnetic field produces (causes) an electric field; and, conversely, from the equation

of the curl of the magnetic field (or its integral form), they state that a varying electric

field produces (causes) a magnetic field. These statements are untenable because the

electric and magnetic fields are produced (caused) by charges in motion. Therefore,

the equations of the curl of the electric and magnetic fields (or their integral form)

only establish a relation between these fields without any causal connection between

them. These issues are widely discussed in [6, 31].

Teachers face a crossroads. Keeping on using Maxwell’s equations in integral

form, explicitly (as Italian teachers, following their textbooks, do) or follow a more

challenging way outlined in Appendix B. In the first case, teachers should explain

the physical and epistemological drawbacks of this choice.

3. Discussion and conclusions

Teachers’ resistance to proposed changes in teaching coming from central or local

institutions is well-studied in the literature. Powell and Kusuma-Powell distinguish

between “technical” and “adaptive” changes. Technical changes require informational

learning. Instead, adaptive changes “call for transformational learning or learning

that requires us to rethink our deeply held values, beliefs, assumptions, and even our

(9) Coulomb’s law is written in terms of forces between point charges; instead Gauss’s law is
written in terms of the electric field, i.e., of a quantity defined at every point of the considered

surface. If this step is done without a clear explanation, it would likely confuse the students because

it overlaps the action-at-a-distance and the field descriptions.
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professional identity. Adaptive challenges are complex, and addressing them requires

patience and time” (see [32], p. 67). Our proposal demands teachers the disposition

to:

a) abandon the centuries-old tradition of presenting electromagnetic phenomena

following their chronological development;

b) leave behind the epistemological stand according to which physical laws must be

induced only from experiment;

c) acknowledge the fundamental role played by the abstraction and the hypothetical-

deductive method;

d) recognize the necessity of some essential, microscopic descriptions.

These features place our proposal in the “adaptive changes” category and could be

evaluated as too radical to be implemented by teachers. We have presented an early

version of our proposal to a group of about twenty-five Italian teachers we meet perio-

dically online. The majority of these teachers teach in scientific high schools. Positive

reactions came from retired teachers. The negative reaction has been substantially

based on the following:

1) The backwardness of the teaching context.

2) The constraints of the programs of the Ministry of Education and the local ten-

dency to standardize the teaching practices in all the classes, with the adoption of

the same textbooks, also in the view of preparing the students for the final state

exam.

3) The non-necessity of teaching MLE Electromagnetism; some Galilean approx-

imation of standard courses is sufficient.

4) The mathematical difficulties.

The first two points are sadly founded. As explained above, we cannot agree with

point 3) because we believe that electromagnetic phenomena must be taught within

the conceptual framework of MLE electromagnetism. Instead, we have thoroughly

considered the last point 4). Meanwhile, four teachers in our group have agreed

to the project of experimenting with the present proposal in their classes. We are

actively working with them on this project with about a meeting per month.

* * *

We warmly thank Maria Grazia Blumetti, Elena Failla, Andrea Farusi, and Marco

Litterio for their suggestions and commitment to experiment with this project.

Appendix

In this Appendix, teachers will find some development of topics in the main text

that could be used in favorable teaching conditions or as teachers’ background kno-

wledge. For instance, while Appendix A belongs to the former group, the other two

sections are primarily —but not exclusively— intended for the teachers’ background

knowledge.
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Fig. 1. – Working principle of an accelerometer.

A. Gravitational field – As we have seen in sect. 2.1 of the main text, the gra-

vitational field has the dimensions of an acceleration. Accelerations can be measured

with an accelerometer in the accelerated reference frame (fig. 1).

The mass m is connected to a rigid base by the spring S; ideally, it can slide on

the base without friction. Suppose the base is subjected to a constant acceleration

to the left. In that case, the spring is stretched, and its maximum extension Δx is

related to the acceleration of the base by the equation

(A.1)
−→
Δx = −m

k
�a,

where k is the spring’s constant. The elongation of the spring occurs along the op-

posite direction of the base acceleration. If the accelerometer is rotated 90 degrees to

the right, it will find itself in the vertical position. The spring elongates towards the

ground, owing to the effect of the gravitational field �g on the mass m: the accelero-

meter becomes a gravimeter. In this case, the accelerometer indicates an acceleration

equal to −�g directed upwards (10).

If a laboratory —with the accelerometer fixed in the vertical position on a wall—

is free falling in a gravitational field, the spring does not elongate because the (acce-

leration) field −�g is canceled out by the acceleration �g due to free fall: the measured

acceleration is null. Since we have defined an inertial reference frame as the one

in which the measured acceleration is null, it follows that a free-falling laboratory

constitutes an inertial reference frame. Moreover, this thought experiment suggests

that the effect of a gravitational field �g on a mass m is equivalent to the effect of an

acceleration field −�g on the same mass. Therefore, we can conclude that mg = mi,

where mg is the “gravitational mass” and mi is the “inertial mass” which appears in

the Newtonian equation �F = mi�a. In metric theories of gravitation, this property is

(10) The gravitational field measured on the Earth surface depends on the latitude, also if we
suppose that the Earth surface is spherical. In fact, in the accelerated reference system centered
at the Earth center and rotating with the Earth, the component of the centripetal acceleration
perpendicular to the Earth surface is equivalent to a pseudo-gravitational field directed upwards.
This pseudo-gravitational field decreases the value of g measured by an accelerometer. In particular,
the gravitational field is smaller at the Equator than at the pole, as can be easily proved.
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Fig. 2. – D is a plastic cylinder; A-B-C is a narrow band of elastic rubber; S is a plastic ball or
cylinder (made of two parts that can be separated) containing a suitable number of coins. This
device can be quickly built using materials easily found at home.

assumed as the “weak equivalence principle” (11). Since a the free-falling laboratory

is an inertial reference frame, a body that is left free will remain at rest or, if endowed

with an initial linear momentum, it will keep moving uniformly along a straight line.

However, this is true only if the gravitational field is uniform: in general, gravitational

fields are not. Hence, the previous statement is approximately verified, provided the

laboratory sizes are sufficiently small.

The qualitative features of a free-falling body can be demonstrated in the clas-

sroom using the simple device shown in fig. 2 (12). The teacher should perform two

experiments. Before doing each experiment, the teacher illustrates what he will do

and asks the student what will happen. The first experiment lets the device fall from

the teacher’s hand and is positioned from the ground at the highest possible level.

The ball containing the coins will be retracted into the cylinder during free fall. The

second experiment consists in launching the cylinder toward the ceiling. The ball

containing the coins will be retracted into the cylinder already during the ascent to

the ceiling, thus demonstrating that the free fall is the motion of a mass subjected

only to a gravitational field. The discussion with the student will also encompass the

negligible effect of the atmosphere.

Finally, it would be interesting to discuss with the students a passage from a book

by Galileo Galilei that reads (see [33], pp. 63-64):

A large stone placed in a balance not only acquires additional weight by having

another stone placed upon it, but even by the addition of a handful of hemp

its weight is augmented six to ten ounces according to the quantity of hemp.

But if you tie the hemp to the stone and allow them to fall freely from some

height, do you believe that the hemp will press down upon the stone and thus

(11) In special relativity, the mass m is no longer a measure of a body inertia. Indeed, the concept
of inertial mass rests on using the equation �F = m�a, which is no longer valid in special relativity.

(12) This home-made device has been suggested to one of the author (G.G.) by Prof. Mauro
Carfora.
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accelerate its motion or do you think the motion will be retarded by a partial

upward pressure? One always feels the pressure upon his shoulders when he

prevents the motion of a load resting upon him; but if one descends just as

rapidly as the load would fall how can it gravitate or press upon him? Do

you not see that this would be the same as trying to strike a man with a

lance when he is running away from you with a speed which is equal to, or

even greater, than that with which you are following him? You must therefore

conclude that, during free and natural fall, the small stone does not press upon

the larger and consequently does not increase its weight as it does when at

rest (13).

B. Maxwell’s equations – In sect. 2.5 of the main text, we have discussed using

(at least two) Maxwell’s equations written in integral form: we have stressed this

treatment’s physical and epistemological drawbacks. Generally speaking, the teaching

contexts allow a variety of choices. In the following, we will outline a more challenging

path that could —perhaps— be followed in suitable conditions.

Teachers could write Maxwell’s equations in a vacuum in their differential form

without, however, specifying the expression of the divergence and curl operators:

div �E =
ρ

ε0
,(B.2)

curl �E = −∂ �B

∂t
,(B.3)

div �B = 0,(B.4)

curl �B = μ0

(
�J + ε0

∂ �E

∂t

)
,(B.5)

and comment on them in the following way:

1) The operator divergence and curl operate on the spatial variations of the vector

to which they are applied.

2) These equations relate the sources ρ (charge density) and �J (current density) to

the electric field �E and to the magnetic field �B.

(13) Una gran pietra messa nella bilancia non solamente acquista peso maggiore col soprapporgli
un’altra pietra, ma anco la giunta di un pennecchio di stoppa la farà pesar più quelle sei o dieci
once che peserà la stoppa; ma se voi lascerete liberamente cader da un’altezza la pietra legata con
la stoppa, credete voi che nel moto la stoppa graviti sopra la pietra, onde gli debba accelerar il suo
moto, o pur credete che ella la ritarderà, sostenendola in parte? Sentiamo gravitarci su le spalle
mentre vogliamo opporci al moto che farebbe quel peso che ci sta addosso; ma se noi scendessimo
con quella velocità che quel tal grave naturalmente scenderebbe, in che modo volete che ci prema e
graviti sopra? Non vedete che questo sarebbe un voler ferir con la lancia colui che vi corre innanzi con
tanta velocità, con quanta o con maggiore di quella con la quale voi lo seguite? Concludete pertanto

che nella libera e naturale caduta la minor pietra non gravita sopra la maggiore, ed in consequenza

non le accresce peso, come fa nella quiete (see [34], pp. 76-77).
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3) The first equation (B.2) states that the operator divergence applied to the electric

field �E yields ρ/ε0.

4) The third equation (B.4) says that the divergence of the magnetic field is always

null. This result implies that the magnetic field has no sources similar to the

charge density for the electric field. Indeed, the magnetic field sources are the

currents densities, i.e., charges in motion.

5) The second equation (B.3) connects spatial variations of the electric field �E to the

time variation of the magnetic field �B.

6) The fourth equation (B.5) connects spatial variations of the magnetic field to its

source �J and to the time variation of the electric field.

7) Given the sources ρ and �J , the physical dimensions of the electric and magnetic

fields remain undeterminate, together with those of the two constants ε0 and μ0.

8) The assumption of the Lorentz force �F = q( �E+�vq × �B) gives physical dimensions

to the two fields and the two constants.

9) The value of the two constants ε0 and μ0 must be determined experimentally.

10) Maxwell’s equations (B.2)–(B.5) describe all electromagnetic phenomena observed

in a vacuum. Further assumptions must be made for describing electromagnetic

phenomena in a material.

11) The solutions of Maxwell’s equations describe how electromagnetic signals pro-

duced by the sources propagate. In a vacuum, their propagation velocity is

c = 1/
√
ε0μ0.

12) If the sources do not depend on time, Maxwell’s equations describe electrostatic

phenomena.

13) In 1888, Hertz demonstrated that electromagnetic waves reflect, refract, and dif-

fract as light waves; they are also polarized. Light and electromagnetic waves

obey the same equations. Hence, light can be described as an electromagnetic

wave.

14) Special relativity shows that c is a limit speed.

15) As for the two constants, their numerical values are obtained by putting μ0 =

4π × 10−7 NA−2 and deducing ε0 from the formula yielding the light velocity in

a vacuum determined experimentally.

16) Teachers should add that Maxwell’s equations written for a magnetic material as-

sume that their magnetic properties are due to currents circulating in the material

(Ampère’s currents). Indeed, a sound explanation of magnetic properties requires

a quantum mechanical treatment.

C. Electromagnetic induction – In sect. 2.4 of the main text, we have seen

how the “flux rule” is only a calculation shortcut and pointed out that the law of

electromagnetic induction is founded on the definition of the induced emf as

(C.6) E =

∮
l

(
�E + �vc × �B

)
· �dl =

∮
l

�E · �dl +
∮
l

(
�vc × �B

)
· �dl.

We have observed that this equation is local and that also its solution must be local.

Consequently, both equations can be interpreted causally. In the following, we develop
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some calculations that should be part of the background knowledge of teachers on this

topic.

Within the description of MLE in terms of the electromagnetic potentials, the

general expression of the electric field is given by

(C.7) �E = −∇ϕ− ∂ �A

∂t
,

where ϕ and �A are the scalar and the vector potential. Consequently, eq. (C.6)

assumes the form

(C.8) E =

∮ [(
−∇ϕ− ∂ �A

∂t

)
+

(
�vc × �B

)]
· �dl =

∮
l

[(
−∂ �A

∂t

)
+

(
�vc × �B

)]
· �dl,

because the line integral
∮
l
gradϕ · �dl = 0.

If we want to get the “flux rule”, we must start again from eq. (C.6), and write,

in the reference frame of the laboratory

E =

∮
l

�E · �dl +
∮
l

(
�vc × �B

)
· �dl =

∫
S

curl �E · n̂ dS +

∮
l

(
�vc × �B

)
· �dl(C.9)

= −
∫
S

∂ �B

∂t
· n̂ dS +

∮
l

(
�vc × �B

)
· �dl,

where S is any arbitrary surface that has the integration line l as a contour. For every

vector field with mull divergence (see [20], pp. 10-11)

(C.10)

∫
S

∂ �B

∂t
· n̂dS =

d

dt

∫
S

�B · n̂ dS +

∮
l

(
�vl × �B

)
· �dl,

where �vl, the velocity of the line element dl, can be different for each line element.

Therefore, eq. (C.9) becomes

(C.11) E = −dΦ

dt
−

∮
l

(
�vl × �B

)
· �dl +

∮
l

(
�vc × �B

)
· �dl.

In the case of a rigid, filiform circuit moving with velocity V along the positive

direction of the common x′ ≡ x axis, this equation becomes

(C.12) E = −dΦ

dt
−

∮
l

(
�V × �B

)
· �dl +

∮
l

(
�vc × �B

)
· �dl.

We can write �vc = �V + �vd in the Galilean limit (c = ∞). Then, finally

(C.13) E = −dΦ

dt
+

∮
l

(
�vd × �B

)
· �dl = −dΦ

dt
,

i.e., the “flux rule” (the line integral is null because for every line element, �vd is

parallel to �dl).
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[13] Giuliani G., Elettromagnetismo, relatività, quanti - Fisica, Storia, epistemologia (Pavia
University Press, Pavia) 2019.

[14] Ugarov V. A., Special theory of relativity (Mir Publishers, Moscow) 1979.
https://archive.org/details/SpecialTheoryOfRelativityByUgarov

[15] Bondi H., Relativity and common sense: a new approach to Einstein (Dover, New York) 1980.

[16] Yaghjian A. D., “Maxwell’s derivation of the Lorentz force from Faraday’s law”, Progr. Elec-
tromagn. Res. M, 93 (2020) 35.
https://www.jpier.org/pierm/pier.php?paper=20040202

[17] Cavendish H., “Experimental determination of the law of electric force”, The electrical
researches of the honourable Henry Cavendish, edited by Maxwell J. C. (Frank Cass & Co.Ldt,
London) 1867.
https://ia600206.us.archive.org/31/items/electricalresear00caveuoft/

electricalresear00caveuoft.pdf

[18] Maxwell J. C., A Treatise on Electricity and Magnetism, Vol. I, second ed. (Clarendon Press,
Oxford) 1881.
https://archive.org/details/electricityndmag01maxwrich/page/n5/mode/2up

[19] Liang-Cheng Tu and Jun Luo, “Experimental tests of Coulomb’s Law and the photon rest
mass”, Metrologia, 41 (2004) S136.
https://iopscience.iop.org/article/10.1088/0026-1394/41/5/S04

[20] Zangwill A., Modern Electrodynamics (Cambridge University Press, Cambridge) 2013.
[21] Barbieri S., Cavinato M. and Giliberti M., “Riscoprire il potenziale vettore per la scuola

superiore”, G. Fis., 54 (2013) 111.
https://doi.org/10.1393/gdf/i2013-10177-y



Teaching Electromagnetism in elementary physics or upper high school courses 363

[22] Einstein A., “Zur Electrodynamik bewegter Körper”, Ann. Phys., 17 (1905) 891,
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053221004, Engl. transl. in The
collected papers of Albert Einstein, Vol. 2 (Princeton University Press, Princeton) pp. 140–171.
http://einsteinpapers.press.princeton.edu/vol2-trans/154

[23] Giuliani G., “L’induzione elettromagnetica: un percorso didattico”, G. Fis., 49 (2008) 291.
https://www.sif.it/riviste/sif/gdf/econtents/2008/049/04/article/0

[24] Scanlon P., Henriksen R. and Allen J., “Approaches to Electromagnetic Induction”, Am.

J. Phys., 37 (1969) 698.
https://doi.org/10.1119/1.1975777
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